γ -ray transitions in ⁴⁸Cr and ⁶⁰Zn

R. Kamermans, H. W. Jongsma, J. van der Spek, and H. Verheul Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands (Received 28 January 1974)

The level structure of the N = Z = even nuclei ⁴⁸Cr and ⁶⁰Zn was investigated. The levels were excited in the (³He, *n*) reaction. By measuring direct γ radiation in coincidence with the outgoing neutrons information about the γ decay of the levels was obtained.

NUCLEAR REACTIONS ⁴⁶Ti, ⁵⁸Ni (⁶He, $n\gamma$), E = 10 MeV measured $E\gamma$, $I\gamma$, $n\gamma$ coin deduced ⁴⁸Cr, ⁶⁰Zn levels, J, π . Enriched targets. Ge(Li) detector.

INTRODUCTION

Until recently nothing was known of the γ -ray transitions in the N = Z = even nuclei ⁴⁸Cr and ⁶⁰Zn. These nuclei are hard to investigate with lightparticle-induced reactions because of the low cross sections. Information about ⁴⁸Cr was obtained by the ⁴⁶Ti(³He, n)⁴⁸Cr¹ and ⁵⁰Cr(p, t)⁴⁸Cr²⁻⁴ reactions and, recently, the γ decay of levels excited by the ⁴⁰Ca(¹⁰B, pn\gamma)⁴⁸Cr⁵ reaction was investigated. The structure of ⁶⁰Zn was studied by neutron detection after the ⁵⁸Ni(³He, n)⁶⁰Zn^{6,7} reaction and with the ⁵⁸Ni(¹⁶O, ¹⁴C)⁶⁰Zn⁸ reaction. ⁶⁰Zn is the heaviest N = Z = even nucleus of which some level structure is known. Since no γ rays are reported from this nucleus, we investigate these nuclei with in-beam γ spectroscopy.

EXPERIMENTAL PROCEDURE AND RESULTS

⁴⁸Cr and ⁶⁰Zn levels were excited with the ³He, n reaction on enriched self-supporting 2 mg/cm² foils of ⁴⁶Ti(⁴⁶Ti: 86.1%; ⁴⁷Ti: 1.6%; ⁴⁸Ti: 10.6%;

 $^{49}\text{Ti:}0.8\%;~^{50}\text{Ti:}1.0\%),$ and $^{58}\text{Ni}(^{58}\text{Ni:}99\%).$ Because of the large ⁴⁸Ti contamination experiments on natural Ti were also done. 10 MeV ³He beams from the AVF cyclotron der Vrije Universiteit were used. Single γ spectra were measured with a Ge(Li) detector with an efficiency of 3.5%. The neutrons were detected with a 10 cm diam \times 10 cm NE213 liquid scintillator. Neutron- γ separation was performed with the zero-crossover technique. For each observed neutron- γ coincidence, the energy of the γ ray, the height of the pulse from the neutron detector, and the time difference in the zero-crossover from neutron and γ pulses from the NE213 were dumped on magnetic tapes and afterwards analyzed.9 The contribution of the $({}^{3}\text{He}, pn_{\gamma})$ reaction is relatively small. Moreover, for the assignment of the γ rays we had to select the energy of the outgoing neutron by setting software windows in the NE213 energy spectra during the analyses, which caused a further reduction of the $({}^{3}\text{He}, pn\gamma)$ contribution. γ rays were detected at 90° at a distance of 3 cm from the target. The neutron detector was located at 0° and at 3.5 cm from

10 620

FIG. 2. γ spectrum coincident with neutrons with an energy above 3.6 MeV.

FIG. 3. Proposed level scheme of ⁴⁸Cr.

FIG. 5. γ spectrum coincident with neutrons with an energy above 3.6 MeV.

	⁴⁸ Cr
E_{γ} (keV)	I_{γ} coincident with neutrons, $E_n > 3.6$ MeV
752.4 (0.5)	100
1106.4 (0.5)	18 ± 3
1675.3 (1.)	19 ± 2

TABLE I. γ -ray energies and intensities of 48 Cr.

TABLE II. γ -ray energies and intensities of ⁶⁰Zn.

E_{γ} (keV)	60 Zn I_{γ} coincident with neutrons, $E_n > 3.6$ MeV
1004.2 (0.5)	100
1189.4 (0.5)	17 ± 3
2006.8 (1.)	4 ± 2
2506.1 (1.)	23 ± 4

the target.

The single γ -ray spectrum from reactions with 10-MeV ³He on ⁴⁶Ti is seen in Fig. 1. The γ spectrum coincident with neutrons with an energy above 3.6 MeV shows clearly the lines that belong to the 46 Ti(³He, $n\gamma$)⁴⁸Cr reaction (Fig. 2). Energies and intensities are given in Table I. The proposed level scheme of ⁴⁸Cr, given in Fig. 3, is in excellent agreement with Ref. 5 except for the 532-keV transition. This γ ray could only be seen rather vaguely in their γ - γ coincidence spectra. The single γ ray spectrum from reactions with 10-MeV ³He on ⁵⁸Ni is shown in Fig. 4. In the spectrum of γ rays coincident with neutrons with an energy above 3.6 MeV, the γ rays that correspond to the ⁵⁸Ni- $({}^{3}\text{He}, n_{\gamma})^{60}$ Zn reaction are shown (Fig. 5). Energies and intensities are given in Table II. With the assumption of a 4^+ state at 2193 keV one can assign 2⁺ for the 4200.4-keV level. The proposed level scheme is given in Fig. 6.

Lifetime measurements on the first excited state of ⁶⁰Zn by means of the Doppler shift attenuation method could not be performed because the total energy shift, calculated from the kinematics with the necessary neutron detection at $0^\circ\!,$ is only 1.7 keV.

Shell model calculations for ⁴⁸Cr have been performed by assuming a closed ^{40}Ca core with four protons and four neutrons in the $1f_{7/2}$ shell.^{10,11} Different sets of matrix elements were used as indicated in Fig. 3. By assuming ⁵⁶Ni as an inert core, shell model calculations for ⁶⁰Zn were done with matrix elements derived from Yale-Reid¹² and Hamada-Johnston^{13, 14} potentials. Perazzo¹³ also used the Auerbach and Argonne interaction. In Fig. 6, two of these calculations are compared with the experimental data. The wave functions of Singh¹⁴ indicate that no simple shell model picture of ⁶⁰Zn exists. This calculation is the only one that reproduces correctly the first excited 0^+ state. The second 2^+ state below 4 MeV is predicted by Perazzo.¹³ Unfortunately no transition probabilities are calculated for this level. Experimentally this level seems to decay preferentially to the 4^+ state. Upper limits for the $2_2^+ \rightarrow 0_2^+$ and the $2_2^+ \rightarrow 2_1^+$ transitions could not be extracted with a reasonable accuracy because of the low statistics of the 2006.8keV γ ray.

FIG. 6. Proposed level scheme of 60 Zn.

- ¹R. G. Miller and R. W. Kavanagh, Nucl. Phys. <u>A94</u>, 261 (1967).
- ²J. F. Bruandet, N. Longequeue, J. P. Longequeue, and B. Vignon, Phys. Lett. <u>37B</u>, 58 (1971).
- ³W. E. Dorenbusch, J. B. Ball, R. L. Auble, J. Rapaport, and T. A. Belote, Phys. Lett. 37B, 173 (1971).
- ⁴J. R. Shepard, R. Graetzer, and J. J. Kraushaar, Nucl. Phys. <u>A197</u>, 17 (1972).
- ⁵W. Kutschera, R. B. Huber, C. Signorini, and P. Blasi, Nucl. Phys. <u>A210</u>, 531 (1973).
- ⁶M. B. Greenfield, C. R. Bingham, E. Newman, and M. J. Saltmarsh, Phys. Rev. C 6, 1756 (1972).
- ⁷R. P. J. Winsborrow and B. E. F. Macefield, Nucl. Phys. A182, 481 (1972).

- ⁸F. Pougheon, P. Roussel, P. Colombani, H. Doubre, and J. C. Roynette, Nucl. Phys. <u>A193</u>, 305 (1972).
- ⁹R. Kamermans and H. W. Jongsma, Internal Report, Multiparameter koïncidentie programma's on line met de CDC 1700 (unpublished).
- ¹⁰S. Pittel, University of Pittsburgh, private communication to Shepard, Graetzer, and Kraushaar.
- ¹¹F. Brut, Can. J. Phys. <u>51</u>, 2086 (1973).
- ¹²M. L. Rustgi, H. W. Kung, R. Raj, R. A. Nisley, and M. H. Hull, Phys. Rev. C 4, 854 (1971).
- ¹³R. P. J. Perazzo, Nucl. Phys. <u>A186</u>, 379 (1973).
- ¹⁴R. P. Singh and M. L. Rustgi, Phys. Rev. C <u>3</u>, 1172 (1971).