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The newly developed connected kernel equations for N-body scattering are applied to the
study of rearrangement reactions. An integral equation for the transition operator is ob-
tained which has a connected kernel and whose inhomogeneous terms contain the standard
distorted-wave Born approximation (DWBA) and a two-step part. The two-step part is sim-
ilar to the expression usually used for the calculation of two-step reactions but with a non-
standard prescription for the driving potentials. The difference comes about because of the
off-shell transformations used to simplify the original connected kernel equations. A multi-
step DWBA series is generated and the conditions for its convergence are discussed.

I. INTRODUCTION

Connected kernel equations (CKE) have recently
been derived for the scattering operators in the
N-body problem.'~® These equations eliminate the
disconnectedness problems of N-body scattering
theory* in a manner analogous to the Faddeev-
Lovelace treatment of the three-body problem.5:¢
It has been noted that some rearrangement transi-
tions can be expected to have significant two-step
components.”™® However, in the usual formulation,
the distorted-wave Born approximation (DWBA) is
not the inhomogeneous term of a connected kernel
integral equation.!® The calculation of a second
order correction is therefore somewhat prob-
lematical.'

In this paper we derive a linear integral equation
with connected kernel whose inhomogeneous term
contains the DWBA and a two-step term. This
equation may be iterated to give a multi-step
DWBA series which permits rearrangement in the
intermediate steps. The propagator of an inter-
mediate state is a Green function which includes
the effect of the optical potential in that interme-
diate state and a projection operator on two cluster
states. The effect of the intermediate breakup
states must be included in the effective transition
operators and treated properly as a three- (or
more) body problem.'? All the transition operators
must be chosen consistently. The transition op-
erators for the two-step process, when approxi-
mated in lowest order, are similar to those used
previously,'® but differ in detail. An ambiguity
still remains because of the possibility of off-shell
transformations of the full transition matrix which
results in the mixing of terms of different orders
in the DWBA series.

10

In Sec. II, we recall the CKEs and the resulting
coupled channel equation for the effective transi-
tion operator for rearrangement is derived and
the multi-step DWBA series generated. The con-
ditions for the convergence of this series and
the effects of off-shell ambiguities are also dis-
cussed in this section. In Sec. III the equations
are used to determine the transition operators in
two-step calculations and these are compared with
the usual prescriptions. Conclusions are given in
Sec. IV.

II. MULTI-STEP DWBA SERIES

The connected kernel equations obtained in Refs.
1-3 are for the transition operator

U =v+vicv?’, 1)

where V" is the residual interaction in the channel
v, and G is the full Green function. We have used
the post form of the amplitude

(@, | UL | @) =T D[ VY&, . ()

The prior form can be used equally well. The
CKE for Uy, is

Upy= V#+Z WG, Uy . (3)
g

We use Greek indices to label two cluster chan-
nels. The potential part of the channel Hamil-
tonian H, is written V,. This includes the inter-
actions between all pairs having both particles in
the same cluster. If a pair has both particles in
the same cluster we describe such interactions as
being internal to the channel. If a pair has one
particle in each of the two clusters of the channel
we refer to the interaction of that pair as being
external to the channel. The operator V) is the
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sum of those interactions which are both internal
to the channel v and external to the channel p.
Note that V, is identically zero. The sum is over
two cluster channels, o, and the operator Wj is
the sum of all o-connected diagrams not ending in
an interaction internal to channel u. The U,
agrees with Uf;) on the energy shell, but an off-
shell transformation has been performed to sim-
plify Eq. (3).

The CKEs may be separated into coupled chan-
nel form by a method similar to the one used by
Grassberger and Sandhas to put the three-body
equations into optical potential form.'* If one
makes a spectral representation of the kernel W§
and separates out those cuts corresponding to two
bound clusters in the channel ¢, one obtains cou-
pled channel equations for the transition ampli-
tudes, and equations for the optical potentials and
effective transition operators appearing in the
coupled channel equations.?:'? The coupled channel
equations obtained are

Ulﬂl: U‘IJIV) + Z U(ﬂlc)Irc Uo"’ (4)
a
where T'; is the renormalised two-cluster propa-
gator
r,=3 [dbleieip) L
° F 0P E—el -2 -p2/2u,+in

I2
EOEU

x(eLe?p|. (5)

The exact intrinsic energies of the two clusters
in the channel o are €} and €%, and their relative
momentum is p. We have written the equations in
the c.m. frame so p, is the reduced mass in the
channel 0. Note that T'; contains a projection
operator on the bound states in the channel o.
The operator U(Y) satisfies an equation of the form

UR=Vi+Y (WiG,- VET,)US). (6)
a

Equations (4) and (6) are a separation of Eq. (3)
into two parts. Since Eq. (3) is an operator equa-
tion it involves all types of states including states
with three or more clusters. The separation above
isolates the part of the equation describing two-
cluster scattering [Eq. (4)] from the part describ-
ing scattering of the three or more clusters [Eq.
(6)]. The Eqgs. (4) are coupled channel equations
with rearrangement so we may interpret the diago-
nal elements of U(Y as generalized optical poten-
tials and the off diagonal elements as transition
operators. Equation (6) is a CKE for the effective
interactions to be used in Eq. (4). Approximation
methods for dealing with this equation will be dis-
cussed in a future paper.'? For this work we only

investigate the implications of the existence of Eq.
(4). It is enough here to remark that in “lowest
order” (the precise meaning of this will be speci-
fied in Ref. 12) Eq. (6) leads to a standard impulse
approximation for the optical potentials and to the
transition operators usually used in the DWBA.
We introduce the notation
4 (ul& =y, (7)

Ul =vyy.

In the lowest order the transition operators for
rearrangement v,, are given by VY plus correc-
tions arising from continuum intermediate states.

With the definitions of Eq. (7), Eq. (4) may be
written

U=V +v+0TU+uTU, (8)

where we have used matrix form and suppressed
the indices. If we now solve the part containing
the optical potential (third term on the right), we
obtain

1 1

Ust—or V*1-or

v(1+TU). 9)

We can easily convince ourselves that
v=Uu® +uru® (10)

by iterating both Egs. (4) and (10) and noting that
they agree term by term. Therefore we also have

1 1
U—'Um+(l+Ur)vl-rv. (11)
Substituting Eq. (11) into Eq. (9) we obtain
1 1 1
U_l—'UI" V+TToT [v+oTv+ ol UTw] o To
(12)

We note that the first term, (1 -UI')"!v is sim-
ply the scattering matrix in the presence of the
optical potentials alone. We therefore define

1

opt _
U =T%r

. (13)

One must be slightly careful of the notation here.
We are using the notation U for a scattering ma-
trix and U™ or < to refer to an optical potential.
U is a scattering matrix and should not be con-
fused with an optical potential. The inverse op-
erators on either side of the second term of Eq.
(12) are simply the optical potential distortion
operators. We define

O =[1 =T (E+in)v,]™

=14, (14)
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With these definitions we may write Eq. (12) as
U= U + QO T [v+oTv+ 0T UT0] QM) . (15)

We now procede to define an equation for the oper-
ator in brackets in the above equation. This oper-
ator is the exact effective interaction operator to
be used in a distorted wave calculation. Defining

U=U* +QO) Ty (16)
straightforward manipulations yield the equation
T=v+0vSv+0v§TSV, @am

where the propagators § are the two-cluster
propagators now including the distortions due to
the optical potentials:

§=T+I'VS 18)
=(1-Tv)"'r.

Equation (17) is our main result. The series gen-
erated by iterating this equation has as its first
term the distorted-wave Born approximation. The
second term is a two-step process and so forth.
Note that the solution of Eq. (17) will be identical
to the solution of the equation

T=p+087T. (19)

This can easily be seen by comparing the iter-
ated forms of Egs. (17) and (19). The divergences
in previous DWBA series arise from building
bound states of non-interacting subsystems,% 3
In this formulation, the presence of the exact re-
normalized bound state projection operators fol-
lowed by transition operators eliminates the pos-
sibility of having non-interacting subsystems. The
two-cluster part of the problem has been treated
as a two-body problem, while the three-cluster
part (corresponding to breakup states) enters only
in the equations for the transition operators and is
there treated as a three-body problem.'? There is
therefore no ambiguity in whether or not the
breakup terms should be included in the interme-
diate states as there is in previous theories. In
order to maintain proper connectivity, they must
not be included. Equation (19) may be used to
study the convergence of the iterated series by ex-
amining the eigenvalues of the operator vg. The
equation can be seen to be an ordinary inhomoge-
neous integral equation of the second kind. The
convergence of the equation will therefore be de-
termined entirely by the eigenvalues of the oper-
ator »8. If this operator has any eigenvalues out-

side the unit circle the iterated series will diverge.

If all its eigenvalues have norm less than one the
DWBA series will converge. The transition oper-
ators entering in the multi-step processes are
now uniquely determined by Egs. (6), (7), and (17).

There is no remaining post-prior ambiguity.*®
Since we have a complete prescription, i.e., one
which generates terms of all orders, one must
maintain consistency over all. An ambiguity does
still remain, however. The operator U, is re-
quired only on the energy shell. One may there-
fore modify it off the energy shell as one pleases.
These modifications are discussed in some detail
in Ref. 12, The result found there is that one can
transform the operator T by an operator which is
equal to 1 on the energy shell but may take any
value off shell. The kernel of Eq. (6) is changed by
such a transformation and the optical potentials
and transition operators of Eq. (7) modified there-
by. This makes no difference if an exact calcula-
tion is performed, but, for example, if the series
obtained by iterating Eq. (17) is truncated, one
will obtain different results corresponding to dif-
ferent off-shell continuations. Through modifica-
tions of the operators v and U (and therefore §),
the kernel of Eq. (17) will be changed and so will
the convergence rate of the series. We note that
there are now two series involved: that used for
calculating the optical potentials and transition
operators [the iteration of Eq. (16)], and that used
for calculating the effective interaction for use in
a DWBA [iteration of Eq. (17)]. It is not clear that
one can optimize the convergence of both series
simultaneously. This interesting question will
require further study.

III. TWO-STEP APPROXIMATION

Let us now consider the two-step approximation
to Eq. (17) and determine its implications for actu-
al calculations. To the second order, taking ma-
trix elements in the channel wave functions ¢, and
$,, and considering one intermediate channel A,
we have

<q’u I Uuw l ®,) 2<X(u-)l[vuv*" qungxu] I X§/+)>, (20)
where
X)) =961 @) . (21)

This is similar in form to the starting point of
most two-step calculations but it is by no means
identical. The usual starting point for the analysis
of a two-step process is the equation'®

(@, | US| 8,) =(2, | 2 TTR 0| &,) (22)
with

(=)= TV THQTY

TR=V'+V¢GV", (23)

17'01= a_pa,

One obtains the effect of a two-step process by ap-
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proximating the G by §, thus giving
(@l UR @) = [V +TH 6y 7711
(24)

As we have written it above, the projection opera-
tor on the bound states of the channel A has been
included in the approximation for G, but there is
no compelling theoretical reason for doing so. In
the CKE method, the projection operator is re-
quired in order to arrive at the coupled channel
equations. The corrections coming from the
breakup states in the channel A go into the expres-
sion for the effective transition operators as an
additive contribution. When the multi-step reaction
we are considering is the successive transfer of
single nucleons, the success of the DWBA using
the simple approximation

vV (25)

suggests that the truncation of the breakup states
in the CKE approach should be a good one. [For
example, in a (d, p) reaction, this gives simply
V= V)

Now let us compare the potentials appearing in
Eqs. (24) and (20). As an example, consider the
double stripping mechanism proceeding through
the deuteron channel. Explicitly, we take the
channel identifications p =p +(4+2), A =d+(A+1),
and v=¢+A. We label the first transferred neutron
as n,, the second as n,. We then obtain for the
potentials in Eq. (20)

Vpw=VE= Vp—n1+ Vpeny:
vp=Vi= Vi, » (26)
vin=Vg = Vounys
and for the potentials in Eq. (24)
V"= Vi)~ 0e = Vaear* Vi -a-2) = O
(27)

VE=V,_4,=0,=V,

p=n,*
As a second example, consider the stripping-pick-
up mechanism for the A(x, t) reaction. Explicitly,
we take channel v=h+A4, A=v+(A-1), and u =
t+A’. With these identifications we get
Oy = Vi =V,_g+ Voo
vun=V4h=V,e» (28)
v =Vi=Va e
and
VY= Viea=0s= Voo
— 29
VE=Via =0 % Vyy (29)

We have used C to indicate the A-1 particle core
which contains neither the transferred neutron nor
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proton. We note a number of differences between
the results obtained beginning with Eq. (20) and
those obtained beginning with Eq. (24). First we
observe that the transition operators in the two-
step process depend on the intermediate channel
in our formalism but not in the iterated Green
function formalism. The one-step terms are es-
sentially the same up to the post-prior ambiguity.
In the two-step term we note that we have two
“short-range” interactions in the (¢,p) example
(i.e., an interaction of the transferred particle
with the projectile) while in the (i, ) example we
have one short-range interaction and one “long-
range” interaction (i.e., an interaction of the
transferred particle with the nuclear core). In the
iterated Green function method this is reversed.
Although this difference resembles the replace-
ment of a post DWBA by a prior DWBA?®? this is
not done arbitrarily but is in fact required by our
formalism.

The difference in the two prescriptions arises
from the fact that an off-shell transformation has
been performed on the operator U‘[u) in order that
the connected kernel equation it satisfies have a
simple Born term and in order that the DWBA be
recovered in a straightforward manner from these
equations. This transformation is described in
Refs. 2 and 3.

The effect of the transformation is quite striking.
Compare, for example, the Eq. (1) defining U,
and Eq. (3) for U. When expanded in a perturbation
series we see that no diagrams in the expansion
for U(;) begin with an interaction internal to the
channel v. When Eq. (3) is iterated, however, we
see that all its terms begin with an interaction in-
ternal to the channel v.

Since the second order terms include propagation
off the energy shell, it is important to consider
which off-shell extension one is using and the ef-
fect the choice of off-shell extension has on the
convergence of a DWBA series. The CKE method
leads to a DWBA series which will not be forced to
diverge by the presence of disconnected graphs,
in contrast to the series obtained from iterating a
resolvent equation for a many-body Green func-
tion.!5 This suggests that the CKE method may be
a more reliable basis for calculating higher order
corrections than the iterated Green function meth-
od. It should be noted, however, that even a con-
nected kernel integral equation does not guarantee
that the iterated series will converge. Such diver-
gences in connected kernel equations have been
found in the three-body problem, both in studies of
the multiple scattering series'® and of the optical
potential.!” But such divergences can only be
studied in the framework of a well-behaved inte-
gral equation, such as the CKE.
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IV. SUMMARY AND CONCLUSIONS

The coupled channel equations arising from the
connected kernel equations for the N-body two-
cluster scattering amplitude has been written in
distorted wave form and an equation obtained for
the effective transition operator for rearrange-
ment processes. This operator yields the exact
rearrangement amplitudes when its matrix element
is taken between distorted waves. The equation for
it is an inhomogeneous linear integral equation and
the inhomogeneity contains two terms, the first of
which yields (in lowest order) the usual DWBA.
The second term describes rearrangement two-
step processes. The equation may be iterated to
yield a multi-step DWBA series. The interme-
diate state propagators in this expansion contain
optical distortions and projection operators on the
two-body bound states. This projection operator
must be present to avoid divergence difficulties.
The coupled channel equations can only handle two-
cluster channels properly. Three-cluster channels
must be dealt with by writing Faddeev-like three-
body equations for the effective operators appear-
ing in the coupled channel equations.

The DWBA series obtained here is applied to two
standard two-step examples, (¢,d,p) and (k, a, ).
The resulting prescriptions for the transition op-
erators differ somewhat from the standard pre-
scriptions. This is because the scattering oper-

ator used, U,,, differs off the energy shell from
the usually employed operator U(;). This off-
shell transformation was chosen in order to have
the scattering operator satisfy a reasonably sim-
ple connected kernel equation and one which would
reduce to the standard prescription for the DWBA
when the appropriate assumptions are made.

The formulation presented not only allows one to
establish prescriptions for two-step processes but
to determine those operators controlling the con-
vergence rate of the entire series. The ambigu-
ities arising from the off-shell indeterminacy may
also be studied. The connected kernel framework
therefore provides us with a precise means of
formulating and studying these questions which are
not treatable with previous theories. In this for-
malism it is clear, for example, that the conver-
gence rate of the series used to calculate an opti-
cal potential and the series used to calculate a
rearrangement process in a distorted wave matrix
element using those optical potentials, are not con-
trolled by the same operator. Therefore, if one
chooses an off-shell continuation for the purpose
of optimizing the convergence rate of one series,
the other may suffer.
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