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We present multichannel nuclear reaction formalisms based on the Schwinger and Kohn

variational principles. Our formalisms seem somewhat simpler in form than those hereto-
fore proposed. The necessity of using the entire set of asymptotic boundary conditions to
constrain the trial wave function is stressed. We show how this may be done by employing
the coupled integral equations formalism discussed by Baer and Kouri, Kouri and Levin,
and by Tobocman. Several explicit expressions for the transition amplitude are presented
which appear to provide a promising basis for doing many-body system scattering reaction
calculations.

NUCLEAR REACTIONS Variational multipartition nuclear reaction formalism;
coupled LS equation method used to impose all asymptotic boundary condition

cons tI'aints.

I. INTRODUCTION

The literature contains several many-body ver-
sions of the Lippmann-Schwinger' and Kohn' varia-
tional principles. ' Of particular interest to us was
the employment of the Schwinger variational prin-
ciple by Hufner and Lemmer' as the basis for us-
ing nonperturbative Hilbert space truncation meth-
ods (like the shell model or random phase approx-
imation) for the calculation of elastic and inelastic
scattering transition amplitudes for nucleon-nucle-
us collisions. This formalism was found to be
superior to several other methods when tested on

a, simple two-body, two-channel model. '
Except for those treatments' of the three-body

system which base themselves on the Faddeev
equations instead of the Lippmann-Schwinger equa-
tions, none of these variational principle formal-
isms deal adequately if at a,ll with the special
problem posed by the existence of more than one
reaction channel. The problem is how to constrain
the trial wave function (or wave matrix operator)
to simultaneously fulfill appropriate boundary con-
ditions in all channels.

In this article we present relatively simple mul-
tichannel formulations of the Schwinger and Kohn

variational principles. The importance of impos-
ing the complete set of asymptotic boundary condi-
tion constraints on the trial wave matrix operator
is demonstrated. It is shown that the wave matrix
operator must be the simultaneous solution of N
integral equations, one for each partition (or fam-
ily of channels associated with a particular mode
of separating the particles into two groups). Each
of these integral equations contains a distinct as-
ymptotic boundary condition constraint. Each of
these integral equations has a kernel which is not

completely continuous and so the integral equation
is not susceptible to solution by conventional methods.

By means of the methods of Baer and Kouri, ' of
Kouri and Levin, ' and of Tobocman' these integral
equations can be coupled together in such a way as
to yield an integral equation for the wave matrix
which has a completely continuous kernel that in-
corporates the complete set of asymptotic boundary
condition constraints. This result is incorporated
into our multichannel variational principle. Sever-
al explicit expressions for the transition amplitude
are presented which appear to provide a promising
basis for doing many-body system scattering reac-
tion calculations.

Our approach is an alternative to the Faddeev
approach which has the advantage that the formal-
ism has the same structure for the n-body system
as it does for the three-body system.

In Sec. II the Schwinger variational principle is
generalized from the single-partition version of
Hiifner and Lemmer to a many-partition version.
This provides a variational expression for the tran-
sition amplitude to be used in conjunction with ap-
proximate expressions for the scattering state
wave functions or approximate expressions for the
transition operator. In Sec. III it is shown how to
generate formal solutions of the integral equations
for the transition operator which are constrained
by the entire set of asymptotic boundary conditions.
In Sec. IV the problem of disconnected graphs is
addressed. In Sec. V it is shown that the Kahn
variational principle may be generalized to include
possible rearrangements in the same fashion as
the Schwinger variational principle. Useful ex-
plicit expressions for the transition amplitude and

the variational functions are presented in Sec. VI.
The results are summarized in Sec. VII.
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II. SCHNINGER VARIATIONAL PRINCIPLE

FOR THE MANY-BODY PROBLEM

(E -H.)y. =o,

+G V

0'. ' = 4. + G.' ~'.0'. ',
G„=(E-H„) '.

The transition amplitude is given by"

v., =&y'.-'I v, I y, & =&@.l v. l
y", &.

(la)

(lb)

(1c}

(ld)

(2)

This transition amplitude will be an element of the
T matrix or the K matrix depending on whether the
Green's function operators G, Gs, . . . etc. , are
required to fulfill outgoing or standing wave as-
ymptotic boundary conditions.

In the original two-body formalism of Lippmann
and Schwinger' and in the many-body formalism
of Hufner and Lemmer' it is assumed that only
one partition, say n, need be considered. Then
the variational function for the transition ampli-
tude is taken to be"

Consider a system of N distinguishable particles.
(If the particles are indistinguishable, then one
must make appropriately symmetrized sums of
transition amplitudes calculated on the assumption
of distinguishability. ") For ea.ch partition o. , P, . . .
of the particles into two clusters there is a decom-
position of the Hamiltonian into two parts:

H =H~+ V„=Ha + Vs =. .

H contains the kinetic energy and the intracluster
interactions while V is the sum of intercluster
interactions for partition o. . Let (t), be a continuum
eigenstate of H and let P'," and P', ' be the associat-
ed scattering states.

condition 6f'„/5$', ' =0 implies

o =&aj'
I v, ly, &&j' I

vsn"' 'I j'
&

-&j'.-'I V, I y,&&f j'.-'I vsn", 'I j"'&.

To fulfill this relationship for arbitrary 5g', ' it is
sufficient that

y y y g(+)-ly(+)

or P',"=$'," in the range of V&.

Consider next variations with respect to P',".
The condition 5t;b/5p'b" =0 implies the following
relationship:

&0! 'I f1'." ' =&0'. 'I (I —V.G.) =&0. l
(10)

Using this definition of the inverse of the wave ma-
trix operator II'„', Eq. (9) can be rewritten in the
form

&(I). l va=&la Ifls 'vs.

Only for the case P = e is this relationship fulfilled
by P', ' = P', ', corresponding to the single-partition
version of the Schwinger variational principle.

We can see that if (I)',
' is a solution of Eq. (9),

then 9'„=&)C), 'I Vsl(f)b&. We must prove this to be
equal to 9;, =((})',

I Vs I p ) or C„=&p, I
V

I
(I)"'&.

This is seen to be the case since Eq. (9) implies

&.b =&)I)'. 'I Vsl(t)b& =&4. 1
v ( Vsf'is') 'Vsl @b&

This relation will hold for arbitrary 5P'," if the
function P', ' is required to be a solution of

(y. l V. =&4'. 'I Vsfl's' '

This is not equivalent to requiring P', ' =P', '. From
Eq. (1c) we can deduce

&y. l v. l
j':,'&

&j'. 'I V.14,.&
&F. 'I v.(1 —G.v.) I P

(3) (12)

It can be readily verified that 5 1'„/5(t)q' =0 and

tion, setting (I)z' =)})'," and )I)',
' =(I)(, ' causes q;, to

become equal to &„.
We propose the generalization of the above varia-

tional principle that results from choosing the vari-
ational function to be

+ab (y(-)I V V G V
I

$(+)&

where

(13a)

Our many-partition generalization of the Schwin-

ger variational principle is thus endowed with the
desired features. It yields a formalism which con-
sists in having

where we have used the inverse of the wave ma-
trix operator 0'8' defined by

= I 8~8%a =|I'a

g( )~

(V g(+~ 1) 1 g(+& V 1

(13b)

(13c)

(13d)

08 —1 —Gsp~.

Consider first variation with respect to P', '. The

We understand P'," and P', ' to be approximate rep-
resentations of the solutions of Eqs. (7) and (9),
respectively.
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At this point we differ from Hufner and Lemmer'
who propose the use of Eq. (13b) for (t(',

" in Eq. (2)
for &„. By using the definition for f', b shown in
Eq. (2) instead of the variational expression shown
in Eq. (13a), Hufner and 1.emmer, it seems to us,
lose the benefit of the stationary property of the
variational expression.

An alternative formulation of the variational
principle uses the operator I'8 rather than the
wave functions Pb and P, as the quantity to be
varied. Substitution of Eqs. (13b) and (13c) into
Eq. (13a) gives

(&4. 1
V 1's Vs I ls&)'

&&. ~
V 1's(Vs - VsGsVs}~sVsleh&'

where rz-—n'8'Vs ' is the result of some approx-
imate scheme of calculation. For instance, if we
use a Hilbert space truncation method we would
seek to approximate P'" by

erator is incomplete. If the system admits of N
distinct partitions, then the wave matrix will be a
solution of N distinct integral equations. Let

9=(Z-H)-'=(G„'- V„)-'=(Gs-'- V,)-'= ~ .

(19)

be the system Qreen's function operator. Then

0's' = (1 —Gs Vs) ' =9Gs

=GyGy '9Gs '=G~(9 '+ V~)9Gs

=GyG~ +Gy vyn'8 y =1,2, . . . , N. (2o)

Each of these integral equations contains an as-
ymptotic boundary condition constraint for n'z' in
a different region of configuration space. n'8'
must be a simultaneous solution of all these N
equations.

It is easy to illustrate the difficulty if we replace
Eq. (20} by

y(Q Q ~(+& (15) 08 -5y8+GyVyn8)

a finite state sum. The A'„"'s would be determined
with the help of Eqs. (13b) and (13c). The results
would then be substituted into Eq. (13a). Equiva-
lently, I'8 could be approximated by

rs= x ra .x. (16a)

(i,).„=(M-'). „,I..=
&X I

Vsft's ' 'I X.& = &X.I
1's '

I X.&,

(16b)

(16c)

where we used the truncated basis (X„;s =1,2, . . . ,
Xj to carry out an approximate inversion of
v n"'-'

8 8

III. FULFILLING THE ASYMPTOTK

BOUNDARY CONDITIONS

Prom the definition of Eq. (5)

r, =n',"v,-'

=(1 —GsVs) 'Vs

=(Vs —VsGsVs} '.
Thus it would appear that Vz —V&G8 Vs should be
used for VsQ's' ' in Eq. (16c). This is appropriate
for the single-partition case but not for the many-
partition case. By inverting V&Q'z' ' to secure a
representation of I"

8 we are solving the equations
of motion of the system When Eq. . (17) is used we
are using the formal solution of the Lippmann-
Schwinger equation' for the wave matrix operator

This is justified in cases where we use n'8' in ex-
pressions in which it operates on (II)8 or approxima-
tions thereto. Then n'„" is the simultaneous solu-
tion of

n'+' =1+G.v n'."
8 8 a=G v n'+'

= Gy Vyn'~"

while n'6' is the simultaneous solution of

(+)—1+Ggvsn8

= GyVyn'8'

and so on. %e see that the equation

has the solution n" + bn'z'+ cny" + with arbi-
trary constants 5, c, . . . . Thus a single equa-
tion of the set does not have a unique solution.

To construct a formal simultaneous solution of
the N integral equations shown in Eq. (20} it is con-
venient to start by forming N independent linear
combinations of these equations.

0's'= Q W yGyGs '+ Q W„qGqVqQ's'

a = 1, 2, . . . , N, (21a}
n'8+' =1+G, v, n'8+' (18)

to represent that operator. For the many-partition
ease this characterization of the wave matrix op-

W~y =1. (21b)
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The numerical coefficients W
&

are arbitrary ex-
cept for the requirement that the N equations con-
tained in Eq. (21a) be independent and except for
the constraint contained in Eq. (21b). Next operate
on Eq. (2la) with V„.

The single-partition result is recovered by setting
N = 1 and S' ss = 1.

Equations (26) and (32) represent many-partition
generalizations of Eq. (17) which incorporate the
full set of asymptotic boundary conditions.

IV. SUPPRESSION OF DISCONNECTED GRAPHS

T =JUG '+QT,
(+)

Tns = VaQs

@ s=V ~' s~s.
U e=1,
(G ')„g =G '5„g.

Its formal solution is

T =(1-Q) 'QUG '.
From the formal solution we find

I s = Va 'T~sVs '

(23a)

(23b)

(23c)

(24a)

(24b)

(25)

= Q ((V-QV) 'Ql gGs 'Vs '. (26)

An alternative expression for I's is found via
the following sequence of steps which are parallel
to those leading from Eq. (20) to Eq. (26).

0'8' =9GB '=9(9 '+ Vs)

= 1+9Vs = 1+0~"6~Vs,

n's" =1+ a',"C,~„sV„ (28a)

W'~s= 1, (28b)

T„s = V~+ Q T„yG~Wy V s. s

(22)

This is the Kouri-Levin equation' for the transi-
tion operator. In matrix notation it reads

It thus seems advisable to use Eq. (26) or Eq.
(32} for I'8 in the construction of I'~ via Eq. (16}
for use in calculating the transition amplitude
by means of Eq. (14). In using Eq. (32) for I'8 in
Eq. (16) for I'z, we are generating an approximate
solution of the integral equation displayed in Eq.
(28) by use of a finite basis of states. We can be
sure that this procedure converges to the correct
result in the limit that the dimension of the basis
becomes very large if the kernel of the integral
equation is completely continuous. " The kernel
of our equation will be completely continuous if
the iteration series expansion of the integral equa-
tion is such that beyond some finite order all terms
of the expansion have connected graphs. "

The kernel of Eq. (28) is GWV=P. We have
noted that the constraints on the coefficients 5'

e
are not very restrictive. By virtue of the fact that
the subscripts of 8'

e serve to identify different
partitions of the system into two clusters and since
V„represents the entire intercluster interaction
for partition n, it is easy to see how we may use
the freedom we have in choosing the elements 8' s
to prevent the appearance of infinite sets of dis-
connected graphs in the iteration expansion of Eq.
(28).

One way to do this is to choose the W s's so
that the operators V that appear in any term of
the iteration expansion always appear in a particu-
lar sequence and that this sequence contains all
possible partitions. Then there can never by any
graph of order higher than N for which a group of
particles has only mutual interactions since that
graph must of necessity contain V& where y is the
partition for which that group of particles is one
of the two clusters. For example, we can choose

T = VU+TP,

P~e =Go~'as Ve

V e=V5
T = VU(1 —P}

(30a}

(30b)

(30c}

(31)

I's = V- VP '
gs * (32)

Equation (29) is very closely related to one given
by Baer and Kouri. '

1 Q: ly 2~ &
X 1

8'~ , = 1

all other W~e =0,

(33a)

(33b)

(33c}

where N is the total number of distinct partitions
possible for the many-body system.

Use of the above choice for W' causes the opera-
tors Q and P" to be diagonal in partition space.
This fact suggests the use of an alternative ex-
pression for I'8 in place of Eq. (26) or (32). For
example Eq. (32) can be transformed in the follow-
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ing manner:

Is=+[(l —P) '] 8V8 '

= Q [(I —P) '(I —P")(I —P") '],8Vs '
7=1

the forms
~.(+) -(+)—4's+ Xv

=- Qq+ SVgg~,

+9 V(x

(38a)

(38b)

(39a)

(39b)

x [ Vs —Vs(P") 88]

=$1+Ps, 8+(P')8, , 8 +(P" ')8, , 8)
x [ Vs Vs(P )88] (34)

A similar transformation can be performed for
Eq. (26). In the equation above the operator to
be inverted is diagonal in partition space so that
the dimension of the matrix to be inverted is re-
duced by a factor iV. That brings the dimension
back to the dimension X of the space in which Vz
—VSGqVS is to be inverted in the single-partition
case. Thus, in place of Eq. (16) we would have

I'8 = j I+ Ps, 8+ (P')8, 8+ + (P ) s„s)M8,

=&0 iv I @ &+&@.I vnlx. b &(x."Ivel +b&

&
x'"

I E —ffl x"&

(& e. l v.9vsl e.&)'

&4. I v.s(E If)0vsI 4b&

(41a,)

(41b)

Substituting these forms back into the variational
function gives

&b =
& e. i v. l yb&+ & e. l V. Ix'b'&+ (x.."I vsl @b &

- &x."IE-nfl x,") (4Oa)

=
& P. I

V I 4 &+b2& ()b. I V 9 Vsl kb&

&y. l v.g(E -H)9v,
l 4,&.

An alternative to the above expressions which is
independent of the normalization of the trial wave
functions j('~ is

Ms= y M

M =(f(' ') „,
fb' .=

& x I vs —v e(P" ) ee I x. & .

V. KOHN VARIATIONAL PRINCIPLE

(35a)

(35c)

(35d)

Inasmuch as 8 =08 G& =I'& VBG» we can write(+)

the Kohn variational function in terms of the same
operator I'8 as was used in the Schwinger varia-
tional function.

~., =&~.l V.I4.&

(&(t'. I V I'svsGsvsl &0 &)'

&()b. l Vnl's(vs —VsGs Ve)I 8vso8 Vsl 4b&

For some cases the Born approximation to the
transition amplitude provides a fair approxima-
tion. In such cases it might be advantageous to
use a variational function to approximate the dif-
ference between the exact transition amplitude and

its first order approximation. The method appro-
priate to this task is the Kohn variational princi-
ple. ' %'e will sketch out below a manner in which

the Kohn variational principle may be generalized
for use with the many-body problem which is simi-
lar to our treatment of the Schwinger variational
princ iple.

The Kohn variational function for the transition
amplitude is

~., =&@.l v.li,"&.&i.'-'IE-HI4'&

This functional has the disadvantage that it is sen-
sitive to the asymptotic behavior of the trial wave
functions g, and g~' . A slight alteration can
remedy this problem.

~b=&4. l v.l~('&-&P.-'-4. IE-fflb(b'&. (»)

Again the use of something like Eq. (35) to con-
struct a representation for 1 & would be indicated.

VI. USEFUL EXPLKIT EXPRESSIONS
FOR THE VARIATIONAL FUNCTIONS

AND THE TRANSITION AMPLITUDE

%e have noted in Sec. IV that the choice for 8'
given in Eq. (33) causes the operators Q" and P
to be diagonal in partition space. This fact was
used to derive Eq. (34) from Eq. (32). Let us now

carry out a similar transformation on Eq. (25) to
get an alternative expression for the operator F~.

Tns=vni'eve= Q[(I-Q) Q]n~Gs '
/=1

= Q [(I —Q") '(I —Q")(I —Q) 'Q]n„Gs '
/=1

= v„[v.-(Q")„.v„]-'
N

xg (Q+Q'+. +Q"),("8 '
/=1

=vn[vn (Q )nnvn] I. Qn, n+(+(Q )n, n+b

The trial wave functions are assumed to have '-- (Q"). .]G,-'. (43)
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When T q operates on Q, it will give zero unless
the G z

' factor is immediately preceded by a fac-
tor Gs. Then the (Q" '

) s term is the only one
which gives a nonzero result, where n(n, P) =P —a
modulo N except that n(n, n) = N.

r.s I y, &
= v.(v. —v'„'G.v.) -'v'„",

I y, &. (44a)

(+3Va =(q"G )„„=VaGa„Va„V„„~~ Ga, Va, .

functions we see

& (S, l V„rs(Vs —VeGe V, )

=&A. lv rsvsGs(Gs ' —Vs)

= &@.I v„O9-'=((s.
l v„r„v~.(G. ' -v.)

=
& y. I v.r.(v. v„G „v.) . (49)

V(+) (qn( a. s)G -z)

(44b) If Eq. (48) is used in Eq. (49), the action of G „'
on ((), will cause all terms except (P") „to give
zero contributions. Thus we find

= ~aGu+ y~a+ y~a+g ' ' ' G 8-y~s-y ~ (44c)

The quantity i'svsl Q, & appears in the Schwinger
variational function, but in the Kohn variational
function the quantity I'sVsGsVsl Qs& appears in-
stead. However, this can be replaced by
GsVsI'sVel Q,& by virtue of the fact that

&O'. I
V rs(Vs —VsGsVs)

= &(s, l
v'.-'(v. —v~„v(.-))-'(V. V„G.V.)

(soa)

(-) )aa=va+iGa+iva+s'''Va-z a-iva ~

I,V~6, =8=G,V,r, . (45)

ln both variational functions the quantity & Q, lv I' s

appears. This quantity is also susceptable to a
similar kind of simplification. For this purpose
we consider the following representation for the
operator I"z.

Let us define

F s' = (V s —V s' G s V s ) ',
I' =(V —V G V„) '.

(50b)

(51a)

(51b)

Tsa =As ' V, =(1 —VsGs) 'V„=Gs '9Va.

(46a)

(46b)

Then we can use the results derived above to yield
the following explicit expressions: The transition
amplitude can be written

v; =
& (t). I v r s vs I p &

The operator Tz„can be shown to fulfill a set of
coupled integral equations similar to those ful-
filled by the T8 . Alternatively,

(s2)

T 3 =G 'UP+T P
= G ~t(P(1 P) (47)

&as =&4)sl Va+ VarsVeGsVel la&

=&A. l
v +v&svsrs' vs' I(t) &. (53)

N

T s
——VsI'sV„=Gs Q(P(1- P)}„„

y=a

-& g (P(1 P)-&(I P")(1 P")-&V-&} V
y=l

=6 ' P+P + ~ ~ ~ +P" ya

x [ V„—(Vp")„]'V

=Ge '[P + (P') + + (P )

x[v —(Vp")„„] 'V (48)

Now in both the Schwinger and Kohn variational

The quantities 6 ', U, and P are defined in Eqs.
(24) and (30). Proceeding as we did in the deriva-
tion of Eqs. (34) and (43) we find

The Schwinger variational function can be written

(&4.l v.r' v':el4, ))'" &y, l
v(.-)i'.-)(V.—v~.v.)r's"v( )I y, &

(54)

and the Kohn variational function can be written

&as =
& Asl val 4&s&

(&4, I v~, v, rh "v,"I@,&)

'&y,
l
v(-)r„'-)(V. v„G.v„)G,v, rI,"VV'I ys&

'

(55)

The expressions shown above are well suited to
calculations based on the evaluation of Fg' and
I' by means of inversion in a truncated basis.
Another approach would be the approximate solu-
tion of integral equations. Quantities related to
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Vg(y~ —-2'g = Vs~+ v"6 Ggrac(+) (+) () „A ) {) (57a)

(57b)

Rewriting our expressions for the transition am-
plitude in terms of these quantities gives

~.~
=

& 4. 1 v.~"810»
=

& 0" I ~a+ }'&8~'8'I e»

(58a)

(58b}

(59}

j. ' which fulfill convenient integral equations are

~8 & Ba =ga = Vg V8n+ V8 Vs GBVg80(,
(+)~r(+) (+) -z (+) -y {+) (+)

(56a)

VII. SUMMARY

It is demonstrated that the Schwinger variational
principle can be generalized so that it may be ap-
plied to a many-body system with open rearrange-
ment channels. A variational expression for the
transition amplitude q'„ in terms of the operator
I 8 =0~' V~

' is given. An approximate representa-
tion for I'8 is to be used in the variational expres-
sion to produce an approximation to ~„. The eval-
uation of j. ~

= V~ 'T~g Vs ' corresponds to the so-
lution of a set of integral equations for the T 8,

These equations contain a set of fairly arbitrary
parameters W 8. By appropriate choice of the pa-
rameters 8'

q the kernel of this set of integral
equations becomes completely continuous so that
we are assured that an approximate evaluation of
1"8 can be a member of a convergent sequence of
approximations.

Finally, it is shown that the same ideas can be
used to generalize the Kohn variational principle
to the many-body case.

(60)
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