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Center-of-tates effects in single-nucleon knock-out reactions

A. E. j.. Diepermk and T. de Forest, Jr.
Instituut floor Kernphysiseh Ondersoek, Oostemngdjik 18, Amsterdam, The Netherlands

(Received 19 February 19'N)

Center-of-mass corrections for quantities observed in single-nucleon knock)ut reactions like (e, e p) are
discussed. Explicit results are obtained for the momentum distributions, occupation probabBities, and
singl~article energies in the framework of the harmonic osciihtor model.

1. INTRODUCTION

The primary motivation for performing coinci-
dence experiments such as (e, e'P) and (P, 2P) is
that such knock-out reactions provide" a rather
direct means of investigating the single-particle
structure of the nucleus. In the independent-
particle model. one directly measures the single-
particle energies and momentum distributions
(and thus essentially the wave function). For more
realistic models similar informaUon about the
properties of the initial nucleus can be obtained
by performing a partial sum over final states to
form the hole state. By taking the contribution of
all final states into account one can also construct
a sum rule' for the total binding energy. This is
of particular interest, since while this sum rule
is very general it does depend on the assumption
that there are no three-body forces.

Strictly speaking, such a simple and direct inter-
pretation of knock-out reactions is only possible
in plane wave impulse approximation (PWIA),
and for a quantitative analysis the appropriate
corrections to this approximation must be applied.
The calculation of such corrections in a theoreti-
cally reliable way is an important but very diffi-
cult problem and will not be considered in this
paper.

The results of knock-out reactions are usually
interpreted" in the independent-particle model
which does not satisfy translational invariance.
Moreover, this difficulty generally persists in
more sophisticated theories. In this paper we
discuss what effects, i.e., center of mass (c.m. )
corrections, the imposition of this symmetry
(on the nuclear wave function) gives.

In Sec. 2 we review the formalism for knock-out
processes. In Sec. 3 we consider the special case
of c.m. corrections to the binding energy sum
rule which does not require a model. Though
basically a I/A effect, the net correction is in-
creased by the large cancellation of the kinetic
and potential energy contributions. The c.m.
corrections for the momentum distributions,
occupation probabilities, and single-particle

energies are discussed in the last section in the
framework of the harmonic osciIlator model (for
the wave functions). Here, the c.m. corrections
basically arise from the spurious components of
the shell model hole state. For example, the
20% "spuriosity" of the Os hole state in "0 repre-
sents components that are actually in a OP hole
state in the intrinsic wave function. One thus
finds a 20% reduction of the Os strength and a
corresponding increase in the OP strength. These
components also lead to a spurious contribution
to single-particle energy of the Os state from the
OP state. Correcting fox this effect, one finds an
increased binding for the Os state. Technical de-
tails such as the construction of the nonspurious
hole state wave functions are handled in the Ap-
pendixes.

2. CROSS SECTION FOR KNOCK-OUT REACTIONS

In plane wave impulse approximation the cross
section for quasielastic knock-out processes' ' ' '
such as (e, e'P) and (P, 2P) is proportional to the
spectral function

I'(k, E) = P IAt(k) I'ti(E- E„',+E„), (2 1)

k=k, -ko —kc ~

(2.2)

E„ is the binding energy of the target nucleus and

Eg y the energy of the A —1 nucleus in final state
i (in the laboratory frame). The amplitude A, (k)
is the Fourier transform of the overlap integral
of the initial and final nuclear wave functions (in
the laboratory frame)

~ (tl= f &, '"''*(6, I& &, (2 2)

where E and R are the energy and momentum trans-
ferred to the nucleus by the projectile a, and out-
going particles b and c:
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where

(4-21())~}

=5rT f er, er„,k„",(r, ~ r„,)5„(r, r, ).

(2.4)

Physically (A&(k) (
' represents the momentum

distribution of the nucleon in the initial state be-
fore it was knocked out. To simplify the formal-
ism explicit spin and isospin labels have been
suppressed.

In these expressions all quantities are defined
in the laboratory frame and no explicit use of
translational invariance has been made. Imposing
the latter it is more convenient to reexpress them
in terms of the corresponding intrinsic quantities.
Noting that the residual nucleus recoils with mo-
mentum k we have

4=~A Q 4-2(r2 "r~)4.(r~),
a-

the spectral function (2.7) takes the form

(2.10)

&(k, E) =Q P*(k)P (k)
a8

k2
xQ 2 55(k 5, —5, (2.11)

2m

where

strength is distributed among various eigenstates
of the final nucleus. We therefore introduce the
concept of single-particle occupation probabilities
and energies which will be used in the following
sections.

Expanding the intrinsic ground state wave func-
tion |4 in a complete set of orthonormal single-
particle orbitals Q (r„',)

k

2(A 1) (2.8) Sa() QA-ll 4A-2) (4A-ll 0A-2} ~

One can then define occupation probabilities

(2.12)

(5',15 )=() jeR'e ' ' (5', (5 ) (2.6)
S 528

=Q SIks = (gW 2 ( (1)Z 2), (2.13)

where R' = [I/(A- 1)]Q;=,' r( is the c.m. coordinate
of the residual A —1 nucleus and 0 is the normal-
ization volume. We thus find

and single-particle removal energies''

1
Q S ~~6;

aa

k'
P(k, k)=+ le( (k)l 5(k+5, —r(2 (2.7) = (4I &I 4~) -S (4-21&I (I)~ 2&-

ea
(2.14)

and

& (2)= f 5 ' '"'*&()' (5 ), , (2.8)

which depend only on the ground state wave func-
tion of the initial nucleus and the Hamiltonian H.

3. SUM RULES

with

1
A —1'

By integrating over the spectral function and
using closure one obtains the spectroscopic sum
rule

~p Irj rf R (2.9) A= dk dEI' ky E = S„~, (3.1)

EA EA j Iflt ~

Although this formulation is exact, since it re-
quires translational invariance, it is not directly
applicable to most nuclear structure calculations.
In particular we note that ((()(„",] (I)„) (is in gen. eral
not even defined, and thus (2.3) is often used in-
stead of (2.8). The goal of this paper is to deter-
mine how the imposition of this symmetry on the
nuclear structure affects the theoretical predic-
tions for knock-out reactions.

In the extreme independent-particle model such
knock-out processes allow one to measure directly
the energies and momentum distributions of the
single-particle wave functions in the initial state.
In more realistic situations, however, the hole

which simply follows from the normalization re-
quirement. Since this sum rule is rather trivial
its main usefulness lies not in the basic physics
of the knock-out processes itself, but is that it
provides a check on whether the corrections to
PWIA have been carried out properly, and whether
the total strength has been exhausted experimen-
tally. More interesting is the energy-weighted
sum rule'e

(3.2)

which is very general only relying on the assump-
tion that the Hamiltonian H= T+ V contains only
two-body forces. An accurate experimental check
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of this sum rule mould be of extreme interest, for
a violation could give direct evidence for the exist-
ence of three- or more-body forces.

We note that the energy E in (3.2) is the en-
ergy transfer as measured in the laboratory
frame, and not the intrinsic energy transfer, E
=E -q(k'/2m), in terms of which such experiments
are usually analyzed. In terms of E, the sum
rule reads

E„=— dk dE. , -E. , + 1 —g Pk E .
(3.3)

Equivalently the sum rule can be expressed in a
single-particle basis as

physically understood intrinsic analog. The sim-
plest such model which we shall use here is that
of harmonic oscillator (HO) wave functions. " In
the shell model this roughly corresponds with
Hartree-Fock (HF) theory. For light nuclei where
the c.m. corrections are the largest, the restric-
tion to HO wave functions is a fairly good approxi-
rnation. Vfe also note that the definition of the
single-particle energies e (2.14) is consistent
mith HF theory.

Although me do not a,ssume HO forces, in order
to determine the appropriate form of the intrinsic
wave function, it is useful to use the fact that the
intrinsic HO mave function is the exact solution of
the A. -body problem with HO internucleon forces:

E„=—g S e +-'(1 —q)T, (3.4)
int $M can. ~ + 2 + 2~~o=~zo —V~o =~ 2b2 &

mhere

p'T=ps (( 4( 2aP 2m (3.5)

= g =, (r, —R)' = P —,—(r, —r, )',
i

(4.1)

In this form the c.m. correction factor 1 —g
= (A - 2)/(A —1) associated with ,'T can be—seen to
be necessary to cancel the extra kinetic energy
in e arising from the reduced mass effect m/~*
= 1+g. The reader can easily justify the need for
such a correction by considering the case of the
deuteron for which E„=&&.

As an application of the sum rule (3.3) we men-
tion a recent (e, e'p) experiment on "C by the
Saclay group. ' The binding energy per proton
obtained from the right-hand side of (3.2) was
found to be 4.0 MeV (of which 0.8 MeV comes
from the term -&'()T), compared with 6.9 MeV
obtained from nuclear masses and appropriate
Coulomb corrections.

4. CENTER-OF-MASS CORRECTIONS

FOR HOLE STATES

Since most theoretical nuclear structure calcu-
lations are carried out in the framemork of the
shell model, the results are affected by the un-
physical c.m. motion. Of the various physical
quantities involved in knock-out processes only
for the binding energy have c.m. corrections been
studied' ' in any detail. In this section me study
the c.m. corrections for the momentum distribu-
tions, occupation probabilities and single-particle
energies and show that these corrections are in
fact necessary in order to satisfy the (c.m. cor-
rected) energy-weighted sum rule (3.4).

In order to define the concept of a c.m. cor-
rection it is necessary to have a shell model
theory to which there corresponds a unique or

where b =(rnco) '" and R =(1/A. )Q;, r;.
Furthermore it is the very special nature of HO

forces that groups of particles only interact dy-
narnically through their c.m. 's. This can be seen
by rewr iting

A-1

26'

(4.2)

which immediately implies that the (unantisym-
metriaed) wave function can be expressed as

4(rt ' ' r~) = 4-((rI ' ' rg-()4 (rg) ~ (4.3)

(-(b-" (('. ( Ih(mp(- ". -
(4.4)

The index e denotes the set of quantum numbers
necessary to specify the single-particle state;
P is a polynomial in r of order m, the oscil-
lator shell number [e"o=(m +~)&a&J, and implicit-
ly includes the spin and isospin dependence. The

Taking into account the reduced mass corre-
sponding to the relative coordinate r~ —8', m*
=[(A- I)/A Jm, one finds that (t(„ is an HO wave
function, but with a modified oscillator parameter:
h' =[ A(/A-1) 'J"b The c.m. co. rrection for the
momentum distribution is thus simply given by
b -[A/(A-1)J'"I(

We now proceed to develop the expansion (2.10).
In the shell model the HO single-particle wave
function has the form
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A
mb'

b '""exp —,(r, —R)'
2$

intrinsic ground state wave function is thus It can easily be shown that the |I)„,are orthogonal.
The single-particle orbitals Q (4.9) thus play

the role of the natural orbitals" with respect to
the wave function g„, i.e., they diagonalize the
density matrix S

& in the intrinsic frame:

(4.12)

A A

A g p (r, /b)=A' g p', (r,'/b)

A-1.A rr p;„(-;/b}, (4.6)

where

I k, k(i,
Ik+1, k»t,

where the antisymmetrizer A is defined so as to
include the appropriate normalization factor, here
(A!) "'. Due to the antisymmetrization only the
highest powers in the polynomials P contribute.
This allows us to rewrite

For nonspurious states, e.g. the hole in the high-
est occupied shell, only the highest powers of the
polynomials, which are the same for P'(r,'/b) and

p (r;/b), contribute and )!)„",is normalized to one
[cf. (4.6)]. We thus find simply S =[A/(A-1)) ~.

For deeper shells ()})g ) g„",)(1, where the re-
duction can be directly ascribed to the spuriosity
of the shell model state. The explicit calculation
of these norms is presented in Appendix A.

If we do not go beyond the OP shell nuclei (for
which nuclei the c.m. corrections are most sig-
nificant) explicit calculations are not necessary,
for the occupation probability of the Os shell can
be directly deduced from the spectroscopic sum
rule (3.1). For example, for "C we find"

A 12
A-1 11

(4.'I)

A

4A ~g Q p ~ (rA)PA —( ~A~- } (4.8)

with

(4.9}

where

(4.10)

f2

xexp —,A. P', r,' b).

(4.11)

Here the prime on A indicates antisymmetrization
with respect to the coordinates r&= r& —H' rather
than r, or r; —R. In the last expression in (4.6)
the A operates on theA-1 coordinates r,', and
the factor A '" results from the modification of
the associated normalization constant. We thus
obtain

and thus

S~ = —,'(12-& So~) =—

In Appendix B we show that (3.1}is only one of a
series of sum rules which allow one to very simply
determine the occupation probabilities for heavier
nuclei.

The presently available experimental information
on knock-out reactions on light nuclei does not
seem precise enough to really distinguish be-
tween the nontranslational invariant shell model
prediction and the c.m. corrected values. Since
relative spectroscopic factors can be measured
more accurately it would be especially interesting
to determine the ratios of the occupation proba-
bilities of the various shells. Moreover, this
tends to enhance the c.m. effects. For example,
for "C the c.m. corrected value of S„/S~ = —,

'
instead of I.. Dynamical effects such as short-
range correlations induced by the hard core in
the two-nucleon interaction will also cause devia-
tions from the shell model prediction, i.e., they
lead to a depletion of the occupied shells, and
therefore a reduction of the occupation proba-
bilities. However, since the depletion factors
have been shown" to be fairly independent of the
shell, the relative occupation probabilities are not
expected to be strongly affected by the short-
range correlations.
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In a similar way we obtain the c.m. corrections for the single-particle energies ~ . Taking the
expectation value of the kinetic energy one finds from (2.14)

(4.13}

and thus

where

(4.15)
and

lnt 5 SM 1 SM
4 OS 4 OP

Os state in "0 implies that

SM 4 int
Vo = 5 V(N + 5 V()P . (4.1 t)

(4.18)

~SM ~ ~tttt+ Q (CS)SAe g' t

8 ~

(4.16)

which can be inverted to determine the v~t from
the vsM. For example, the 20% spuriosity of the

We thus find, in contrast with previous treatments
of this problem, the contribution of the kinetic
energy &

e" is the same as in the shell model
frame. " Being purely relative the potential is
also not directly affected by the c.m. motion.
However, the spurious components of the shell
model hole wave function correspond to internal
configurations in which the hole is in a different,
higher shell. Thus v as calculated in the shell
model is actually a linear combination of the in-
trinsic v . This effect can be determined from
the expansion of the shell model hole wave func-
tion (A9). Using the result of Appendix A we find

elnt SSM ~ t (~SM ~SM)
OS (% 4 (Q OP (4.19)

The c.m. correction thus increases the binding of
the Os shell. From the results of published HF
calculations' we estimate this to be a 4-5 MeV
effect in "O.

We note that no correction is necessary for the
total contribution of the potential to the binding
energy

2 + ~a 2+3a~a (4.20)

as one would expect since V is purely relative. In
this sense the modification of ~ can be viewed
as being necessary in order to cancel the effects
of S 4 1 when we go to the intrinsic frame.

In passing we note that the kinetic energy con-
tribution to E„ in the intrinsic frame is, using

(3.4), (3.5), (4.13}, and (B10)

—Qe e +,(t —ql+s Q t )= Qt
a a a a

(4.21)

which differs from the shell model result —,
' Pe "o

by 4 co, the kinetic energy of the c.m. This is thus
the only correction necessary for the calculation
of the intrinsic energy.

As an illustration of the c.m. corrections derived
above, it is instructive to consider the simple
example of the A=2 nucleus built of identical nu-
cleons. The shell model ground state configura-
tion is (Os)(OP). One thus finds

A.

A —1

and

S~ = A-S~ =0,

that is, the Os hole state is completely spurious,
i.e., does not exist. This reflects the fact that in
the intrinsic frame both nucleons are actually in

a relative P state. For the same reason one finds
vsM= vsM

08 OP
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APPENDIX A

In order to calculate the norm of g„, we ex-
pand the corresponding shell model wave function



E. L. DIEPERINK AND T. DE FOBEST, JH. 10

p„, sM in the eigenstates of c.m. motion Q,

a ze ~ o 84A-1, SM 4A-1 4ccc. + ~ 4A -1,8 Accc. '
8 ~pe

Since all the terms on the right-hand side are
orthogonal we have

(4A 11 kA 1&

(A1)

and

(A4}

where H denotes the Hermite polynomial. The
corresponding shell model wave function is

@A"-1.8 Ac~. I 4-1,8 0c~ &, (A3)

where the 1.ast term is just the "spuriosity" of the
shell model hole state.

To develop the expansion (Al) we use the ex-
plicit form of P„, (4.11). We first consider the
one-dimensional problem for identical particles.
Setting b=1 for simplicity, we have

0„'S =- 44 0".~.
A-1

=A Q 8 "'h~, (r, R') exp-(--,' r, '}, (A3)
A=1

where

A-1
4A -, sM =A Q & "'h „(rA ) exp(--.' r, '), (A5)

k=1

h (r}=(, )„, H (r)
1

(A6)

Using the addition theorem" for Hermite poly-
nomials we find

with

(A7)

h'(r-R')=- Q (-1) SCSh8(r) h 8(R'IA-1),

h

aki,
4+1, k& i,

1!2
(A 1)(8-a&»s

Pt (a P)}— (A8)

and thus

gS =/A", , » + Q C /AS, , SMh8 „(R'c'A-1)+ Q C C»8/A», SMh8 (R,
'v' -A1)h» 8(R'»'A-1) +

8&n y ~8&a

=/A 1, SM + Q C„h 8 „(R'4A-1) gA, 8„+Q C»8/A», SMh» 8(R'»'A-1) + ~c

8&a

='4-1, 8M
+ 2 Cct fash 8-11(R'~A 1) 1

8&a
(A9)

where we have used the fact that C =-1. Since

=h 8(R'IA-1) 4", (A10)

is normalized to one, the polynomials h 8(R' 1I'A- 1)
do not modify the normalization of the terms on
the right-hand side of (AQ). We thus find

X„=1-3(C,'}'h„=1—„,S„=X„=-,3

and for 4oCa

A ' 1600
N~ =N~~ =1, S~ =$q~ = — 1 1 '

&.=&|I"„,I4;, &=1-g (C'}'A» . (A11) N: =1-I. (C', )'+3(C.')'j &
4

The extension to three dimensions is accom-
plished by replacing a by the set (a„a„a,), and

by C ",C ', C, . The only modific tio ne es-
sary to include the spin-isospin degree of freedom
is to restrict the sum over the states to the same
spin and lsospin as Q.

Applying this method to 'SQ and 'Ca we find
using (4.13) for "0

16
OP y Op

A 1400
1521 '

pg~ =1 —3(Cc) Ncc —[3(Cc) +3(Cc) ]Ace

3 4 6
A-1 A-1 (A-1}

1410
1521
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APPENDIX B

In this Appendix we present a second method for
obtaining the occupation probabilities. %e define
the raising and lowering operators for the intrinsic
HO wave function as

where

~($) 1 ~r
asr~ =~2 b

+»~

(y) 1 —R
W2 7 WA

(87)

(86)

and

1 r~-R'i=r ", r' r„-—r-, ) (81)

Since rlr~s" represents the ground state, a,
=0; and thus

which satisfy the commutation relation

yl=6rr (f=&, X &) (82)

a a rp (r„') = rrr„rp, (r„') .
Applying a .a to the internal wave function

(4.8) we find

' a rtrw =A+ rn a'tra(rw)kz rr-

(83)

which gives the sum rule

(810)

By following the same procedure with the normal
ordered operator

(811)
and thus

A&rr'r~la 'air)'~& =Q ma&4~-r I4-r& =Qrrr S ~ (86)
one finds the generalized sum rule

(812)

a(» a(~) (86)

The left-hand side of (86) can also be constructed
in another way. Noting that the operators i, a
are purely relative, we multiply g„by QSM and
return to the shell model wave function. The in-
trinsic operators (81) can be expressed in terms
of their shell model and c.m. counterparts:

For P =0 this reduces to the spectroscopic sum
rule (3.1).

Setting P = m, for the last shell (812) immediate-
ly gives S =[A/(A- 1)] in agreement with the re-
sult obtained in Sec. 4. By decreasing P by steps
of 1 the 9 for the inner shells can be successively
determined.
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