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A formally exact perturbation expansion of the high-energy scattering ampl, itude by nuclei
is developed, in which the leading term is given by the Glauber's multiple diffraction ampli-
tude. The leading correction terms are examined in detail, which deal with the two approxi-
mations involved in the Glauber amplitude; (a) the l.inearization of the Green's function and
{b) the fixed-scatterer assumption. Thus, the diffraction amplitude can be systematically
improved rather simply so long as the scattering angle is not too l.arge. It is stressed that,
when the target profile function is replaced by the individual nucleon profiles, the correction
to the linearization approximation is automatically included to all orders in the Glauber am-
pl. itude, insofar as the nonoverlapping interactions are concerned. The contents of the
Glauber wave function are then analyzed to show explicitly that, within the approximations
(a) and {b), the major part of the inelastic channel information, and thus of the optical
potential, is already included in the theory. By comparing the diffraction theory with the
optical potential. approach, which is based on the multiple scattering theory and the conver-
sion of the optical potential to a set of coupled equations, we exhibit a close connection be-
tween the two seemingly diverging approaches. As a result of this analysis, we derive a
modified theory of high-energy scattering by nuclei, in which the elastic component is to be
treated exactly without the linearization whil, e the inelastic component is taken directly from
the diffraction theory.

NUCLEAR REACTIONS Systematic corrections to the high-energy nucleon-
nucleus amplitude in the multiple diffraction theory of Glauber.

I. INTRODUCTION

The multiple diffraction theory of Qlauber' has
been very successful in explaining the gross fea-
tures of many high-energy hadron scatterings by
target nuclei, often effective beyond the region of
validity as deduced from the original derivation. '
Therefore, many attempts have been made' "
in recent years to understand some of the reasons
for its effectiveness, and to further improve the
theory in order to extract more reliably the in-
formation on the target structure. The correlation
effect among the target nucleons is often masked
by the dominant forward peak in the cross section
due to the purely geometrical effect, and thus
manifests itself only appreciab'y at large mo-
mentum transfer region. However, this is pre-
cisely the region where the validity of the multiple
diffraction theory (MDT) is most uncertain. It is
the main purpose of this paper to examine the
contents of the MDT, and develop a systematic
perturbation expansion for al/ the correction terms.
A formal expansion of the complete correction
is given in Sec. II, with the Qlauber amplitude as
the leading term.

The MDT is derived essentially by taking into
account the two assumptions: (a) the itnearization

of the Qreen's function which leads to a straight
line trajectory for the projectile and makes the
solution simple, and (h) the fixed-scatterer ap-
proximation which reduces the original many-
particle scattering problem to a collision involving
two particles at a time. The correction to the
linearization approximation has been considered
recently by%allace" and we incorporate his result
in our comylete perturbation expansion. In addi-
tion to improving the large angle behavior of the
cross section, this correction makes the additivity
assumption of eikonal phases in the MDT inap-
plicable in the case of overlapping potentials, as
suggested earlier by Feshbach. " %e will also see
that this is the possible reason for the breakdown
of the MDT at large angles even if the two-particle
scattering amplitude is used in the total amplitude.
These problems are discussed in Sec. III.

%e make the perturbation expansion of the cor-
rection to the Qlauber amplitude complete by
incorporating the effect of the motion of target
particles during the scattering. Foldy and
%alecka" examined the approximations involved
in the derivation of the MDT and showed that the
Qlauber amplitude contains all the inelastic chan-
nel effects in the form of a closure. %e analyze
here directly the scattering wave function of the
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MDT and show that it contains essentially the
optical potential information in the approximations
of (a) and (b) above. The result of this analysis
is especially useful when we compare it with the
optical potential approach, and also clarifies the
correction terms we derive in Sec. IV for the
motion of the target particles. The Glauber
amplitude is deceptively simple, and yet contains
much of the dynamical information between the
projectile and target particles, in agreement with
the analysis of Foldy and %alecka.

More recently, a slightly different approach to
the high-energy scattering by nuclei has been
developed. " " The theory is based on the multiple
scattering theory of %'atson" and Kerman,
McManus, and Thaler. '0 The optical potential for
the elastic scattering, for example, is converted
into a set of coupled equations, with the param-
eters in the set derived from the correlation func-
tions for the target nucleons. In this way, the
dominant approximations in the MDT are treated
seParately, by dealing with the approximation (b)
first. The linearization approximation is then
unnecessary because the resulting coupled set
of equations can be solved by any number of ac-
curate methods, numerically. These results are
briefly summarized in Sec. V. For further refine-
ments of the theory we refer to a recent study"
where many of the approximations introduced for
this approach are reviewed.

Both these approaches have been developed
during the past years to a sufficient extent that
a more systematic and complete analysis and
comparison of the seemingly diverging points of
view may be made. By noting the intrinsic
advantages of both approaches, we derive in
Sec. V an improved method for the high-energy
scattering problem; it improves the elastic com-
ponent of the scattering function by following the
procedure of the optical potential approach, while
the entire inelastic channel component is repre-
sented by the Glauber scattering function projected
onto the inelastic channel space. Some refine-
ments of the method, as well as the corrections
to this amplitude, are also suggested.

II. EIKONAL PERTURBATION EXPANSION

%e construct in this section an exact perturba-
tion theory of high-energy scattering by a com-
posite target in such a way that the leading ampli-
tude contains the linearized propagator and fixed-
scatterer approximation, as in the Glauber theory.
More importantly, the accuracy of amplitude may
be systematically improved by including additional
terms in the expansion. Different mays of linear-
izing the Green's function will also be discussed.

H = T R+Hr(F) + V(r, ft), V = g V» (r —R),

(2.2)

where 8 denotes the relative coordinate of the
target center of mass and the projectile, T R is
the kinetic energy of the projectile, and Il~ denotes
the internal Hamiltonian of the target with N nu-
cleons. The variable r denotes these internal
variables collectively, as r =(r„r„.. . , r„). We
have (lf -M = c = 1)

Hr(R= g (-k&»')+g»», = T;+ff(~),
(2.3)

which generates the set of target states, properly
antisymmetrized, as

Hrg„(r) =E„g„(r) .

If we let

(2.4)

E Ep + Ep Eyt +E
&~2

Q

T = —P = ——VR 2 2 R s

then

i~R y

H —E =
2 P ' —~ K ' + V + (Hr —Eo) . (2 5)

For definiteness of discussion, we have chosen
here the Schrodinger equation as the scattering
equation; the necessary modifications to take into
account the relativistic effect of the projectile
can be incorporated later on following the standard
procedure. " To simplify the formalism, we will
neglect the exchange symmetry of the projectile
with the target nucleons in case of nucleon scat-
tering, and also the spin and isospin effects, as
well as any production channels. Eventually these
effects should be put in, as some of them are
known to be important in the momentum transfer
region of interest.

The linearization of H and the corresponding
Green's function G = (E + -H) ' follow—s closely
the result for the potential scattering. " As has
been noted by various authors, the procedure is
far from being unique. To be able to compare
different possibilities, we consider an identity

K' —5' = ( K' —2K (P —K»») —K„')

+[2K ~ (K —K»») —(P —K„)']
=—2A -2C, (2.6)

Consider the elastic scattering of projectile
particles by a composite target, described by

(H —E)4'(r, R) = 0 (2.1)

with
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1
q = K& —K&, q=2Ksin&6

with

0~+( ~+2K .

%e also define the average momentum vector

(2.7)

where the individual A and C are yet to be speci-
fied, and where K and Ks are arbitrary con-
stant vectors. Various choices for these vectors
will generate different starting approximations.
[The only constraint on these vectors is to have
A satisfy (2.11).] The kinematics of the elastic
scattering is such that

K= fK, i=/K, /

and

Other possible choices for A. are listed in Table
l. The requirement (2.11) forces (iii) and (iv) to
be equivalent to (i) and (ii), respectively, while
the choices (v), (vii), and (vi), (viii) again become
symmetric in K, and Kz when (2.11}is imposed
and reduce to (i) and (ii). On the other hand, the
form (ix) is quite asymmetric in K, and K&, and

gives the basis for the original derivation' of the
eikonal approximation for small-angle high-energy
scattering.

Thus we are essentially down to the two choices,
and, in most of the following discussion, we
specifically deal with the form (2.12}, although
th identical formalism can be developed with (2.10).
The linearization of E —H is therefore given by
the separation

K, —= 2(Kg +Ky)

with the property

K, q=0, E, =Kcos2@=IC(1 —q'/4K')

(2.8) Z -a=(A —V) —(C+D),

D=Hr Eo ~

(2.13)

and

K,= KrC. , -Z, =
J K, /=K, (2 9)

and we treat the last terms (C+D) as a perturba-
tion. Kith the definition

which is in the K, direction but has the magnitude
E. Thus,

G,„=—(A + ie —V) ' = ——5(B —B') 8(z —z ' ) e ' ~"~

K, =K, +-, q, K&=K, --, q

with

K, '(K( —K, )=0, K, (Kq- K, )=0 .

where

1
(I} =Ko 'R+ X, , y =--— Vdz',

(2.14}

Now, we consider several typical choices for
K„and Ks. Firstly, we try (i) K =K, =KB'. This
gives immediately the result of Abarbanel and
Itzykson' and Kujawski' as

A = —K, ~ (5 —K,),
C = ~[(P —K, )' —K'+ Kg']

=-,'(P-K, }.(P-K, ) . (2.10)

The form of A is dictated by the requirement that

~~5k) ~ R 0 (2.11}

This condition on A. is essential for a rigorous
eikonal formulation of 4, in which the plane wave
part dominates and C is treated as a perturbation.
[The effect of (2.11) is clear in (2.16}and (2.23)
below. ] For the condition (2.11) to hold, E =K,
and K&=K, are useful.

On the other hand, we can also try (ii} K„=Ko,
Ks =K, : With the requirement (2.11), we have

A =-Ko ~ (P —K, ),
C=-,'(5-K )'-K (K -K.}.

(2.12)

The choice (2.12) leads to the Glauber amplitude"
in the lowest order.

we have

G =(Z+fe -a)-'=- G&'&

= G~ + G,g, (C+ D)G

= G,k +G,a (C+D)G ~ + ~ ~ (2.15)

The scattering function with the incoming wave

{i)
(ii}
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)

K~ K
Ko K~

K~ Kg
Ko Ko

K~ K;
Ko K
&a

Ko K~
K; K;

-K~ (P —K~)
-K '(P —K~)

{i)
(ii)
{i)
(ii}
(i)
(il)

-K. {P-K)

2(P —K~) +2(E -X )
q(P —K(})2-E2+ KE

(i)
(ii)
(i)
{ii)
(i)
(ii)

y{P—K])

TABLE I. Different choices for the linearized oper-
ator A. , and their corrections C. The case (i) gives the
Abarbanel-Itzykson amplitude as its leading term, and
the choice (ii) is for the Glauber amplitude. All the
other possibilities, except (ix), are shown to reduce to
the first two cases when the condition (2.11) is imposed.
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in the initial channel i is then given by the series

4, =4& p+C" VC& p

=0,~, +G,)k V%, o+G~ (C+D)G,a V4'q o+ ~ ~

(2.16)

where

(»r)clif{ ' R

Thus,

gG dr y r 2 dp eiq Ryr 8 efx+(R, r)

and the elastic amplitude by

&n =(@),ol VI +{)=(+y ol &. I+{ o) ~.

where

& =(V+ VG~ V) + VG~(C+D)G~ V+ ~ ~ ~

(2.17)
where

=iK dr y r ' dae'q' ' e'xp-1

(2.27)

+r&'& +v'&'& + ~ ~ ~

The differential cross section is

457 e) 1 2

with

(2.18)

(2.19)

and

8 =8+%,z,
b =(b»bo~

~r~~ ~=Xp Byb (2.28)

+f5 ff + Pfg + Pf$ +

where

&,', =(4, olV+VG~Vle, ,) (2.20)

The multiple diffraction theory of Glauber goes
one step further and expresses the nucleus profile
function by a product of individual nucleon profile
functions as

1-r, B,b, (2.29)

6'yi'=(@), ol VG~CG~ VI@{,,),
6'yi'=(+y, ol VG.aDG~ VI+{.o) .

(2.21)

(2.22)

The amplitudes Sft' and F~,' are the leading
corrections to 5&, corresponding to the lineariza-
tion and fixed-scatterer approximations, and mill
be discussed in great detail in Secs. III and IV,
respectively. In this section, we briefly consider
F&&, mainly to define notations. Define

=(I+GAT V)4'{ o

where

Xp= Xp ~ s (2.31)

e{xo{{)= dg» e-{o {o-K{)y (q~ K)4 2~zz

(2.30)

In (2.30), E, is the projectile-free nucleon ampli-
tude, where

or

(A —V)+P =(i Ko ~ Vg+XfC, —V))9{os = 0 .
which follows the form of V given by (2.2). Thus,
Sfc, becomes

The solution of (2.23) is

y )k
y (»)eiK{ '%@)+)( R)

(2.23)

(2.24)

5' = —&E d2Be'~' ~ y, I

=-iK d J38 ~
g p

1- 1- I')

where
z

4~' =e'"+ g =-— V r, 8' dg'. 2.25

y e)k
q (Pe{ky ' %4, {-) y (2.26)

In (2.25), the z axis is taken along the average
momentum direction E„and the dg ' integration
in g is carried out with the r variable held fixed
as parameters. In an analogous way, me may also
define

(2.32)

which is the multiple diffraction amplitude of
Glauber. ' We note that in the final form (2.32),
F, could be a more general profile function than
that defined by (2.30). In fact, the identification
(2.29) between I' and ){o is a rather arbitrary one,
and me will show in the next section that, under
certain conditions (of nonoverlapping interactions),
(2.32) may have more general validity than the
derivation presented above. "' "
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HI. CORRECTIONS TO THE UNEARIZED
GREEN'S FUNCTION

One of the two major corrections to the Glauber
amplitude 5&& is concerned with the linearization
of the Green's function, i.e., G- G,N„and we
consider the correction term 6:~c,' of (2.21) in
detail in this section. Obviously, the similar
correction appears also in the pure potential scat-
tering, and we thus follow closely the result of
a recent study of this problem by %allace. ' ' '
In this case of potential scattering, the leading
correction analogous to Sz&' is seen to greatly
improve the behavior of the amplitude up to q &K,
corresponding to the center of mass scattering
angle g s —,

'
m. For angles larger than this, how-

ever, the expansion in C as we have done in (2.15),
with of course D =0, is much more slowly con-

C= g(5 —Ko) -K'+KK,

=2(5-Q} (II- R,}+A.A,
where

A. =1-cos-,6,1

A =-Ko (5-R,} .

(3.1)

vergent. %e will therefore consider alternate
treatments of the correction term, specifically
for the region qRK. Finally, we investigate under
what conditions the substitution of the form (2.32)
would have a more general validity than the form
involving X, alone.

(a) Following rather closely the result of Ref.
12 in this part of the discussion, we have, with
the choice (ii) of (2.12) for A and C,

Thus, using the result of Sec. II, (2.24) and (2.26),

off' = da dr 0 r e ~' e'" —1 2 P —K& ~ P —K& +LA e'"+ —1 e' &
0 r (8.2)

To reduce (8.2) further, the following relations are useful:

(gj g )el«g ~ %(e4)(+ 1) elgy elkg %(V«)
(j50 E )e-lily %(six 1) — zl)( e Iky %(v ~ )

Ael«( ' «(six+ I) elk~ «elg+g ~ (p «„)
and also

y 1 1
v«X+ =-—z —— (~«V}dz', &%If =-—z —— (v« V)dz'.

K K K K

(3.3)

(3.4}

(3.2) may now be rewritten as

dg g e"'o-e"+ -K ~ V/X, -& V/X, ~ V$g

dr y
' dae"'e'"0" ~'

dg z dz'- (3.5)

The last expression in (3.5) was obtained by an
integration by parts. For the potential scattering, "
the second term in the curly brackets above can
further be reduced in case when the potential V(R)
is independent of the aximuthal angle y. This is,
however, not in general the case with the com-
posite particle scattering, because V now depends
in a complicated way on the target variable r and

R (onR-r).
If we assume that V(r, R) is still nearly &p in-

dependent, ' with

[L„,V]-0, (3.6)

where L~ is the rotation operator around the z
axis; then (8.5} immediately reduces to a simpler

form:

1 8dr g
' d Be'q e'"0 —i A.K 1 —i X

—e '"0 + 1+B dz V' 8 —r
0

(3.7)
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Combining F&& and 5&, and exponentiating the
correction terms and noting that the X-dependent
terms in (3.7) are nearly canceling each other
to order g„we have

1+B dz V28, r
0

(3.9}

Equation (3.8} is, at this stage, only valid to first
order in X „and we should remember that the
form for }t, above assumes (3.8). The results
(3.7) and (3.8) are essentially the generalization"
of the earlier study of the potential scattering
by Wallace. "

(b) Similar correction can also be obtained with
the choice (i} of (2.10) for A and C. Instead of
(2.27) and (3.5), we now obtain

5&,'=iE, dr P
' dBe' ' e'"& —1,

(3.10)

where

and

c dr ~
' dBeq. e'x,

PG +Pc& ~ dr y
& dBeirl ~ B ~txp+kxj

(3.8)

where

Notably, (3.10) and (3.11) are simpler, but it is
not known whether in general

pGa ~Cia
f& + f& (3.8a)

V=-,'ge ~ (I+pA'), (3.12)

with g= —0.4, a. =0.2, and p=0.3 in the units
M =g = c = 1 (K = 2.0).

(c) It has been noted by Wallace" that the expan-
sion of the form (2.15) in (G,a C) in the potential
scattering is a slowly converging series in the
region q&E. Since Fz,", with n&1, become very
complicated to evaluate, the expansion (2.15) is
less useful unless these higher-order terms are
negligible. In the region of q values where higher
order terms are needed, therefore, it is desirable
to consider an alternative to the expansion of G,
as was done in (2.15}. For this purpose, we go
back to 6 and write it in the form

G = G,~ +G,a(C+D)G
= G,g, + G,a (C + D) G, + G,a (C + D) G, (G, ' —G ') G,

(3.13}

where we have used the trivial identity

is a better approximation than (3.8) and also
whether the series expansion with the choice (2.10}
converges faster than that with (2.12). In the
potential scattering and for q~E, a simple
study described below indicates that (3.8) is better
than (3.8a). Table II shows the comparison between
the two amplitudes for a Gaussian potential of the
form

G =G, +G, (G, '- G ')G, (3.14)
« ~%Xa ' ~%Xa+ ~ (3.11)

with G, an arbitrary Green's function yet to be

TABLE II. The differential cross sections calculated by the different approximations are
given for the Gaussian potential (3.12). The first diffraction ~i~imum occurs at q ~ 1.3 and
the second maximum at q = 1.5, for X=2.0. The column GL is the Glauber cross section,
while GLM denotes the values obtained with the leading correction y& included. AI is the cross
section with K—K„while AIM includes the g& correction as defined by (3.8a). SC denotes the
semiclassical approximation of Ref. 22, and EX is the exact cross section calculated by the
partial waves.

0(deg) AI AIM SC

0.0
Q 4
0.8
1.2

1.6
1.8
2.0
2.2
2.4
2.6

0.0
11.5
23.1
35.2
41.0
47.2
53.4
60.0
66.7
73.6
81.1

40.31
22.24
3.260
0.0611
0.0200
0.0205
0.0109
0.00390
0.00118
0.00035
0.00010

41.63
22.75
3.159
0.0430
0.0273
0.0275
0.0129
0.00381
0.00089
0.00025
0.00009

40.31
22.23
3.257
0.0638
0.0221
0.0214
0.0113
0.00414
0.00138
0.00048
0.00017

41.63
22.75
3.152
0.0442
0.0304
0.0297
0.0138
0.00406
0.00103
0.00039
0.00020

41.29
22.58
3.135
0.0415
0.0257
0.0263
0.0124
0.003 56
0 ~ 00076
0.00015
0.00003

41.49
22.70
3.163
0.0434
0.0262
0.0266
0.0125
0.00360
0 ~ 00078
0.00017
0.00004
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specified. Certainly we can also expand G,~ in
Gr as

G»k =Gt+Gt(G» —G R }G R

and

, =G, V4' = &R'G R, R';r V4

= G, + G, (G, ' —G,»k
'}G, + ~ ~ . . (3.15) or

Therefore, to the lowest order we may try the
form

&8'G 8,8'; r V4y 0 . (3.22b)

G= G,»k + G,», (C +D)G» (3.16)

G = G,»k + G, (C +D) G, (3.17)

with

1 R

V(R, s; r}ds, s =R —R',

in the wave function 4» of (2.16) and in V' of (2.18}.
The form for G, is dictated by the need for a

correction at large angles, where the linearization
procedure and the evaluation of the phase change
along a straight line trajectory make little sense.
That is, we are eventually forced to a treatment
in the spherical coordinate rather than the cylin-
drical variables adopted in G,~. Thus, for exam-
ple, we can try a %KB form"

&»z ll-%' I

2»»
l R Rg wKB&

The integral in (3.22b) can be carried out readily
in some cases when a simple V is involved. A
direct evaluation of 4I, from the scattering
equation in the spherical coordinate is also possi-
ble which avoids the explicit use of G, . An ap-
proximate way to carry out the integrations in-
volved in (3.21) with G»»xs or G„has been given, "
which is based on the angle-averaging procedure.

(d} Finally, we consider the question of the
range of validity of the Glauber amplitude given
in the form (2.32). It is often argued that, since
e'"0 in the original derivation is replaced by the
I'~'s corresponding to the projectile-target nucleon
interactions which are presumably valid for all
q, the resulting F&& should be better than the form
with X,. It has never been clear, however, under
what conditions this is valid. To study this ques-
tion, we go back to (3.9) and consider the contribu-
tion from y, . [Although the form (3.5) may be
more valid, (3.9) is sufficient to illustrate the main
point. ]. We write )t, in two terms as"

ehQ(t) I R-R' I

Gg~ ~ ~ = GlR-R'l
where

(3.19)

where ds is along the line 8-8'. A still simpler
form for G, may be used, in the form"

1
K3

N

8
& I I v'dz

j-1 0

1++

(3.23)

1 e$ jc I R-R' I

G» - —
f ~

l

—GoIR-8' (3.20)

One undesirable point with the above G, , is, of
course, that the use of such G, requires the dR'
integration in 4'&, as it appears in the amplitude

6'y»- &»»+(g'y, » ICI@» }

where

(3.21)

4 '~ = G V+», = e'K» ' 'g (P)(e+»—1) (3.22a)

Q(t }= [K' —2 V( t, r) ]
' ', 7 = z (8 +8 '} .

In fact, the form G„has been Shown to be ex-
tremely effective when used in the place of G in
the amplitude directly without G,& at all. The es-
sential feature of G~ and G„ is their dependence
on s= lR -R'

l
rather than on lz -z'l. Therefore,

even the free Qreen's function may improve the
large angle behavior, with

For the first term X,'~, and similarly for the
diagonal parts in the higher-order terms X~~&,

we can still carry out the replacement (2.29) as

I 1 ex 1 II (1 I») (3.24)

where

x' = x.'~ = x.'~ ~

n=o N=o 4=1

for the diagonal contribution; therefore, by ad-
justing the individual I'& correctly, we can improve
the behavior of I' and thus 5&& at large angles.
This is thus related to the additivity of X's in

F&& . Obviously, when X,'" is not negligible in
the case of overlapping potentials, the simple
additivity assumption breaks down, "'' " and we
no longer expect that a mere substitution of (3.24)
wiB improve the behavior of Fz, . Perhaps only
when x'„", and other related corrections, con-
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st -=G~ (C +D) =- Xc+X~ . (3.25)

Limiting our discussion to the effect of C, we
define the strength eigenvalue problem by

c& lc
I
~c (3.26)

with the e factor in C,~ kept at ~ &0. Then the
corresponding series can be characterized by

(1+GC)s, l
gc) =(I+Xc+xc'+ ~ ~ ~ ) I

gc )

(3.2V)

tribute to X with sufficiently random phases and
large cancellations, we expect that X = X~"e is
valid.

It was noted previously' that the additivity as-
sumption on x allows (3.24), and the assumption
breaks down with the overlapping potentials; as
we discussed above, the question of whether
(3.24) would improve F&~, also depends very
critically on the effect of the overlapping inter-
actions and thus on the additivity assumption.

Now, an important point on the application of
(3.24). If we rely entirely on the form (8.24) in
explaining the scattering data involving nuclear
target, then we are essentially missing the crux
of the analysis; that is, we would like to learn
eventually something about the particle correla-
tions Of the target nucleons and thus about X

~
On the other hand, if, by inserting the "correct"
projectile-nucleon profile function F&, one finds
a descrepancy between the cross sections from
the theory and experiments, then it may most
likely imply two things: (i) the effect of the oper-
ator D to be estimated in the next section may be
important, and/or (ii) the effect of X,'" should
be included. Of course, this argument presupposes
that we have chosen the region of E and q where
the amplitudes (2.20), (2.21), and (2.22) dominate.
In the above sense, the Glauber theory could be
of potential importance in extracting the structure
information of the target system. The form (3.5)
specifies exactly how such information could
come into play in the elastic cross section. On
the other hand, if (8.24) alone fits the data well,
it only implies, at least in principle, that either
the correlation effect is small or F& is param-
etrized incorrectly, especially its off-shell be-
havior.

(e) We now consider briefly the convergence
property of the series (2.15). The rate of con-
vergence depends on the eigenvalues of the states
generated by the kernel

expect the series to diverge whenever its eigen-
value leaves the unit circle, i.e., I

&c
I

» 1. The
magnitude of 3.'~ may be estimated roughly from
(2.14) and (2.12) as

C
Xc ~ +C g y

and

llxcll-I x./xol .

Noting the form (3.9) for X „we then have ap-
proximately

(3.28)

I x.I
-

I &~/ff I (3.29a)

Ix I-l~s/ffl[l&/El+lq/2ffl']

thus

Ix /x. l-l ~/El+[ q/2lf]'

(3.29b)

(3.30)

In (3.29a) and (3.29b), the parameter a corresponds
to the range of the average interaction 7. The
form (3.30) is very rough, but indicates that the
higher-order corrections to y, at small q may go
like

I V/El, while at large q it may go like (q/2K), '
which dominates over I7/EI at high energies. It
also suggests that the series may even be only
asymptotically convergent for intermediate values
of q. In this connection, it is of some formal
interest to study the convergence property more
rigorously in the potential scattering.

IV. CORRECTIONS TO THE FIXED-SCATTERER
APPROXIMATION

In this section, we consider in more detail the
second correction term (2.22) which arises be-
cause of the assumption in g&~ that the scatterer
nucleons in the target are fixed during the scat-
tering except for their total center of mass motion
relative to the projectile particle. The meaning of
this correction is made more transparent by exam-
ining the contents of the solution 0,+ and by show-
ing explicitly to what extent the distortion effect
is included in the solution. A study similar to this
has been carried out by Foldy and Walecka" and

by others from an opposite point of view in the
course of justification of the Glauber procedure.
One nice by-product of our study will be the ex-
plicit form of the inelastic component of the wave
function which may be useful for many other pur-
poses, as illustrated in Sec. V.

(a) The leading correction to the Glauber ampli-
tude ~&a& for the motion of the target particles is

where the last step is obtained assuming that
lf„ l&l. Therefore, for each state I pc) we

8:"= (g IDIO") (4.1)
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where

D =Hr- Eo= 7-, + U(r)- E„
yeik y ciKi Rq (r)(sik 1)

y sik @elk @ eiK& R~ (r)(e-iki'

(4.2)

(4.3)

(4.4)

not necessarily mean that the elastic component~~, for example, is correct. It only suggests
that the E%;~ part has to be corrected through the
factor e')(+ which is the only component in 4;~ that
does not commute with the operator Q.] Explicitly,

First of all, we note that D satisfies the orthog-
onality proper ty

draco~ r d e '"f'" e'x--1

PD=DI' =0, thus D =@DE,

where

(4.5) x [Hr - Z,]e'"i' "(e'k+ —1)y„
(4 7)

q = i —f, Z=
I y.(r)& &y.*(r')

I
~ (4.6)

That is, the property of D as given by (4.5) shows
that the correction (4.1) is concerned only with the
inelastic channel component (the Q-space part) of
the scattering functions %i~ and 4'&a. [This does

where we have included the terms "-1"in the pro-
file functions (e'"--1) and (e'"+ —1), although they
can be dropped because of the property (4.5).
These terms are essential in maintaining the con-
vergence of the dR integration. Using the explicit
form for X, and Hr as given by (2.25) and (2.3),

respectively, (4.V) can be reduced further to a form

E

y]
= da, &~Q dr & ~0- &~"+ -a& Vg X+ 40 +a V)X+ ' 40 & 0~ V)f0 )X+

)=1
(4.8)

where V, is the gradient with respect to the variable r, for the ith target nucleon, and subsequently

dB ' '
cf dz '"o- '"+ ~ g 'V, V dz'+2 g V,Vde'

+ go* V~f0 V&V dz (4 9)

Note that the terms in the curly brackets vanish in
the limit z --~, while the factor (e'"o- e'"+)
vanishes at z -+~. Also note that (4.9) is indepen-
dent of the target binding potential U. Its effect
is therefore entirely contained in the function $0
insofar as the elastic amplitude is concerned, and
manifests itself mainly through the last term in

(4.9) involving (v, go).
The correction amplitude (4.9), together with

(3.5), is the main result of the paper. For a given
form of the interaction V and g„both these cor-
rections can be estimated. It is important, how-

ever, to apply them only to the region where these
corrections dominate. After all, we are eventually
interested in learning about the correct V and $0

@eik ~eik+ ~eik

From (2.24) for 4';~, we have explicitly

~ ik ei«i'Rg (r)&y ~eik+
~ q

(4.10)

(4.11)

|ko9ia = ei"i'"iso(r)(ei x+ &goI eix+
I go&) ~ (4.12)

themselves Q88Q7tl &lg that Jg] + P ] + $y] ls valid
in a limited region of q values, i.e. , q/K 1, or
es sm.

(b) To further clarify the effectiveness of 4'i'" in
representing the inelastic effect and the physical
contents of the correction term 5&~,', we consider
C,~ in the form

Expansion of the exponential e'k+ in (4.11) gives

o4

lp. &=1+f&x,&+ 2i &x,&'+
&i

&x.&
+" +2i&X,QX,&+4t&X,QX,&'+ +

8i (X,&&x.@x.&

~ 4 4 ~ 4

+
4i &x.) (X.QX.&+" +

&i
&x.@X.QX.&+" +

4i &x.&&X.QX,@x.&

~ 4
+

4i &X+'~x+Qx+Qx+&+ ' ''' (4.18)
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where we used the notation

&6) = &0o (6 I y, & .
Obviously, S%,' thus contains a great deal of the
inelastic components, all in the approximation of
linearized Green's function C,~, as each X, in-
volves a path-ordered integration over dz. How
much of the Q component is left out in 4",~ is
simply given to the leading order by 6'te«' of (4.9).

The optical potential approach' '' ' 0 to elastic
scattering incorporates the effect of inelastic chan-
nels through a nonlocal potential. Although q;a is
given in an extremely simple form, we have seen
in (4.13) that the solution contains almost all the
information carried usually by the optical poten-
tial. To show this further explicitly, we write
(2.23) as a set of two coupled equations

where

1 Q 1
g+ =-— VPP dZ' and y + =-— V+ dz'.

Substitution of (4.15) into (4.14) gives a set of
coupled equations for pP and cp, as

iK, V;«pt(R) =e «"« ~e «x+&y, (V(«««4;~)

—e-«x+(y (Ve«xr. (tt )
P Q (4.16a)

iK, V„-«pe(R, r)=e '"« "e ''x+««}VP%;a

=e «x+QVP«jr e«x+ip (R
(4.16b)

Converting to the integral equations, (4.16) become

[K, (i VR+K,) —VttjP «
=PVQ+;

[K ~ (i V R + K }—Vqo jQ% «
= Q VP%;

We can seek a solution of (4.14) in the form

=- e' «' 'y, (r)e «+x«p(R)

Q4«' —= e'"«Re«x+«P (R, r) —= GoaQVPC;a,

(4.14a)

(4.14b}

(4.15a)

(4.15b)

g Pt
+JR) —1 d re-«K«' R'e-«x~ (~ l

V(~e«k)
K

0'
dz'e '"+

&i (Ve'"+ («p')K
(4.17a)

«po(R, r}=-— dz'e '"+ QVP«(r e'"+ «pt(R') .

(4.17b)

Uncoupling the equations, we have finall. y

P tl

rpt= 1 —— dz'e '"« Re «"+ ('$0(VGo«xV($0)e«"« " e'"+
«p (R")K

1 Pt gt g g tt Ptt
=1 ——, dz'e '"+ ($, (PVQe«x+ dz'e '"+ QVP(«fr, )e«x' «pt(R')K (4.18a)

and

g t Pt ] g gt tl

dz'e «"+ QVP«iroe«" + ——
2 dz'e «" + QVP(ir0)e«x+ dz "e «" + (po(PVQe'"+ rp (R", r').

e ««0 ~«I ~ ««0

(4.18b}

This set of equations is obviously much more in-
volved than (2.23), and in general requires an

iterative procedure to obtain solutions. The rea-
son why a simple solution of the form (2.24) can
be obtained is of course that the kernels in (4.18)
are of very special types.

First of all, we note in (4.18) that all the factors
exp(s iK, R) cancelled out conveniently. This is a
result of the approximation D =H~- Eo= 0, i.e.,
Q Hr Q —= Eo = Eo In general, the. wave number in
the Q channel. will be affected somewhat, but Ez
= Eo may still be a reasonable approximation if

E» E„E~. Secondly, P4", is affected by the
Q component through «pt being dependent on Ga
in (4.18a). In fact, the factor (g, (VGoa Vjg, ) is the
dispersion correction to V», in the eikonal ap-
proximation. Thus, the original C;~ fully in-
corporates the optical potential within the eikonal
formalism. Thirdly, it is important to note, from
a practical point of view, that (4.18a) can be
readily solved for yP, because it is a function of
one variable R. This is not the case with y,
which depends on both R and r variables. In any
case «po, which satisfies (4.18b), is such that
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(4.15b) should be identical to (4.12). Thus, the
solution of (4.18a) can be written simply as

g Pi
d 'e '"' Qol«'"+l4&P

i pl
ds te-Ix+ V (y I

el xi
I y & (4 19)

~ 00

where, of course,

Ivlfo& .
It is now a simple matter to check that (4.19) re-
duces to the original yp,

q'1 =(4 leo"'
I lo&e (4.20)

as expected from (4.11).
The equations (4.1V) and (4.18) will be discussed

more fully in the next section in comparing with
the optical potential approach. One of the main
difficulties in the optical potential approach is in
accurately estimating the effect of the Q channel.
It is therefore of potential importance to have
here the explicit representation of QC in the form
Q@qa, (4.12).

(c) The convergence of the series (2.15) corre-
sponding to the perturbation D depends, as with
the operator C, on the kernel X~ defined by

XD -=G~&

Thus, by defining the eigenvalue problem

x.lt. &=i'„I~.&,

we have, for each state,

[1+GD],=.I&.'& =[I+& +&&'+ "]I&.'&

=[1+I'+(C')'+ "]It' &

(4.21)

(4.22)

(4.23)

where the last expression in (4.23) is obtained only
if It'f I(1. Therefore, for each IgoI which leaves
the unit circle, we expect the series to diverge.
Actual estimate of g~ is more involved due to the
complexity of the expression (4.9). However,
physically we expect that the effect of D is again
expected to be large for the large momentum trans-
fer region, where the high momentum target nu-
cleons can collide with the projectile to cause a
large q transfer. Thus, the average quantity

D =zq- Eo

is only expected to be large for large q. [We con-
jecture that D may have the similar q dependence
as (3.30), but more detailed information is not yet
available to make a definite statement, except the
fact that the above picture is consistent with

the behavior of Q%,
'~ which is rather effective in

the small q region. ]
The original expansion of G, Eq. (2.15), con-

tains, besides (3.2V) and (4.23), also the mixed
terms involving both the operators C and D. It
would be interesting to examine if, for certain
cases, the C and D corrections may partially can-
cel.

V. MULTIPLE SCATTERING THEORY AND OPTICAL

POTENTIALS: AN ALTERNATIVE APPROACH

p[e-z]pg =- pvqq,

q[a-z]qq =- qvp4

(5.1)

(5.2)

The multiple diffraction theory of Glauber, as
given by (2.32), has been applied to many scat-
tering systems. As many of the corrections to
the theory were not known, there have been at-
tempts to understand the unexpected success of
the theory in many cases and to estimate the cor-
rections when deviations occurred. Paralleling
these attempts, there has been a renewed interest
in the multiple scattering theory of Watson, "
Kerman, McManus, and Thaler, "and the optical
potential approach. Nore recently, the optical
potential has been converted by Feshbach et al."
into an additional set of coupled equations to be
combined with the elastic equation. The various
parameters in this set of equations are evaluated
in terms of the target-particle correlation func-
tions. A more systematic construction of the scat-
tering equations has been given, "where many of
the details have been further refined, and the
theory compared with a still another approach"
to the coupled-channel method. The distinct ad-
vantage of this recent approach with the optical
potential is that the target structure part of the
problem is more or less treated separately in the
evaluation of parameters in the coupled equations.
The scattering part of the problem is then treated
as a second step in which the target variable is
completely integrated out. This is in strong con-
trast to the Glauber theory in which the structure
and scattering problems are both treated in a
combined way, thus making it difficult to obtain
corrections.

In the present section, we compare these two
seemingly different approaches and show that they
are in fact the same theory formulated in two dif-
ferent w'ays. %e have seen a rough indication of
this already in the analysis presented in Sec. IV.

For elastic scattering by a composite target,
the scattering equation can be rewritten such that
the elastic (P) and the inelastic (Q) components of
C are treated separately by a set of coupled equa-
tions. Following Feshbach, "we have
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Ze =m'+PG'Pvg+,

Q4 =G~QVPC,

where

(5.3a)

(5.3b)

and

P(H-E)2%~=0~

P(a- E)PG'P =-P or G'=[P(E+ie-a)P]-'
(5.4)

The above differential equations are converted
into integral equations by introducing the appro-
priate Green's functions, as

S„=N &@, , (r (e') . (5.12)

The parametrization of 7 is done by first convert-
ing it in terms of t, , defined by

The modified set of equations are"

P[T;+Hr+(N -1)r —E]E%'= (-N l-)PrqC',

Q[T„+Hr+(N- I)& —E]Q4' = —(N- 1)QYP%'

(5.11)

with the amplitude now defined by

G' = [q(E+ ie —a)q]-'. (5.5)
(5.13)

The uncoupling of the equations is carried out
using (5.3), as

P[a E+VGeV]P4 = O, V.„=(y,~
V+VG'V(y, )

(5.6a)

q[a- E+ VG~V]qg =- qvp4'

or

~=5% +PG PVG~V~

q+=GogVm +G'qVPG SV~.
(5.7a)

(5.7b)

To complete the formal manipulations, we write

~' =m +G~PVPe

where

p[T;—E,jm, =o, pe, =-e, ,

(5.8)

All these results are well known.
We immediately find that the linearization of G~

and G reduces, with

D=- JI~ —E 0,
G~-PG~ P,
G- qG,o,q,

(5.10)

and the relevant equations in Sec. V approach the
corresponding equations in Sec. IV. This establishes
the explicit connection between the Glauber scat-
tering function 4', given by (2.24) and (2.25}, and
the optical potential approach of (5.6). A similar
discussion was also given by Foldy and Walecka, "
in the reverse order, in the derivation of (2.24}.

The multiple scattering theory further converts
(5.1) and (5.2) into a set which involves the scat-
tering operator 7' in the place of V, where w is
defined by ('0=—V,)

and also by

1
t, ='U, +'U&++ (5.14)

which is still a (N+1)-body operator, but without
the antisymmetrization for the intermediate target
states. Finally, t, is replaced by its impulse ap-
pr oximation

(5.15)

where t," is now a free two-body operator.
Obviously, the amplitude t~» is to be obtained

approximately from the on-shell amplitude, and
thus its off-shell extension involves the usual
ambiguity. However, it seems that (5.15) is much
more direct in parametrizing V, for use in (5.1)
and (5.2). This is the procedure followed for
example in Ref. 17.

In any case, the equation for Q%" in (5.11) can-
not be solved so readily, because the Q space in-
volves all the states of Hr(r) except g, . This prob-
lem is avoided in the coupled channel formula-
tion'6 "by introducing an averaging procedure
such that all the inelastic channels projected by

Q are replaced by a single "effective" channel.
After the T operator is manipulated away in terms
of t, , and expanding the optical potential in (N- 1)f,
and resumming it to at& orders after making cer-
tain separable approximations, we obtain" "

[T;+V'E,,,]-M(K) , a,=(-R) (R)

[T;+V, Eo]w(R—) X,(R=)a-,(K)

The main part of the theory is thus in the determi-
nation of the parameters A~, Vz, andE +. They
are related to the two- and three-particle correla-
tion functions for the target nucleons. However,
once these parameters are determined, the solu-
tion of (5.16) can be obtained without difficulty by

any of the several methods, including the partial
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Z(ff -S)re = —ZVqe;a (5.1'I)

wave analysis.
The obvious drawback of the theory is, however,

in the determination of these parameters in (5.16).
A certain amount of ambiguity persists in the
derivation of the coupled equations, and various
alternatives and their corrections were considered
in Ref. 18. The problem is obviously in handling
the Q-space effect, and, in view of the simple form
for Q%' given by (4.12) in the eikonal approxima-
tion, we may modify the coupled-channel approach
in the following way by combining the desirable
feature of the both theories.

Apparently, the multiple diffraction theory ob-
tains the Q% part very simply, while the optical
potential approach explicitly includes the E% part
at all angles. Combining these features of the
two approaches, we may set (5.1) as

where

IV =&0.l
«'x+

I to& V—»&gaol c'x+
I c.&

~ixp [c-(x+ &y I
c(x+ I(I} )]

P d P
(5.21)

and also

g(l(}=e'"v"+f d}((( (}( }('}v (}T'}v'" ' R .
(5.22)

As noted earlier, both ao and g can be evaluated
by first partial-wave analyzing the quantities in
(5.20) and (5.22). On the other hand, we can al-
ways obtain a reasonable representation of g
and uo by the eikonalization, with the corrections
of y, type as discussed in Sec. III. This procedure
is much simpler here because only V» is involved
rather than the full V(r, R). Still another possi-
bility is to use the g in the semiclassical approxi-
mation" as

q}(i{ ~e((( efK(' Ry (~r)[~(x+ &y I
sjx+

I y )]
(5.18)

gP e(x (t}lR-R )IR2n'

where

(5.28)

~ = P%' +6 PV'~ -=5% +j% (5.19) &'(f) =[X'-2V„(f)]'~, f=ol& +&'I.

where both POP and GP are for two-particle scat-
tering, and thus can be evaluated very accurately,
either using the eikonal perturbation theory, ~ the
partial-wave expansion, or using the semiclassical
approximation. 'o The system (5.18) and (5.19)
should improve the large-angle behavior of 5&,
as well as eliminate the complicated and often am-
biguous procedure of evaluating the QC part. Fur-
thermore, a previous study'~ of the contribution
of Q% indicated that the V» part seems to domi-
nate the large-angle behavior while the ~ part
mainly influences the cross section at small
angles through the imaginary part of the elastic
amplitude. If this trend persists for scattering
systems in general, then the treatment of the QC

part by the Iinearised propagator is partiaBy justi-
fied. (This feature depends on the coupling poten-
tials QVP and PVQ, and also on the ImV. )

If we let

m = y,(r)s,(R), Pe~=(j,(r)o(, (R),

G =(j,(r)+(R, R')g(r'),
then

v.( 4}( Xf}s((v.I'

where

Sf)+ sf) + lJfg
P PQ (5.24)

dB, e '"y'"V~ 1+ dR' V e'"&

g~,'=(e, , I
vireo" )

(5.25)

he

dae "t'' V d ' R '8' R'e' ~

(5.26)

+fg (+f ol VIW( )

This form has been shown to work extremely well
at all angles, " "especially when the scattering
energy is high enough so that g (f) is almost al-
ways real and positive (so that no part of the con-
figuration space is forbidden classically).

The elastic amplitude is now given in three
pieces, as

—V»&foie'"' I to&) e'"'
jKy R~ e&K)' R (5.2V)

=H{O} f d}('v (}(,N'}v'„((('}v'vi'",

(5.20)
[In (5.M) and (5.27), additional distortions could
be included. ")
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A crude estimate of the difference between (5.24)
and the Glauber amplitude may be obtained by in-
cluding the corrections of ihe type (2.21) only for
the P part. That is, (5.24) may be approximated,
for the region q/E s 1, by

+fi +f5 ftg CZP (5.24a)

where the first term on the right hand side is the
Glauber amplitude defined by (2.21), and

= 5'y,'(V- Vj,~)

1 P a
d Be'q' e'"0 1+8-

K 88

which follows from (3.7). Note that in this cor-
rection term, the dependence on the internal tar-
get variables is completely eliminated.

Some indications on the effectiveness of the sys-
tem (5.18) and (5.19) may be seen from a recent
comparison of the experiment with the various
theoretical predictions made by Teubner, Lloyd,
and %eigold. '4 For the electron-hydrogen elastic
scattering at 50 eV energy, the Glauber amplitude
calculated by Tai, Teubner, and Bassel" is seen
to fit better at small angles, while the close-
coupling calculation of Burke, Shey, and Smith"
gave a much better fit at large angles (8 & 50').
This strongly suggests that, at large angles, the
E%~ part in (5.19}may not have been treated ac-
curately enough in the Glauber amplitude, while
the Q%' part given by (5.18) may be adequate. The
result seems to favor the separate treatment of
the E% and Qg parts, as defined by (5.18) and
(5.19). A recent calculation" using a set of coupled
equations and effective channels also obtains the
behavior similar to the result of Ref. 26 at large
angles.

Note that, throughout the expressions (5.25)-
(5.27), the r dependence is completely eliminated
and only two potentials, V» -=V~ and 8 „,enter.
There are no more equations to solve, and the
amplitude 5f, is completely reduced to quadratures.
Admittedly, (5.24) is more involved than Fz, of
(2.27), but, presumably, we have in (5.24) already
incorporated the major part of the corrections
coming from the operator C to all orders (once a
precise form of g is obtained). In view of the
fact that p&,

' and higher order contributions are
rather involved to evaluate and also the fact that
such a series may not converge very fast at larger
angles, the slight complication in (5.24) may be
more than justified.

If we were to compare (5.24) with (3.24}, in-
stead, which presumably contains the higher-order

%e conjecture that perhaps the gross effect of the
operator D may be incorporated by a further modi-
fication of QC~ as

Q+ = '"&'y.(r)[e'"'& —(y. Ie'""
l 0.&],

where

K, =Z,k „A',=[2(E-E,)]'",

(5.29)

1
Vd

Kt
(5.30)

In (5.30), E+ is an average inelastic excitation
energy. An estimate ofi may be obtained from
the expression"

(Pg f lPvqa, qvP le f)
(PC ~lPVQVP l E%~)

(5.31)

where 0 is a smooth function similar to V and

couples the P and Q components. The new ap-
proach to high-energy scattering by composite tar-
gets presented above, and possible further modi-
fications suggested by (5.29), for example, is cer-
tainly an attractive possibility. But its effective-
ness and potential usefulness are yet to be care-
fully examined, perhaps by applying the formalism
to specific systems and to some realistic model
problems. It is of crucial importance to investi-
gate the range of validity of the theory in energy
and momentum transfer variables.

Extensions of the system of equations (5.18) and

(5.19) to include the exchange effect may be made

by explicitly antisymmetrizing the PC part, but
neglecting it in the Q4' part. Such a procedure is
justified only if the Q4 contribution comes mainly
from the long range part of the interaction af-
fecting only the small momentum transfer region.

We can immediately extend the above treatment

corrections from C insofar as the nonoverlapping
part of the potential is concerned, the overlapping
potential effect is correctly treated in (5.24) main-
ly through the g~ part of the w'ave function.

Thus, the main remaining correction to the
amplitude (5.24) should come from P~~,

' as given
in Sec. IV. As evident from the form for QC,'~,
the adjustment in the energy was not made for the
inelastic channel so that the oscillating part of
Q4'fa is still given by exp(i K, R),which is defi-
nitely not correct. In this connection it is of in-
terest to examine whether ~,'a of (2.24) may be
replaced by a slightly different form obtained with
the choice (2.10). That is, following (3.10),

q@eik clK~ Rg (r)[six+ (y le&xp~lq )]
(5.28)
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of the elastic scattering to inelastic excitation of
the target. Vfe denote the initial and final target
state projections by

P( =lti& &0(I and Pg =leg& &eel (5.32)

and divide the full target space into two parts as

1=P+Q,
where

P =P, +Py, P, Py=0, P«Q =PyQ =0.

(5.33)

Then (5.1) and (5.2) are now replaced by "three"
coupled equations:

P,(H- E)PP =- P, VS%' —P,V~,
Pq(H- E)Pq4 =- PqVPP —PqVQ4',

(5.34a)

(5.34b)

Q(H- E)Q% =- QVPP —QVP,4 . (5.34c)

Again the problem with the set (5.34) is the QC
which satisfies (5.34c), itself an infinite set of
coupled equations.

Following the general philosophy of the approach
advocated in (5.18) and (5.19), we again adopt the
Q%' part from the eikonal approximation and set

explicitly. Furthermore, the formalism such as
(5.35) and (5.36) should be useful in cases when one
or more resonance states dominate the scattering
in a certain energy region, especially when such
a resonance is caused in effect by the projectile-
nucleon interactions contained in V (as in the pion-
nucleus scattering. ) We will elaborate on this in
a later report.

Finally, we note that the system of equations
(5.18) and (5.19) derived here is closely related
to the formalism presented in the second paper of
Ref. 17. To simulate the high-energy fast scat-
tering, we postulated there an ansatz for the scat-
tering function in the form

e = (F),(r)u, (R) + y, (R, F)x(r), (5.37)

where the impulse function y, is to be constructed,
for example, as

Rl V V ~ &«K«
~ R'-y R'

(5.38)

In (5.38), go is the free Green's function and (V&„,
defined by

()')„=I dR)'(F, R)

=e"' "(I) (~)[~''"' &ka le'"' -l(j&&-

&bafle'"

l(j&&j,

(5.35)

which is to be inserted into the right hand side of
(5.34a) and (5.34b), and obtain a coupled set of
integral equations

P% =PC «+P C «P VP 0+P C «P V@4'

PP = P %~~+P G~&P~VPP+Pg~iP~VQC (~.

(5.36)

The set (5.36) can be solved for PP and PP
rather accurately for all angles by one of several
methods, just as with (5.19). Therefore, again,
we have treated the direct channel components
P«C and P&4 very accurately, while the compli-
cated QC effect is simply obtained from the dif-
fraction result. Further refinements of the above
procedure are possible, as indicated already in
connection with the elastic scattering.

We should remark on possible advantages of the
above approach when the effects of isospin and
spin effects are to be included. Since g+ and

are extremely complicated quantities, we
think that the Q+ part may be effectively treated
by a spin, isospin averaged procedure, while the
P, and Pz components incorporate these effects

is added to minimize the double counting with Qp.

Evidently, with the approximation gp-gp~ and

j( =$0, we recover the result (5.18) and (5.19). By
requiring up and X to satisfy the coupled scattering
equations further, however, we will again improve
on the Glauber amplitude and (5.24).

VI. DISCUSSION

We have obtained in Sec. II a formally exact
expansion of the Green's function and the elastic
scattering amplitude, the leading term of which
is designed to give the Glauber amplitude„while
the next dominant terms provide a simple estimate
of the corrections needed to extend the region of
applicability of the theory to angles 8 s60' (or
q sZ). Our main result is the expansions (2.15)
and (2.18), and the explicit correction amplitudes
(3.5) and (4.9), which are to be combined with
(2.27).

In connection with the correction to the lineariza-
tion, it has also been pointed out that the particular
diffraction amplitude (3.24) may contain some
parts of the C-type corrections„ thus possibly
extending the angular region of validity of 5&,.
For this to be effective, the contribution from the
overlapping interactions should have sufficiently
random phases to cancel each other out. This
seems to preclude the possibility of studying the
correlation effect using (3.24). But, on the con-
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trary, it suggests that any discrepancy between
the prediction of (3.24) and the experiment may
be parametrized in terms of the correlations,
provided the individual profile functions 1", are
"correctly" inserted.

The apparently slow convergence of the expansion
of G and y' in terms of G~ and C at large angles
may still pose some difficulty in applications as
the higher-order terms are difficult to estimate.
Several alternate procedures we have considered
in Sec. ID should be explored, especially along the
lines suggested by (3.16) and (3.1V).

The analysis carried out in Sec. IV of the Qlauber
scattering function should help clarify further some
of the reasons for the effectiveness of (2.2V) and
(3.24). The discussion also helped to compare,
in Sec. V, the diffraction theory of Secs. II-IV and
the optical potential approach which has been
vigorously pursued during the last several years
as an alternative. As a result of the study in Sec.
V me have suggested presumably an improved
version of the theory, as given by (5.24).

Specific applications of the result presented here

to pion-nucleus and proton-nucleus scatterings
would be of great future interest, as more precise
experimental data are becoming available at
rapid paces. Specifically, estimates of the cor-
rection terms (3.5) and (4.9) will clarify some of
the ambiguities and shortcomings of the previous
analyses which employed the Glauber theory. Fur-
thermore, additional studies of the theory outlined
by (5.24) and its subsequent improvements would

help further unify the two approaches.
We have neglected in our discussion the effect of

spins and isospins, as well as some of the known
relativistic kinematic corrections" and binding
corrections. ' These effects are of course im-
portant, "and should be the next urgent task to be
investigated. We can then more seriously consider
the off-shell extension of the hadron-nucleon
amplitude which is required in the evaluation of
the amplitude, but so far neglected in our discus-
sion. Detailed extensions of the similar considera-
tions to inelastic scatterings and to the rearrange-
ment and breakup processes are yet to be worked
out.
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