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We have studied the reaction mechanisms of the (P, 2P) reaction on 4He at energies of 65
and 100 MeV. The dynamics of the reaction is taken to be that of a three-particle system,
the He target being viewed as a proton bound to an inert triton. The particles interact via
separable potentials chosen to fit bound state and scattering data of the two-particle subsys-
tems. The protons are treated as identical bosons interacting with each other only in the
relative S state while the proton-triton potential is limited to relative I ~ 2. The 4He(p, 2P)-
H doubly differential cross section can be calculated exactly within this model by solving the

Faddeev equations numerically using the method of deformed contours and Pade approximants.
This can be compared with the distorted-wave impulse approximation (DWIA), calculated in
this model by summing the appropriate subset of the multiple scattering series. This is done
in momentum space and treats off-shell and finite range effects of the nucleon-nucleon T ma-
trix as well as recoil effects exactly. We find that the DWM is an adequate approximation at
100 MeV but is almost double the exact result at 65 MeV. Its use in the extraction of spec-
troscopic information below 100 MeV is therefore suspect. The shapes of the exact, distort-
ed, and plane wave cross sections agree quite well with each other (and with the experimen-
tal shape), differing only in magnitude.

NUCLEAR REACTIONS 4Hey, 2p) H, E =65, 100 MeV; calculated o. Three-
body model, reaction mechanisms.

I. INTRODUCTION

Much of our present understanding of direct
nuclear reactions (be it stripping, pickup, break-
up, or elastic scattering) is based on a three-body
framework. We operate on the premise that the
reaction is essentially a two-body process, with
two active nucleons engaging in violent reactions
in the presence of distortion given rise to by the
nuclear medium in which the reaction takes place.
This involves viewing the target as nucleon plus
core. The core provides the distortion while the
nucleon reacts with the projectile. This picture
gives rise to the distorted-wave Born approxima-
tion (DWBA) in pickup and stripping, to the optical
potential in elastic scattering, and to the distorted-
wave impulse approximation (DWIA) in breakup.
In a lowest order approximation to the many body
effects, the core is assumed inert and the quasi-
three-body system contains pairwise interactions.
This paper studies the multiple scattering aspect
of breakup reactions and the commonly used
DWIA at energies below 100 MeV. We use as the
archetype of breakup the (p, 2p) reaction through-
out this paper. A subsequent paper studies elastic
scattering via an optical potential from a three-
body model in view of the close ties between the
optical potential used in breakup and elastic scat-
tering. Stripping has been studied by three-body

methods by Mitra, ' by Aaron and Shanley, ' and
more recently by Bouldin and Levin' and others."

In the past 15 years, there has been considerable
interest in quasifree knockout reactions4 of the
type (P, 2P), (P, Pn) These. reactions are valuable
as a probe of the nuclear inner shells and they
compliment pickup reactions' (which are suitable
for the outer shells) as the tools of studying
nuclear structures. Moreover, they can potential-
ly furnish off-shell information about the nucleon-
nucleon t matrix. ' However, all these attempts
at extracting spectroscopic information and off-
shell effects are futile unless we have a good
understanding of the reaction mechanisms. At
high energies (above 300 MeV) where single scat-
tering is dominant one can invoke the plane wave
impulse approximation (PWIA) and modify it to
account for absorption effects via the semi-
classical WKB method' in the spirit of the dis-
torted wave treatment. As we go down in bom-
barding energies, matters become a lot more
uncertain. At low energies, the multiple scat-
tering series (MSS) is in general divergent. ' This
renders the DWIA suspect as to its adequacy in
treating the multiple scattering effects. However,
it has been used extensively' even at energies
down to 50 MeV. The rationale for such an ap-
proximation is partly due to intuition, partly due
to its tested success at higher energies, and last
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10 ACCURACY OF THE DISTORTED-WAVE IMPULSE. . .

but not least, it seems the best thing to do short
of solving the scattering problem exactly. Some
recent attempts have been made in justifying this
last claim. Dodd and Greider" and Kazaks and
Koshel" have shown that the DWIA is the first
term of a "mathematically meaningful" series.
(The name "DWIA" is used by some authors to
imply on-shell approximations for the t matrix
used in Eq. (1). Throughout this paper, we never
use on-shell approximations for the nucleon-
nucleon t matrix. In all calculations, the ap-
propriate half-shell or fully-off-shell t matrix
will be used. ) They rearrange the three-particle
Lippmann-Schwinger equation to get an integral
equation with a compact kernel free of dangerous
5 functions (hence the label "mathematically
meaningful" ). One must not, however, take this
as a justification for the approximation, at least
not until the higher order terms have been ex-
amined. Our understanding of the MSS has been
considerably augmented by Sloan' in his study of
n-d elastic scattering at low and medium energies.
He reminds us that a compact kernel does not in
any way guarantee a convergent MSS.

The experimental data fail to clarify this ap-
proximation either. At energies below IOO MeV,
DWIA calculations do not fit the data well. Lim
and McCarthy' have attempted to fit the ~C(p, 2p)-
"Bdata at 50 MeV by Pugh et al." While they
fail to get good fit, they cannot pin down the
cause of failure. This is due to the sensitive de-
pendence of DACHA calculations on all the inputs
in the calculation. The matrix element that we
have to compute is

where g~,
' =1, 2 are distorted waves with outgoing

and incoming waves, the indices 1, 2 stand for the
two protons, t is the nucleon-nucleon t matrix,
and p is the overlap integral (or bound state wave
function) between the target and residual nuclei.
Apart from the approximate treatment of three-
body final state, '" there are more serious dif-
ficulties. First, the calculation is very sensitive
to the shape of the distorting potentials. '4 As is
well known, phenomenological fits to elastic scat-
tering data do not uniquely specify the optical well.
Recent attempts at calculating optical potentials
via first principles corroborate this point. Lerner
and Redish" have calculated the real optical well
for P —"0elastic scattering at 65 MeV in the
impulse approximation. The well shape so ob-
tained differs appreciably from that of conven-
tional ones. This real well, combined with a
phenomenological imaginary potential, gives a
good fit to the data. This shape ambiguity is a

stumbling block in the way of a good DWIA cal-
culation and points to the inadequacy of pure
phenomenology. The second difficulty comes
from our lack of knowledge of the overlap in-
tegral P, apart from its tail behavior which we
can infer from the bound state energy. The latter,
however, is not sufficient for a reliable DWIA
calculation. Thirdly, we need to know the nucleon-
nucleon t matrix fully-off-shell. The calculation
of Lim and McCarthy uses a pseudopotential model
for this t matrix. While it fits on-shell data up
to 300 MeV, one is not certain that it has the
correct off-shell behavior and how sensitively
the calculations depend on this off-shell ambiguity.
Plagued by all these uncertainties, Lim and
McCarthy fail to isolate the main cause of trouble,
much less to establish the validity of the under-
lying distorted wave motif.

Our aim in this paper is to test the distorted
wave premise at energies below 100 MeV using
the reaction «He(P, 2P)'H. We propose to do this
within an exactly soluble three-body model so that
we may compare our DWIA with the exact results.
We try to make the model as realistic as we can
while keeping the calculations down to manageable
proportions. This involves using separable po-
tentials and limiting two-body interactions to a
few partial waves. The merit of such a model
calculation is that the ingredients in the DWIA

appear in the exact calculation in the same fashion.
The only difference between the two is in their
treatment of multiple scattering effects. Any
discrepancies between them point to undue neglect
of certain terms in the MSS and hence the in-
adequacy of the DWIA. If one can establish that
the three-body aspects of the breakup problem
are well represented by such a distorted wave
treatment, one can hope to improve on the DWIA
inputs.

This paper is organized as follows. Section II
deals with the formalisms of the Faddeev theo-
ry"'" for the present quasi-three-body problem
using separable potentials. In Sec. III we derive
the DWIA from the Faddeev theory and point out
its similarities with conventional approaches.
Section IV discusses our particular three-body
model. Calculational details are discussed in
Sec. V, and in Sec. VI we discuss the results
and conclusion of the study. Appendix A dis-
cusses the Born term or the driving term of the
three-body integral equations for the unequal
mass case. Its singularity structure is briefly
studied. Appendix 8 gives the kinematics of the
energy sharing geometry. Appendix C discusses
the four-body problem in conjunction with the core
assumption in the three-body model. The Pade
approximant method is discussed in Appendix D.
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II. FORMAI. ISMS

In this section we shall establish our notation
and formu1. ate the three-body scattering problem
using separable potentials. We employ standard
cyclic notations for the three-body system con-
sisting of particles 0., P, and y. Thus Vy refers
to the interaction between particles P and a or
pair y. We work in the center of mass (c.m. )
frame such that a three-body state can be speci-
fied by two momenta Pz and qz. The former is
the momentum of particle y in the c.m. frame
while the latter is the relative momentum of pair
y. We define the following masses:

The index 0 will stand for the breakup channel„
and Vp is def ined to be zero. Channel states

~
C «„} are represented by the kets ( p~ p „„),

where
~ pz„) is the nth bound state of pair y.

These channel states are eigenstate of Hy, such
that

2 2

"»~'» &
=

(2»»Ny

where —q&„'/2p,
&

is the binding energy of the Nth

bound state in pair y. Plane wave states are
represented by the kets

~ Pzq„) .
We define the following Green's functions:

"y m. +m, '

m„(m +m~}y-
m~+ ma + my

G, =(s-H,)-',
G„=(s-H,)-',

G =(s-H)-' .

(10)

with which the f„can be written as

ma pf)( —m ~ pg p„pyq„=
ma+ ma ma m8y (3)

Further, we define three-body t matrices, which
are two-body operators in the three-particle
Hilbert space, such that

The masses p. y, Ny are the reduced mass of
pair y and the mass of particle y with pair y,
respectively. The c.m. frame imposes a condition
on the py's, namely

+p~ +py (4)

This allows us to write

m~'y="
m +m 'y= " m +m py

a Cf 8

By permuting indices, we get analogous expres-
sions for q and q8. Furthermore, if pair y is
bound with energy E~, the three-body c.m. energy
E is given by

*
2+

y

In scattering problems it is convenient to intro-
duce a complex energy S =E+ie. The total Hamil-
tonian of the system is given by

H=HO+ V =HO+ Q Vy»
y

where H, is the kinetic energy operator. Three-
body forces are ignored. We can define a channel
Hamiltonian Hy and a residual interaction Vy as

H Hy + V'

Hy =Ho+ Vy,

V =V-V
y y'

Ty = Vy+ VyGOTy = Vy+ VyGyVy . (12)

The starting point of our calculation is the
elegant formulation of the Faddeev equations by
Alt, Grassberger, and Sandhas" (AGS}. The
transition operator UB for transition from chan-
nel a to channel P is expressed in a set of coupled
integral equations (hereafter referred to as the
AGS equation) with a particularly simple inho-
mogeneous term. The equations read

Us~ =(1 —5s )(s-Ho)+ Q TyGoUy
y&B

The Us 's are related directly to the 8 matrix via

S8„„=58„5„—2 vi5(H g„—E~)
x &4 8»») U~„(EBN+t0) I c'n»»»)

By iterating (13) we get the Faddeev-Watson
multiple scattering series (MSS)

(14)

U, „=(1—V,„)(s-H,)+ P T„

+ Q T„GZ,+ ~ ~ ~ .
y&8
y~6

& p'„q'„I Ty(s)jp„q, &
= {)(p,' —p„')

x & q'
I
t ( -p "/2H„)l q ) .

(11)

We have used the lower case t for the t matrix
in two-body space and capital T for its counter-
part in three-body space. The Ty's are defined
by
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The first term is the exchange term; the second
is the single scattering or impulse term; the
third is the double scattering term; and so on.
Many of the approximations in reaction theory are
contingent upon a convergent MSS. We shall look
into this question in more detail later in the paper.

The breakup operator U0 can be obtained from
(13) in terms of the rearrangement operators as

T7GOU7~,
7

where we have used the fact that (s-H, ) vanishes
on-shell.

In the rest of this section we shall obtain ex-
plicit one-dimensional coupled integral equations
for the case of separable potentials. The treat-
ment parallels that of Sloan" where he treats the
three-nucleon problem. Let the particles interact
via pairwise spin-independent separable potentials
of the form

S2 4g&=-Q 2„~L2~,11gLz&&g~l,

where p is the reduced mass of the interacting
pair, I. their relative angLlar momentum, and

M its z projection. The strength parameter XL

is determined from scattering data and lgLz& is
the form factor such that if q is the relative
momentum of the pair,

&&TlgLZ& = gL(q)1'L(q) . (18)

x 1'L *(q)

5 A A

&LgL(q') gL(q)PL(q" q)2 p.

The two-body t matrix at energy z takes the form

f (Z) = Q igLZ& FL(Z)& g~l (20)

which is a standard form derived from solving the
two-body Lippmann-Schwinger equation in mo-

The form factors gL(q) are chosen to be real and
the YL, 's are the usual spherical harmonics. In
momentum space, we have

&q'lvlq&=- g &L 1gL(q')gL(q)1'L(q')
2 jtL

mentum-space. The I' functions are given by

—(5'/2 lL)[4w/(2L + 1}jXL

1 —[4v/(2L, +1}j XL f gL'(q')q"dq'/[q" —(2 p/ff')z j
(21)

The strength and bound state parameters are
related by

f matrices T„(s) can be written as

2~+1 "gL'(q')q"dq'
q, 2+q" (22)

T„(s)= g IyJ.„M„&r, (s)&yl. „f)f„I,

where —(5'/2iL)qL' is the binding energy of the
bound state supported by the potential. The matrix
element of t in momentum-space takes the form

where

&(Ty Iy&„~„&=gL„(q„)l;"(q„). (28)

&4'I f(z) li& = g gL(q') gL(q)FL(z) 1'L'(q) y'L(q')

, 2j, +1
Q gL(q ) 4 FL(z)gL(q)PL(q' q) '

(23)

With these two-body t matrices, the three-body

The quantum numbers I.7, M7 are the relative
angular momentum of pair y and its z projection
and

&F& lr (s}IP„&=8(p —P„)F (s-p '/»).
(28)

Written out explicitly, the matrix element of the

three-particle t matrix is given by

2

( )i', i)', )T',(*)I)i„i)„)=i)()i„-)i„)pi( (e', ))(,(e,) 4,' I", (~-2N )',„(i„ i'„) (2V)

Coupling in the angular momentum (f z and z projection my) of the third particle relative to the pair (pair y}
to form total three-body momentum I' and z projection g, we get

r, (s) = g I y I p „1"u&r, (s)&y z, p „f'vl,
r»

7 L7
L, ~&7

(28)
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where

lyLylyl'p& = g &LqMyly mal I'p& lyL„My&l l„m„&.

(29)

We note that
~ yLyl&I'p) now acts on both ~pz)

and j qy & and that the ket ~1~my) satisfies the
relation

(P„)l„m ) = r x(P„) . (30)
Y 3' Y g

Now we are ready to get one-dimensional coupled
integral equations from (13). Following AG8 we
multiply (13) on the right with G,(» l„i"p& and

on the left with &PL8ls I'p~G, . Defining

X', =&PL, l, rVIG. ~ G.l«. l I'V&

Z =&PL l r Vl G I » l. i' V&(I —6s )

gives

Xs -Zs + Q Zs T~ (s)X (32)

We have used rotational invariance so that the
matrix elements are p-independent and I' and p
are good quantum numbers. Taking matrix ele-

ments of the operator equation (32), we get

&Ps(JXs IP & &PslZB IP &+ g P'„' dPy &Psl zsylP„&F (s Py /2X„)&P", IXy IP & (33)
yl. „r „

which is a set of coupled one-dimensional integral equations with the q dependences projected out. Et is
possible to obtain coupled equations in a single vector variable because, in a separable potential model,
the q dependences are completely specified by the form factors. Note that on the energy shell GJp„)
x ~gz „)is proportional to ( P„lp~ „). Therefore, the on-shell elastic and rearrangement amplitudes
can be obtained via

O'
&Ps@& s, ]U8 (P„P& s )= C,C, g P (LM I m ( pI&& L, Ml, m) lp&

g~ ac~

's

x y, "(P )y,"s(Ps)&PslXs IP.& (34)

once Eq. (33) has been solved for the (ps~Xs ~p )'s. The C's are the normalization constants for the
bound state wave function P,

( ) &- ~~ & C Z „(q)F""„(e)
'g~ 2 + $~2

(35)

(36)

From Eq. (16), and after a little algebraic manipulation, we get

We have explicitly exhibited the quantum numbers ILL M j in g.
For breakup, the final state consists of a plane wave with all three particles free. This state is labeled

by ~ p,'p,'II,') or alternatively by ( p'„q') where py and qy are related by

P 0'

2N& 2p&

&pip,'p,' ] fr,„(p.y, „&=- C, g g p &L.M.l.m. )I'q&
tn ma

1~ m~

L&sr&
/2

x & LyMyl ym y I Fy& g~y(Cy)FI,
y N~

x&PylX'„~IP~) F ~(P )F"r(i'„) I' ~(P',). (37)

Note that (37) expresses the breakup amplitude in terms of the half-off-shell elastic and rearrangement
amplitudes without the need for solving additional equations or performing quadratures. This is because
Alt, Qrassberger, and Sandhas have cleverly utilized the off-shell freedom in the elastic and rearrange-
ment amplitudes in defining their amplitudes Xs [Eq. (31)].
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If the potentials are pure 8 waves the expressions (34) and (37) simplify, yielding

S2 52 21'+ 1
& 5;~, IU,.lp. ~.&=,„2„c.c,g „&p, lx",.If.», (r; f.) (38)

&plug IU. Ip. y.}=-2 c„g ~4" z)(s-p), '/2H„) g 4, &p', Ix).lp )p (j. j))
(39)

III. DERIVATION OF THE DULIA IN THE FADDEEV
FORMALISM

In this section, we shall formulate the DWIA
from the Faddeev-AGS equation (13) and give the
explicit expression for the breakup amplitude in
the case of separable potentials. We make use of
a set of formulas derived by Grassberger and
Sandhas in Hef. 17. By an arbitrary splitting of
T& into (T &+ T&), one can split (13) into two sets
ofeq ato

Us =(1 —5s )(s -H,)+ Q TyGoU'y
y&S

(40)

Thus, in order to get the breakup amplitude one
first solves the system of equations (33) for the
half-shell (since P& 4P ) amplitudes &P&IX&„lp„)
and then obtains the breakup amplitude via (37).

that the DWIA demands the following approxima-
tions for the U8 's, namely

U8~ p= 3,
U8a

(45)

Upon substitution of (45} into (16) we get for the
breakup operator in DWIA the following expression

Uoo "=ToGoUoo+ Q TyGoU~GoToGoUo„,
y= lo2

(46)

where the U'o 's can be found by solving (42). No-
tice that we need the Us~'s fully off-shell.

Next we shall write the exact breakup amplitude
in the form of the "unified amplitude" of Hef. 11 to
show the similarities of the two results. Using
(16), (42), and (44) we get

Uoo =
U&&~ "+(UooGoToGoUo, GoT

Uo ——Us'o+Q U'qyGoT oyGoUy„. (41) + ToGoUooGoToGoUoo}

Uso =(1—5s„)(s—Ho)+ Q TyGoUyo,
yW g
fvs3

obtained from (40) by letting

(42)

Consider the quasi-three-body problem of a
nucleon incident on a nucleon-core bound state as
in (P, 2P). We label the nucleons as 1 and 2, the
core as 3. The DWIA prescription tells us to
turn on the nucleon-nucleon interaction (T,) only
once, while the nucleon-core interactions can
occur an arbitrary number of times. Accordingly,
we first solve the Faddeev three-body problem
with the nucleon-nucleon force turned off. The
equations are

+ Q TyGoU'y„. (47)

8 T ]Go Ul ~
+ T2 GO U2 ~

On substituting for U,', from (42) we get

(46)

Borrowing the terminology of Hef. 11, we can
name the second term in (47) the "resonance"
type term, the third as the "recoil" type term.
In this model the name "multistep" is perhaps
more descriptive of the physical processes con-
tained in the second term. We note that the nucleon-
nucleon t matrix (T,} appears once in the DWIA

term, at least twice in the second, and not at all
in the third. To see that this last term is indeed
a recoil type term, consider

(43)
8 =[T, +(1+ToGo)T,GoU,', ] (49}

The exact operators Uz„can be obtained from
Uz via (41) with the above splitting of the t ma-
trices. This yields Gs = (s —Ho —V, —Vo) (50)

Defining the full Green's function for the problem
with T3 turned off as

Us = U'8 +U'S360&3COU3a ~ (44}

Heferring to the breakup operator in (16) we see

we can write U]] as"

Uyy
—V2 + V2G/V2 j (51)
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whereupon we get

&I~OUII = ~IG~~2 ~

yielding for 8 the following:

(52)

~=~I2 ~Z ~

The wave operator Q~ is defined as

fl'„= I+(V, + V,)G„,

(54)

(55)

and distorts the plane waves in protons 1 and 2 into
distorted waves. In this form, the "recoil" nature
of R is apparent. In the infinite core case, the
final state distorted waves in 1 and 2 factorize

Jt = [ T, +(1+T,GO)VGsV~] =[ 1+(V, + V2)Gs] V, ,

(53)

which is of the form

X g ~ = ( pLSE8 I' p I GOUs G~ I aL~ l I' p) . (56)

%'ith these amplitudes, we can then get the break-

and the orthogonality of the distorted wave and
bound state wave function in proton 2 will give
zero for this term.

One of the merits of the three-body model is
that we can compute the various terms in (47)
exactly and assess their relative importance at
various energies. This we shall set out to do,
using (P, P, 'H) as our model system as explained
in the next section.

The system of one-dimensional integral equa-
tions we have to solve for the DWIA corresponding
to using separable potentials in (42) is the same
as in (33) with the Ez set equal to zero We.
denote the solution by (ps IX'rs'„I p ) where

up amplitude in the D%IA as

&plop.'I ff' "IP4 i„~„&

L N

x g, (q,')E, (s p,"/2~, )&p-,
' Ig,"'

I p ) y (p„)I' (q,') I', (p, )

+ g g g ( L„M l m I I p) & L«M«l «m«I I'p)
y=I, 2 1 p l mZ

gy my

'« "«
x g.„(q'„)p. (s-p'„'/2~„)I, (p.)y,"«(q„)V, «(p'„)

«P f () „I&r'llr )r, «'-, ~ (r:Ix; 'Ir &o ~). . (57)

IV. MODEL

We propose to study the reaction 'He(p, 2p)'H at
energies below 100 MeV. The 4He target is viewed
as a 'H core plus a proton. The three particles
are treated as spinless bosons interacting via
pairwise spin- independent separable potentials.
The use of separable potential is prompted by
its success in the three-nucleon problem' and
by the enormous numerical simplification it
entails. Investigations by Harms" for the two-
nucleon system show that separable potential
calculations are more closely related to local
potential calculations than we may think. He ob-
tains a separable expansion of the potential in
terms of the eigenfunctions of the homogeneous
Lippmann-Schwinger equation. This separable

I

expansion of the potential is then truncated and
substituted into the Lippmann-Schwinger equation
to obtain a t matrix which is both separable and
unitary. This unitary pole expansion (UPE) gives
t matrices in good agreement with those of the
Reid potential at negative energies. A one term
UPE or the unitary pole approximation (UPA) of
the t matrix is in turn found to be a good rep-
resentation of the UPE. Recent breakup calcula-
tions for D(p, 2p)n (up to 150 MeV) by Wallace"
using a phenomenologically scaled S-wave
Yamaguchi force also indicate the relative in-
sensitivity to details of the two-body input as long
as two-body on-shell scattering data are well
represented and the range is about right.

In the present model calculation, we use for the
nucleon-nucleon force (U„„)an 8-wave Yamaguchi
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-140'-

-120'-

(o)
Separable potential fit for p-'He

elastic scattering

given by

Z(V) =({f'+P') ',

P
(c{+P)'

2

w -80'

-604

X 0
)C

O
p

0

Scattering length a=5.5fm
Binding energy E& =-20MeV

I I I I 1 I
I I ~ ~ { I T

60'- (b)
X

X o
o 0

Xc
0

I ~ I I I I I ~ I I
'j f I { T f

The parameters a and p are chosen to fit the
deuteron binding energy and the triplet scattering
length. The potential gives a fairly good rep-
resentation of the P-p on-shell scattering from
0-100 MeV.

For the P-'H force (v„,) we use form factors
of the form

~ L/(~ 2+ P ){2I, +)l2-"

40'-

204-

W

I I $ ~ I I

104-

C4 &Oo o

100

(c)

& Fit toSL vio o separable
potential model

~ Experimental points (Ref. 24)
f Points at which fit is made

~ I I I I ~ I
I $ I f 'I 'I f I

I I
~ ~ I

The potential contains three two-body partial waves

2

&ci'I ~. .I{i& = — g 2 &, g&(e') gi(e)&i(~ q),
2p,

+ =0I 1, 2

(61)

where p, is the nucleon-core reduced mass. The
particular form of the form factors used is mo-
tivated by its resemblance in coordinate space to
a Yukawa dependence. The potential parameters
are chosen to fit P-'He elastic scattering data"
from 0-50 MeV. There are two parameters per
partial wave, namely n~ and jj~. The strength
parameters are given by

P.(n. + P.)
{f~J IN% T I

0 10 20 30

Ejab {MeY}

PIC. 1. p- He scattering data and sepax able potential
fits for the irrteractions in the S, P, and D states.

potential" with parameters appropriate for the
nucleon-nucleon triplet system. Explicitly,

&g(e')g(e), (58)

where the form factor and strength parameter are

12 P,(n, + t),)'
1 ~2 3n ~ P' T (62)

40 t),(n, + tl2)'
z' P', '+4/;n, +5n, ' '

The fits to P-'He scattering data are shown in

Fig. 1. Potential parameters are listed in Table I.
The two-body inputs into the Faddeev equations

are in the form of t matrices. For the particular
choice of form factor (60), the E functions are

given as

P.(n. + Po)'
2 p z 1 —(tj, +)n'/(j3, —is)' '

a' 16 P,(P, +n, )/(P, +3ni)
1 —[(P, —3iK)(P, +n, )'1 /((P, i {{)'(P,+ 3—n, )}'

a' 32 P.(P. n. )'/(P. ' 4P.n, .5n.')
& z 1 —l(PQ' —4iPg{{- 5{{')(PR n )'1+/f2(PQ - i )'(P{{R' 4PR+na 5n +')~ '2

(63)

where z =( p2/ z)8' ' and z is the complex two-body energy. These E functions exhibit explicitly the poles
at {{=in~ The Yamag. uchi form is just a special case of (60) with I.= 0. Hence the nucleon-nucleon E
function is given by E,(z) in (63) with p= —,'m, t), =P, and n, = u.

%e have chosen a light target for study for the following. reasons. First, we are aware of the failings of
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the core assumption, namely the neglect of exchange between the active and core nucleons and the neglect
of core breakup. By keeping the number of nucleons small, we may hope to track down what we are ne-
glecting by comparing the three-body model with exact theory, like the four-body equations of Sloan."
This we shall discuss in Appendix C. Secondly, the fact that the 'He target contains bound S-state nucleons
enables us to check our calculations with the much simpler numerical calculation of the all S-wave model
where only S-wave interactions are used. In fact we do find that the S-wave potentials give the bulk of the
scattering.

V. CALCULATIONS

We have to solve a system of one-dimensional coupled integral equations given by (33) for the particular
case of two identical nucleons plus a core. Performing explicit symmetrization between the two protons,
the system of equations becomes

oo II 2

x,";(p',p) =z,',, (p', p)+ g z,",,(p', p )F,. s — x,'., (p",p)p"'dp"
tt pit rtt) () 2H,

&&0 II 2

+2 Z~ ~ (P P )~z, s — X~-"(P &P)P
' dP '

&

7 tt Qtt rtt), 3

&&0 II 2

X,', (P', P) =Z,",, (P', P)+ Q Z„'...(P', P ) F,. s-
3& X,', (P",P)P"'dP",

7."=Q,", r"} 1

(64)

where

x,', (P', P) = l Q &Ps lxs. lP.&,
~, 8"=1,2

x,",(P', P)=l Q &P,'Ix,'.Ip &,
0( = 1, 2

z.".(p', p) =&pll z.' Ip & =&pl lz," Ip. &

z,",, ( p', p) = —,
' g & p,' I P;.I p &,

(65)

sal of this process. ) Explicit forms for the Born
terms and their singu1. arities will be discussed in

Appendix A. It is easy to see that the on-shell
Born terms are peaked in the backward direction
in the c.m. frame.

After we have solved for X and X, the breakup
amplitudes can then be obtained from (37), which
we may write symbolically as

a=1, 2

z,",, (p', p)=-,' g &p'„lz:, Ip, & .
a=1, 2

The label r stands for (L, l }.The nucleon-nucleon
F function is denoted by F~ while the nucleon-core
E function is denoted by F~. The various combina-
tions of r" that we can couple to via (64} are given
in Table II.

Symbolically (64) can be written as

where B stands for the breakup amplitude and

g and g stand for the nucleon-core and the nucleon-
nucleon form factors, respectively. Equation (67)
is shown diagramatically in Fig. 3(a}. Physically
the first term describes the breakup process
where the nucleon and the core interact last, and
the second term describes the corresponding
process where the nucleon-nucleon force operates
last.

In the D%IA calculations, we first solve for

X= Z+ZFX+2ZFX,

X=Z+ZFX,
(66) TABLE I. Potential parameters.

Nucleon-nucleon potential

and is shown diagrammatically in Fig. 2. The
driving terms of the integral equations Z and Z
describe pickup processes. Physically Z describes
the process where the projectile nucleon gets
picked up by the core and the target nucleon comes
out. In other words the projectile and target
nucleon trade places. The other term, Z, de-
scribes the process whereby the projectile nucleon
picks up the target nucleon and exits as a two-
nucleon bound state (2 descr.ibes the time rever-

u, =0.2317 fm '

P(,
——1.405 fm

0.8505
-0.2529
-0.9456

0.7249
0.9608
1.9160

Nucleon-triton potentials
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&',. (p', p) and Xr', (p', p) from. (64) by setting
E~ equal to zero. The two equations decouple,
giving sy mbolically

X' = Z+ZEX'
X' =Z+ZEX'.

(68)

However, to get the breakup amplitude in the
DWIA according to (57), we need further the time
reversal of X' which we denote symbolically by
X'. This latter can be found by

X' =X+X' EZ

With X', X', and X' we can get the DWIA breakup
amplitude as

a'~" = 2g EX'EX'+@EX'

'"= 2g EZ EX'+2gEX' EZEX'+ gEX' .
This is shown diagrammatically in Fig. 3(b).

In the numerical calculations the Born terms
are computed by numerical integration using a
10-20 point Gaussian quadrature rule, depending
on the bombarding energy. The integral equations
are solved numerically. We replace integrals
by sums and map the domain of integration onto
the interval [- I, I] via the mapping p = K,(l +x)/
(I —x). The integral equations are then solved
by iteration, using the contour rotation method
of Hetherington and Schick" and of Cahill and
Sloan." The angle of rotation p is chosen such
that no singularities are crossed. These three-

TABLE II. Various (L',I") combinations relevant for our model problem.

(L,l ) = 7" classified by parity
Even Odd

(0, 0), (I, 1), (2, 2)

1
0, 1,2

123
2
123
0, 1,2, 3, 4

3
2, 3, 4

1,2, 3, 4, 5

3, 4, 5
2, 3, 4, 5, 6

5
4, 5, 6
3, 4, 5, 6, 7

6
5, 6, 7

4, 5, 6, 7, 8

7

6, 7, 8
5, 6, 7, 8, 9

8

7, 8, 9
6, 7, 8, 9, 10

9
8, 9, 10
7, 8, 9, 10, 11

10
9, 10, 11
8, 9, 10, 11,12

{1,1), (2, 2)

(0, 2), (1, 1), {1,3)
(2, 0), (2, 2), (2, 4)

(1,3), {2,2), (2, 4)

(0 4), (1 3) (1.5)
(2, 2), (2, 4), (2, 6)

(1, 5), (2, 4), (2, 6)

(0, 6) (1 5) (1 7)
{2 4) (2 6) (2 8)

(1, 7), (2, 6), (2, 8)

(0, 8), (1, 7), (1, 9)
(2, 6), (2, 8), (2, 10)

(1, 9), (2, 8), (2, 10)

(0, 10), (1, 9), (1, 11)
(2, 8), (2, 10), (2, 12)

(0, 3), (1, 0), {1,2)
{2, - },(2, 3)

(1 2), (2, 1},(~, 3)

(0.3) (1 2) (1,4)
(2, 1), {2,3), (2, 5)

(1,4), (2, 3), (2. 5)

(o 5} (1.4)*(1 6)
(2, 3), (2, 5), (2 7)

(1, 6), (2, 5), {2,7)

(0, 7), {1,6), (1, 8)
(2, 5), (2, 7), (2, 9)

(1,8), (2, 7},(2, 9)

(0, 9), (1, 8), (1, 10)
(2, 7). (2. 9). (2. 11)

(1, 10), {2,9), (2, 11)
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body singularities are well knovyn and have been
studied extensively by Brayshaw, 28 who also jus-
tifies the contour rotation method. These singu-
larities take the form of poles and branch cuts
in the complex momentum plane arising from
either the t matrices, the form factors, or the
Born terms. Those arising from the Born terms
are particularly troublesome. They take the form
of moving cuts corresponding to particles being
on-shell in the intermediate states. This vanishing
of the Green's function is discussed in Appendix
A. The angle of rotation P into the lower half
complex momentum plane has to be chosen so that
no singularities are crossed. How this is done
is also explained in Appendix A. The system of
coupled equations (at most five in all for our
model) is solved with a mesh of 33 Gaussian points.
The number of equations is reduced due to the
identity of the two nucleons in our spinless boson
model. As a result only even-parity nucleon-core
interactions come into the calculations. The itera-
tion procedure in the solution of the integral equa-
tions converges in general for three-body angular
momentum 1"~2. In fact, for these partial wave
amplitudes the Born terms give a good approxima-
tion. However for, 1 =0 and 1 the series may
diverge. This is particularly true for F=0, where
one would expect the most multiple scattering.
Queen" argues that the particles "forget" their

pl

incident direction after many collisions and there-
fore come out isotropically. In cases where the
MSS diverges, the method of Pade approximants"
is used to sum the divergence. In all cases, the
method works very well. Under most circum-
stances, a [3, 3] diagonal Pads will suffice. A
theorem by Chisolm" guarantees convergence of
the [N, N] Pads series as N-~ to the correct
solution of an integral equation with compact
kernel.

As we may suspect, when we turn off the nu-
cleon-nucleon force in the three-body problem as
dictated by the DWIA calculations, the series is
in general convergent. However, in this calcula-
tion we need the amplitudes fully off-shell as
shown in ( IO). An examination of the singularities
of the problem indicates that we ran into no addi-
tional problems. These singularities are discussed
in Appendix A.

VI. RESULTS AND CONCLUSIONS

The results of our model calculation are dis-
played in Figs. 4-8. The doubly differential cross
section in the energy sharing geometry at 65 and
100 MeV are given in Fig. 4 (see Appendix B for
kinematic details). In this figure we also show
the cross sections obtained by truncating the
multiple scattering series at one, two, and three
terms. At both energies, the multiple scattering
series in this model is convergent, as the largest

&AVA

pII

I
P

(o)
pl

PV

XXVEMMW
pl

iXXMXX'f

(b)

(b)
pl/ P

FIG. 2. Diagrammatic representation of the coupled
equations.

FIG. 3. Diagrammatic representation of the exact
breakup amplitude and of the DULIA breakup amplitude.
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10,00

"He(p, 2p) H at 65MeV
(Energy sharing geometry

8 i, =e, = ~is

He(p, 2p) H at IOG MeV

(Energy shoring geometry

H, =e, = ~6.7)

(b)-

g l.00

E

0.10—

Exact
Singie

+ Oouble inclusive
+ Triple inclusive

eigenvalues of the Faddeev kernel are less than
unity even for the three-body angular momentum
1' = 0. (In this partial wave the largest eigenvalues
are X, = 0.6 and 0.4 at 65 and 100 MeV, respective-
ly. ) However, the convergence rate is quite slow
and the triple scattering estimate is not very good
at either energy. The cross sections show the
expected feature of a quasifree knockout peak
centered at the equal energy point.

The amplitudes for breakup at 100 MeV are
shown in Fig. 5, where we have also plotted the
individual contributions to the total amplitude of
the single, double, and triple scattering terms,
as well as the exact result and the sum of all
multiple scattering terms (all terms excluding

0 .Ol i i I I I i i i i

0 10 20 30 40 50 IO 20 30 40 50 60 70

E, {MeV)

FIG. 4. 4He(P, 2P) H doubly differential cross section
at 65 and 100 MeV via a MSS analysis.

0.8—

I I I

He(p, 2p) ~H at l00 MeY
0

8)=82 = 36.7

X
0.6—

E

the first). We make two observations. First,
the multiple scattering terms interfere destruc-
tively with the single scattering term. This is
well known experimentally, as the impulse ap-
proximation usually overestimates the cross sec-
tion severely, especially at low energies. Second,
the sum of the multiple scattering terms is nearly
constant over the range of phase space probed
by this geometry. In this case, the total amplitude
may be written as the single scattering term plus
a single complex constant characterizing all the
multiple scattering effects. This is true even
when the series diverges and must be summed by
Pade methods. (This is discussed in more detail
in Appendix D.)

Three-body calculations simplify considerably if
only S -wave interactions are employed. %e have
therefore compared the result of the calculation
including the interaction in the p-'H D wave with
a calculation in which the D-wave interaction has
been turned off and only 8-wave interactions re-
tained. The results at 100 MeV are shown in Fig.
6. The S-wave interactions yield most of the scat-
tering in this model, the inclusion of the D wave
resulting in a 25% reduction of the cross section
at the quasifree peak. At 65 MeV the reduction

Re part

I 1

4He(p, 2p) 5H at IOCI MeV

e=e, = ~6.7'
~ Single scattering
ii Double scattering
& Triple scattering
~ sum of all multiple scattering (double+ tnple+ ~ ~ .)
& Exact

Irnag par t

LU

0 4—

- 2.0I-
J3

O

0
10

a
2I) 5I) 4i0 5.0 6I) 70 10 2.0 M 4D 5D 60 70

0.2—

10 20 30 40 50 60 70 10 20

E, (MeV)

30 40 50 60 70

FIG. 5, The breakup amplitude at 100 MeV for 4He-

(P, @)3H with the contributions from various orders of
multiple-scattering isolated.

0.0
I,O

I

2.0
I

3.0 4 0
E& {MeY)

I

6.0 7.0

FIG. 6. Comparison between the 8 and higher partial
wave models in the Faddeev calculation at 100 MeV.
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produced by including the D wave is only 10%.
To produce a truly realistic model, more P-'H
partial maves should be included, but the above
result together mith the fact that odd partial waves
do not contribute in this model suggests that the
effect of the higher partial waves may be less
important than one would conclude from simple
arguments. It is possible that perturbation theory
would suffice for the inclusion of the higher partial
maves, perhaps even for the D wave.

In Fig. 7 the results of the exact and DWIA cal-
culations are compared. In (47), following the
terminology of Ref. 11, the full amplitude is ex-
pressed as the sum of three terms, one of which
is the DWIA. The other two are a resonance (or
multistep) term and a recoil term. We can cal-
culate the DNA, , the exact results, and the recoil
term. From these the magnitude of the multistep
term may be inferred. At 65 MeV the DWIA is
about 1.7 times the exact result. It is, however,
a significant improvement over the PWIA which
is about 2.5 times the exact result at this energy.
Inclusion of the recoil term produces about a 10%
improvement. This indicates that at 65 MeV the
multistep term is still quite important. At 100 Me V
the DWIA has improved, being only about 20%
larger than the exact result. Inclusion of the re-
coil term produces an improvement of about 5%.

We should point out that there is a difference
between the DWIA as used here and as used in
many practical calculations. Although the formal
theories used to justify the DWIA (Dodd and
Greider, "Kazaks and Koshel, "or the Faddeev
formulation here employed) require the use of the
particle-core interaction as a distorting potential

0.25
I

He(p, 2p) Hat IOOMeV

8, =82 = 36.7

in the incident channel, practical calculations often
use the particle-target optical potential to produce
the incident channel distortion. " The primary
effect of this choice will be to increase the ab-
sorption by including the effect of knocking out the
bound nucleon in directions other than those ob-
served. This should reduce the DWIA somewhat
and could produce slightly better agreement than
is indicated in Fig. 7. We have not attempted to
include this effect in our calculations as it mould
render them considerably more difficult.

Experimental data for the 'He(p, 2p) reaction
have recently become available" and are compared
to our results at 100 MeV in Fig. 8. It is seen
that the shape of the curve can be obtained either
with a PWIA, a DWIA, or with our Faddeev model.
The normalization, however, is not given cor-
rectly by any of these simple models. The PWIA
curve shown is that of Ref. 33. The DWIA shown
is the one calculated in our model. A more
realistic DWIA gives a similar normalization. "
As displayed here, the normalization factors of
0.184, 0.308, and 0.380 required for the plane
wave, distorted wave, and Faddeev calculations,
respectively, to fit the data do not include the
proper spectroscopic factor (-2) but take it equal
to 1. A more realistic DWIA (Ref. 22) yields a
normalization factor of about 0.35 even with a
spectroscopic factor of 2. Homever, this includes
very strong absorption in the incident channel.

2.0

1,8-

1.6- (a)

1.4-

N
u) 12-

E

1.0-

- 08-

b~ 0.6-

I I I

He(p, 2p) Hat 65MeV

8, =8, = 31.8

~ DWIA
~ Exact

1 i I

He(p, 2p) Hat 100MeV

8t =82 = 36.7'
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N
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O. I

E
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& O. I

b

0.4-
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0.00
20

c3 0.308 x Faddeev DWIA

0. 184 x DWIA

I

30 40
E& (MeV)

Experimental points (Pugh et al. , Ref. 33)
0 0.380 x Faddeev

I

50 60

FIG. 7. DWIA versus exact calculations at 65 and 100
MeV for 4He(p, 2p)3H.

FIG. 8. Comparison between DWIA, PWIA, and Fad-
deev calculations and experiment.
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This factor enters linearly in the PODIA and DULIA

making them worse. It enters in a more compli-
cated (and as yet unknown) manner in the Faddeev
model. Note that the Faddeev calculation has no
free parameters and that no effort was made to
fit the data. The primary reason that our model
produces too large a cross section is probably
our failure to include absorption in the p-'He
interaction. A recent experiment" indicates that
at 85 MeV the reaction cross section for p+'He
may be as large as 140 mb. This would require
strong absorption in at least the first four partial
waves. Although absorption can easily be included
in this model by introducing a complex energy
dependent coupling constant in the P-'He interac-
tion, we feel that an attempt to force a fit to data
without a better understanding of the implications
of the spectroscopic factor problem (i.e., there
are two protons to be knocked out instead of just
one) is unwarranted at this time.

The potential dependence of our conclusion on
the accuracy of the DWIA was investigated by
adjusting the p-'He potential parameters to fit
the bound state properties of the e particle rather
than the scattering data. This results in new
parameters Xp 0 850538 fm ' and pp =1.40 fm '.
This change of parameters produces a fairly
strong change in the P-'He elastic scattering,
shallowing and shifting the minimum. (The elastic
results in this model will be discussed in a sub-
sequent paper. ) The results for breakup are
similar to those obtained above. The DULIA is
a reasonably good approximation at 100 MeV and
not so good at 65 MeV.

In conclusion, we have investigated the accuracy
of the DWIA for breakup in a solvable three-body
model with parameters chosen to simulate the
reaction e(p, 2P). The triton is treated as an
inert core and absorption in the p-'H channel is
ignored. We find that the DULIA yields a reasonable
shape for the cross section at both energies in-
vestigated (65 and 100 MeV) but that the magnitude

is poorly reproduced at the lower energy. The
distorted wave calculated correctly includes recoil
and the full off-shell effects. This indicates that
the DWIA is not correctly representing even the
three-body aspects of the multiple scattering at
energies below 100 MeV. Further investigations
of multistep processes should be undertaken before
low energy (P, 2p) experiments can be analyzed
for the extraction of nuclear spectroscopic factors.
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APPENDIX A: BORN TERM

The Born terms (P& ~ ZB„(P„)appearing in (33)
drive the integral equations. For the present
nuclear problem, there are two types of Born
terms, Z„(P', L', I', P, L, l ) and Z3|(P', L', l';
P, L, l ), where we have adopted the notation in
which the momenta and angular momenta are
shown explicitly. (Zir, is related to Z,", via time
reversal invariance. ) The former describes the
pickup of the core from the target by the pro-
jectile —the so called "heavy particle stripping. "
The latter describes the pickup of a nucleon from
the target.

First we shall obtain explicit formulas for the
Born terms. A discussion of their properties and
singularities will follow.

1. Explicit formulas

Recall the definition of Z8 from (31). Inserting
complete sets of q„, qa, P, P& states and using

(29), (30), and (25) we arrive at

(P', iZ', (P.&=(1-6,.) g (L,m, f,m, irq)(L„3f„f„~„(I|)

where, dropping the momentum subscripts,

O' 3+1, „2E„(s;O', fp, x) =E»(s; fp', 0, x) =s-— p'+p" + I pP'x

(A2)

E»(s; P ', P, x) = E»(s; P ', P, x) = E»(s; P, P ', x) .
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In arriving at (A2) we have used (3) and the fact that 0, is diagonal in the plane wave basis. We can simpli-
fy the Born term further. Rotational invariance dictates that the Born term be independent of p. , the z
projection of the total conserved angular momentum I'. Averaging over it, we write

&p'slzs. lp &=2~,'I Q
P g~ @8m mB

g~a ~f)f &at ~+ gL8 ~8 J-8 ~8 & PB 2n Pa

Esa(s&ps& Pa&Pa ' Ps)
(A3)

The integrand in (AS) above can be shown invariant under a rotation of coordinates in momentum space"
so that it is a function of p, ps, and 15a ps only and the integration can be reduced to a. single integration
over p~ ~ p8. The end result is

(pslZs„lP ) =
2& 1" Sv'

4 g (L M / p -M
l
I'p) (L i&t Ol I'

t&, )
1 —&Ba 2 2~y+1

]i@8

gs (qs) Yz s (5, 0)gz (q ) Ys (y, 0) Y, s (S, 0)

Esa( & ps & pa& cos8)
(A4}

where

e=*(Pa&P's) & y ='t(Pa&qa) & 5='t(Pa&qs) .

The notation 4 (x, y} stands for the angle between x and y.

(A5)

2. Properties

A. Effect of symmetrization

In our model problem, the two nucleons (labeled 1 and 2) are considered identical bosons and differ from
3 (the core). This identity of 1 and 2 will put some restrictions on the Born term as we shall now see.
Examine the symmetrized Born term

Z"(P', L', /'; P, L, I ) = —,'[Z,",(P', L', / '; P, L, /) + Z"„(P', L', / '; P, L, I ]

&L'M'I' lml't)(LMtml iq)
1 1

P'Y" P
E„(s,p', p, I&' p)

X [ YL& *(q') Yf(q) + Yz.*(-q') Y L(—q)]

Note the minus sign in the arguments of Y~. and Y~ of the second integrand. It comes about because
the arguments of Y~. * and YL", in the calculation of Z,", are q,' and q,", respectively, while in calculating
Z„, they are q& and q,". It is clear from the kinematics relation in (5) that if we interchange indices 1 and
2 for the P's, j, will go into —q, and vice versa. Hence the minus signs. Recalling that Ysx(- x)=(-)zYzx
(x), we get for the symmetrized Born term

Z (P', L&, I&; P, L& l)=~z[1+(-I) 'z]
QNmN m

' L'M' Ilmrtt&&LMtmlrt &

s Q

„-„-,gz (q')Yz (q')gz(q)Yz(q)YT(P)Y ~ *(p')
E.,(', P, p, b P)

(A7)

%hat it means physically is that, because of the identity of 1 and 2, the parity of the bound pair cannot
be changed during a pickup (exchange) process. Similar results hold for Zr, the Zsr, and Z„symmetrized
amplitude, and its time reversal counter part Z".
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B. Parity conservation and @me reversal invariance

In order to show the symmetry properties of the Born term, we further manipulate the formula (A4).
First we define

m1 2 3 I E (s p'px}
with which shorthand notation the Born term reads

(AB}

8m' 2E+1
( '~i' ~P)=(l —~s ), [I+(-I}'"""'")

l/g &r&o~r ) .«. I'&' I'~r &&-,. , ',}p, N
M' p p. -M'

+(L'-M'I' p+M'~I'p)I&„
I' L l'

~" M' p p, +M'

+(IOI0il'0) Q (L'M'I' M'i I'0)-I 8
I,'L, l'

N

+ P ( L'Of'p~ I'p) (Lp IO( I'p) I&
I'I l'

I/ L l/
+(Lofo~ IO) (L OI'0) ro) I,„ (A9)

TABLE III. Various momenta and quantitites related to the Green's function singularity of the Born term.

gI (p/ pl/) g+( pl p//) gI ( pl pl/)

a
~2/m

C

~2/m

pn

p ls

pg

p //

1
A+1

1 l
A+1

A+1 I'/m

A +2 S2/m

2A(A+1)s
A(A 2)p'2I /m

2A(A + 1)s
~2/m

2A(A+ 1)s
~/m

2A(A+1)s-A(A 2)p'2

A+1 a2/m

p/2

p'
2

s A+2
a2/m

I'/

p ll2—
p/

A+1 „s
2A P'-h2/

A+1
2A

2A s
A+1 ~/m

4A s
A+2 I-2/m

s A +2 &i2 p/2
2 /m 4A 2

(.i.)"
A+2 r2/mA, A+1 2s A+2

A+1 A I /m A

A A+1 2s A+2
/ p/2

A +1 A h2/m

(A+»s A+2 „'i'
A+1 P k A a'/m

A A+1 2s A+2 tP
/+ p /2

A+1 A h2/m A

A+1 P
A p'

s/2
A+1 P
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As for the F", 's in the integrand, we have for the
Zrz case, Y~(q) YP(P)Y~. *(q') Y,i *(P') while for
Zr„8, we have Yf*(q)Y, (p)Yis (q')Ypi(p'). The
difference in the complex conjugates goes away
via, Yz, (x) =(-)"Y~"(x). The combined phase
factor is unity since M'+m' =M+m = p, , the z
projection of I'. A change of summation index
from M', m', M, m, p. to -M', -m', -M, -m,
—g gives the desired relation (A10).

3. Singularities

It is of prime importance to understand the
singularity structure of the Born term. Other-
wise we may get into serious computational
problems as we analytically continue the AQS
equations into the complex momentum plane.
These equations are ultimately solved via a con-
tour rotation method and the contour we choose
cannot run into any singularity of the Faddeev
kernel. This latter criterion was conjectured
by Aaron and Amado" and shown rigorously by
Brayshaw. " The singularities of the Faddeev
kernel can come either from the Born term or
the I matrices. Those from the latter (bound
state poles and the unitarity cut) are well known

pl/

II
pm

= &p" —bp'p" + cp'

~ p'= p {on-shell)

where the conservation of parity is manifest. The
Born term vanishes unless parity [(-) ' 'j is
conserved.

The condition for time reversal invariance reads

Z~„(P', L ', I';P, L, I}=Z ~(P, I, I; P', L', I '}.

(A10)

In order to see this, we examine (AI). The energy
denominators in the Green's function satisfy ex-
plicitly the condition

s = aP + QPP x + cP (A13)

where —1 «x «1. In Fig. 9, we have sketched in
the P', p" plane the curves corresponding to (A13)
for the extreme value of x. These curves define
the boundary for the region where the Green's
function denominator vanishes and hence gives
an ill-defined Born term. This Green's function
singularity takes the form of moving cuts (as a
function of momentum) with branch points at
+p~, +p„ for the region 0 «p' «p„' and at +p~,
+ P~ for the region P„' «P' «P'. These branch
cuts are shown in Fig. 10 in which we have drawn
in the integration contours (I and II) along which
the integral equation is solved. These contours
have been dsicussed in detail elsewhere"'" and
will not be repeated here.

The phase angle P has to be chosen so that no
singularities are crossed. The rotated contour
avoids the moving Green's function cut discussed
above, plus the poles and cut of the t matrix.
However, p has to be such that we cross no
potential singularities. For the particular type
of form factors we use here, we get the condition

while those from the Born term have been dis-
cussed by Amado and by Brayshaw for the equal
mass problem. The Born term singularities can
be divided into two classes. First, we have cuts
arising from potentials (or the form factors of the
potentials). Second, we have cuts coming from
the vanishing of the Green's function denominator-
the particle being on-shell, in the intermediate
states. This Green's function singularity is by
far the more troublesome one. In this section,
we shall summarize the Born term singularities
for this unequal mass problem. The analysis
follows much the same line as in the three-nucleon
problem and details will be omitted. A criterion
for choosing the phase angle p for the contour
rotation method is given for the particular Mongan
type form factor q /(q'+ P')I ~+'' ' used in the
present model calculations.

The Green's function appearing in Zr8„(p', L', I ',
P", L", I") has the general form

G(P', P, x;s) =(s-ap'-bpp'x- cp")-', (A12)

where a, 5, and c are positive constants given in
Table III for our present problem of two equal
mass particles (1, 2) and a third particle (3) with
mass A pn and x =P' ~ P ~.

The Green's function denominator vanishes when

I
pn

l
pm

FIG. 9. The Born term singularity from the propaga-
tor. p' =(s/c) p' =[s/(c-b /~)]"' p"={s/a)~
p" = [s/(a -b 2/4c)]~

P P' 2o. 4+ I q 71
tan(I) & inf pi I pl I pl l Q pl

(A14)

where (a, P), (g, j3) are the nucleon-nucleon and
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nucleon-core potential parameters, respectively,
and A is the number of nucleons in the core. As
we notice, the angle p is severely limited as we
go up in energy, an obvious disadvantage of the
method. New techniques have been de.veloped
in the last few years including (a) solution of the
Faddeev equations on the real axis" and (b) a
variational method. " The latter looks especially
promising.

%, =%, +R +Pc, (Bl)

5 k 1~k I'k S~k '
0 1 + 2 + 3

2m 2m 2m 2mA (B2)

binding energy of the struck proton. The breakup
cross section is symmetric around —,'(E, —Es}

From momentum and energy conservation we
have

APPENDIX 8 KINEMATICS QF THE ENERGY
SHARING GEOMETRY IN (p, 2p)

In the energy sharing geometry, the protons
(1, 2) are detected at equal lab angles 8 from the
incident beam direction. The angle 8 is chosen
such that if the two protons emerge with equal
energies in the lab, the residual nucleus (mass
Am) is at rest (in the lab). The doubly differential
breakup cross section (do/dQ, dA, dE,} is mea-
sured as a function of E„ the energy of one of
the emerging protons. As E, ranges from 0 to
(E, —Es), E, decreases from (E,—Es) to 0. Here
Eo is the lab bombarding energy and —E~ is the

where k, is the lab momentum of the incident
proton, %, and rc, are the lab momenta of protons
1 and 2, and K, is the recoil momentum of the
residual nucleus. From (Bl}and (B2) we can
infer the values of 8. The result can be easily
seen to be

k.
J 2[(E,—E,)~/a'] "' (Bs)

Given E, and E, (hence k, and k,) and 8, we can
determine k, , k, , and {{) using (B1) and (B2). 8
is the angle which the recoil momentum of the
residual nucleus makes with the incident direction.

The results are

1
k, =

A 1 k, cos8- k, cos28+ (k, cos8 —k, cos28)'

2A(A+1)pg A-1 A+1 2
(B4)

k, = (k 0' +k, ' +k, ' —2k+, cos 8 —2ko k, cos 8 + 2k,k, cos2 8)'i',

k, —{k,+0,}cos8

)ks Brooch cuts

'iIrn p

Having obtained these lab kinematics, we can
transform into the c.m. frame in which our three-
body calculations are carried out. Let P& be the
c.m. counterpart of k, (i = 1, 2, 3) and P be the c.m.
momentum of incident proton. W'e find

A+j.
A+2

p
(x= l)

p
{X=-l}

p,
"(X= I )

Irn p"

p" (X=-l)
U

Re p"

2k+, y 2 1/2

P~ ~~ A+2 cos6) + A+2 2

p 2 2kp k2 AQ g/2
A +2 (A+2)'

(B8)

(BQ)

-p"(x=x

pl&(X-l) (X=X)
c

p"{x=-x) p" (x=- l)

(x x)

Bronc h
cuts

ps' = ks' —
2 koks cos8 + '2), . (B10)

The angles tII)& that P,' makes with the z axis are
FIG. 10. The moving cuts in the Born term and the

integration contours.
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found to be

Q~ =cos

Q2 =cos

$3 = cos

k, cos8- k~/(A +2)
Pl

k, cosa -k,/(A+2)
P2

k,cosa -Ak, /(A +2}
P3

(811)

(812}

(813)

Finally we need the q,"s corresponding to the
relative momentum of pair i in the c.m. frame.
This we get using the on-shell condition

PI 2 qI 2

2' 2p, )

where s is the c.m. energy. The results are

(814)

2A ms 4+2
A+1 5' 2(A+1)

ms x+2
A+1 lI' 2(A+I) ~'

:= ''-""p

(815)

(816)

(817)

APPENDIX C: CORE APPROXIMATION EXAMINED

IN AN EXACT FOUR-BODY FRAMEWORK

Consider the four-particle problem of particle 1
incident on a bound state of 2, 3, and 4. We shall
arrange the exact four-body Sloan equations" such
that the "core approximation" of trea, ting the target
as core (4, 3) plus nucleon (2) is manifest. Such an
approximation reduces the exact four-body prob-
lem into an approximate three-body one —the mini-
mal problem we have to handle if we want to treat
three-body final states. A comparison between the
core-approximated and the exact result will reveal
the nature of the approximation and serve as a
guide to the core approximation in a general N-
body problem. As we shall see it also lends itself
to a systematic correction scheme to the core
approximation.

We start with the Sloan equations which are
four-body analogs to the AGS equations. These
Sloan equations only connect two-body channels—
many-body channels are expressed only in terms
of two-body ones. As Sloan has pointed out, these
two-body channels are crucial since any iteration
of the internal connected scatterings in two differ-
ent two-body channels become connected. (This is
not true for the three and four particle channels. )
The Sloan equations have simple inhomogeneous
terms and require as input sums of internal con-
nected scatterings in the seven two-body chan-
nels —two- and three-body t matrices off the ener-
gy shell. We shall briefly review the channels in

+Q W(~G U~i+OQ W(, GOU, ~, (C2)

(C3)Uog okGO +A/ obGO bj '
A b

Denoting Ho+ V' as Ho and eliminating V,&
from

(C2}via (C3), we get formally

U(i = (1 —5)~)(s —Ho)+ Q T)~Go Uq~, (C4)

the four-body problem. These channels are of
four kinds:

(a) Channels (i) —the fth particle is free and the
other three particles are bound. There are four
channels of this kind, namely 1, 2, 3, and 4. .(b)
Channels (ij)(kl)—the (ij) pair is bound and
the (kl) pair is bound. There are three channels,
namely (12)(34), (13)(24), and (14)(23). Sets (a)
and (b) are the seven two-body channels and they
play a central role in the four-body problem. (c)
Channels (ij)—(Ij) is bound and the other two par-
ticles are free. These include (12), (13), (14),
(23), (24), and (34)—six in all. (d) Channel 0
where all four particles are free. There are 14
channels in all.

The Sloan equations are

Us„=(1 —5s )(s —Ho —Vs~)+Q Ws GDU „
(C1)

The indices n, P run over the 14 channels while 0
runs over the seven two-body channels. The U's
are the usual transition operators. H, is the kinet-
ic energy operator and 6, is the free Green's func-
tion. Ws is the sum of all connected internal scat-
terings in the two-body channel cr that must not
end in an interaction internal to channel p, but it
can start with any pair interaction. For example,
in S~ only V» is internal to channels 1 and 4. Ac-
cordingly Spy cannot end in V». It can end in V,4
or V~. (In particular, W„has no restriction on
the final interaction and represents all internal
connected scatterings in channel cr. Moreover,
W«=0. ) Vs" is the pair interaction common to
both channels a and p. (In the three-body prob-
lem, this is zero. ) The fact that interaction can
be common to two different channels is an essen-
tial complication of the N ~ 4 problem.

In conjunction with the core approximation let us
assume that 3 and 4 are bound in an inert core. Of
the seven two-body channels listed under (a) and
(b} above, only three of them are allowed. They
are 1, 2, (12}, (34). We refer to them as channels
i, j, and k while the forbidden channels are re-
ferred to as a, 5, c, and d. We can write (Cl) in
two sets:

U(~ = (1 —5(~}(s—Ho —V'~)
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where

T,~
= Wi~+ Q W„GO(l —WGO), „'W~~.

a, a

%'e note that

p I i2
34 &

yl, (I2) (34) y34 &

y2 i(») (34) —y34 ~

(C5)

(C6)

manner by choosing a nucleon-core interaction
that produces the correct reaction cross section
(this will entail a complex potential) and which
gives the correct pickup behavior (in the backward
direction) in nucleon-core elastic scattering. In
any case (C10) provides guidance for systemati-
cally correcting the core approximation.

APPENDIX D: PADK APPROXIMANT

This tells us that Bp ls simply the free Hamiltonian
for the case where we have (34) always bound as a
core. Moreover, we note that

W]I = T2c i 41,

5&2 = TIc S

Wi (,2)(34)
= T,2 iii(12)(34).

where T„and T„stand for the one-core and two-
core interaction, respectively. From (C4)-(C'l),
the core approximation is apparent. In the core
approximation of the present four-body problem,
we have the AGS equation

where T, are the nucleon-nucleon and nucleon-
core t matrices that we input into the problem. By
comparing (C4) with (C8) we see clearly that the
core approximation consists of the approximation

(C9)

in (C5}.
Formally expanding (C5) we can examine what

kind of diagrams are omitted by the core approxi-
mation. Doing so, we get

T,a=Win++ Wi. GOWw+ Q Wi, GOW. &GOW~a'''

Consider the integral equation

X =8+AKX, (Dl)

where B is the Born term and A, is the complex
coupling constant. It has the formal iterated solu-
tion

X=8+ (AK)B+ (XK)'8+ ~ ~ ~ . (D2)

The above series may or may not converge, de-
pending on the magnitude of the largest eigenvalue
of the kernel K. If it exceeds unity„ the series di-
verges. In such cases, we may use the method of
Pade approximants" to extract the solution Xfrom
the terms in various orders of A. .

The [n, ii] Pads approximant for X is the ratio of
two nth degree polynomials in A. so constructed that
its Taylor expansion agrees with the iterated solu-
tions for Xup to order A.'". Thus it has the general
form

a +a X++'+' +agX"
n, n= '

1+5,X+bp'+ ~ ~ + b~"
It is clear that if X(A. ) is meromorphic in A, (D3)
can be a very good representation. However, (D3)
can also approximate cuts. ~

The convergence properties of the Pade approxi-
mant are not well known. However, a theorem by
Chisolm" justifies our use of it in the three-body
problem. Chisolm shows that the exact solution of

(C10)

where we notice that the core approximation ig-
nores those terms which involve the polarization
of the core, and all exchange processes of j. and 2

with the core nucleons 3 and 4. To illustrate, con-
sider the first order correction to T»,

Ai! 3 J'

4

(b)

lhl X l)I'j
4 ~ ~ 1

nT2, = Q W2, GOW„.
a

Diagrammatically some of the correction terms
are shown in Fig. 11. (Time runs from left to
right. ) Diagrams (a) and (b) represent exchange
of the projectile nucleon (1}with the core nucleons
(3, 4). Diagrams (c) and (d} represent pickup of
one of the core nucleons by the projectile.

We see that these exchange and breakup effects
can be partially included in a phenomenological

{c)
1

4

FIG. 11. Some contributions violating the inert core
assumption.
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a nonhomogeneous linear integral equation with a
kernel K of finite rank is given by forming the

[n, n] Pads from the first [2n+ I] terms of the per-
turbation series solution. It follows that if the
kernel is compact, the solution is lim„„[n, n].
Baker" has given explicit formula for [n, n] given
knowledge of the perturbation (D2). It is, denoting
the term of order A" in (D2) as g„,

gee e ~

ticular, for our present study, (D2) is the
Faddeev-%'atson MSS with go as the impulse ap-
proximation, g, the double scattering contribution,

g, the triple scattering contribution, and so on.
Expanding the determinants in (D4) along the

bottom row and setting A, =1 for simplicity, we get

Zo~ni+(g'0+8'P n a+ ' ' '+ ( go+ gi + ' ' '+g n) ~N. n+ i[tl, 8]=

gp"
[n, ]=

g2n
e

( pn-1+g yn) Qg(P.

g2 ~ ~ ~

(D4)

where

M . =(-IP+' =Sj

g 1 g2 Rj-1 g j+I gn+1

gg+ ]~ ~ ~ gn gn+I' ' ' Pn+j-2 g'gg+ j ' '
g2n

The physical solution is the case A, =1. In par-

(D6)

Notice that (D6) is independent of go. From (D5) it

is clear that

(D7)

We observe an interesting feature in (Dv) above.
The [n, n] Pads approximant for the scattering
amplitude can be expressed as the sum of the im-
pulse approximation g, and a correction term
coming only from the multiple scattering contribu-
tions. This enables us to parametrize the scat-
tering amplitude X as foQows:

X= lim [n, n] =g, + lim f„(g„g„~~ ~ g,„)
(D6)

=go+ ~

The function f is dependent on energy and on the

momenta of the emerging protons in the breakup
process. Depending on the geometry of the experi-
ment, the function f may or may not have strong
variations. For example, in the energy sharing
geometry the function f does not vary much with
the variation in energy of the emerging proton.
In the cases where the variation of f is small,
we can parametrize the multiple scattering ef-
fects for the whole angular correlation curve by
two real constants, the real and imaginary part
of f. Such an attempt has been made by Rogers
et al. ,

39 in analyzing their d(p, 2p)n data.
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