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A nonrelativistic potential model calculation of proton-proton bremsstrahlung is carried
out in which the Coulomb potential as well as double scattering are treated exactly. The con-
ventional electromagnetic current operator for point protons with charge and magnetic mo-
ment is used. Cross sections differential with respect to the photon angle are calculated in

the symmetric, coplanar Harvard geometry for proton angles of 10, 20, and 30', at labora-
tory energies of 5, 20, 42, 62, 99, and 158 MeV, using the Hamada-Johnston potential.
Cross sections integrated over the photon angle are presented over a wider range of angles.
Including the Coulomb potential lowers the cross section by amounts which are comparable
with the errors of the most accurate experiments, and at proton angles smaller than any of
the existing experiments the Coulomb effect becomes quite large. Cross sections for the

asymmetric Orsay experiment are also computed, including the effect of noncoplanarity, and

there is a large discrepancy at some of the experimental points.

NUCLEAR REACTIONS P {|I}Pp); calculated 0{8&) for lab proton energies 5 to
158 MeV, including Coulomb effects.

I. INTRODUCTION

Nucleon-nucleon bremsstrahlung has been pro-
posed' as a method for choosing between different
potentials which fit the elastic scattering data
equally well. (The reason one wants a potential
is the great simplification it provides for cal-
culations of nuclear properties and reactions. )
Bremsstrahlung appears comparatively clean as
it involves only a single pair of nucleons and a
photon, whose interaction with the nucleons can
be treated to lowest order. If the electromagnetic
Hamiltonian is taken as the conventional non-

relativistic sum of terms due to the charges and

(total} magnetic moments of two point protons,
then one is faced with a straightforward but lengthy
computational program as outlined in Ref. 1. A

nucleon-nucleon potential is assumed, the Schro-
dinger equation is solved for the initial and final
strongly interacting scattering wave functions,
and then the bremsstrahlung matrix element is
calculated by treating the electromagnetic inter-

action to first order. This is repeated for other
potentials and their bremsstrahlung predictions
are compared with experiment, thereby picking
out the best potential. This program has been
carried out to some extent but there are compli-
cations both of a fundamental and a practical
nature.

There are at least two reasons why the electro-
magnetic interaction described above cannot be
exact. The first is that the charge and current
densities which have been used, p, (x) and l, (x),
do not form the components of a four-vector under
Lorentz transformations. This is a consequence
of the fact that they were obtained from the total
energy operator and the nonrelativistic kinetic
energy operator in the Schrodinger equation by
making the "minimal" replacement i s jsi- i s/st

Q, e~A-'(r~), and iV, - —-i V, —e~A(r, ). A' and
A are the time and space components of the vector
potential. The charge and current densities can
be identified from the electromagnetic interaction
generated in this way, and they are just the famil-

iar expressions

(g& (p, (x)~(i);) =e, I d r~g'(x, r, )(|);(x,r2)+e, j, d r,gz(r„x}(i),(r„x),
~J

(g) ~ f,(x) ~g&) = . j) d'r, )i)z(x, r, )V, (i), (x, r, )+ ' . d'r, (i)z(r„x)V (i),.(r„x)

~ u, u ). X re�(xr)r()(x, ,) ~ uuu )*fX' u)i ( „x)u('( „x).
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e;, m„and p, , are the charge, mass, and total

magnetic moment of the ith particle, and pVX
-=pVX —XVp. The terms involving the magnetic
moments which have been included are the stan-
dard nonrelativistic expressions. The wave func-
tions are understood to contain Pauli spinors for
the two particles.

While relativistic corrections to the magnetic
moment terms in Eg. (1}have been written down
and included in some bremsstrahlung calculations, '
there is no clear cut procedure for correcting
the terms involving the charge. This is due to
the fact that the next term in the expansion of
[M' —(&-ieA}']"', namely (V-ieA)'/8M', com-
pletely changes the character of the Schrodinger
equation from second order to fourth order. ' Al-
though the effect of including the terms involving
(A &}V'/M' has been found4 to be less than 1.5%
at 200 MeV, the uncertainty as to the correct pro-
cedure to be followed does not encourage us to
try to apply relativistic corrections to the current
in Ecl. (1) at any significantly higher energy. In
particular, if bremsstrahlung experiments are to
be performed at meson factory energies, we would
want to start from some dynamical theory which
is covariant.

It should be mentioned that there does exist a
calculation which is fully relativistic, ' but in
which the strong interaction is treated only to
lowest order. No further consideration of rela-
tivistic queptions will be given in the present paper,

A second shortcoming of the electromagnetic
current in Eg. (1) is that it is not conserved if the
potential in the Schr5dinger equation has any non-
loeality. ' Since all realistic potentials describing
the nucleon-nucleon system do have nonlocal
terms, corrections for their presence have to
be made. This will be considered further in a
future paper where the extent of the ambiguity
in the corrections is examined.

The calculations which are reported in this paper
use the current given in Eq. (1), with wave func-
tions found by solving the Schrodinger equation
with the Hamada-Johnston (HJ) potential. ' Com-
parisons with the results from another potential
will be given in a future paper. It was natural
to divide up the work this way because the second
potential —which produces exactly the same elastic
scattering as the HJ potential —has considerably
more nonlocality than the HJ potential, and re-
quires more consideration of hom the electro-
magnetic current should be modified.

The primary difference between the present pa-
per and previous bremsstrahlung calculations is
that we include the Coulomb potential along with the
HJ potential when calculating the wave functions.
Approximate treatments of the Coulomb effect by

other authors will be discussed at the end of Sec.
III. For small proton angles the effect of includ-
ing the Coulomb potential becomes very dramatic
and this will be shown in the graphs. We also in-
clude the double scattering term, which so far
has been calculated only by Bromn.

Details of the method of calculation are given
in See. II. The Coulorab effect is discussed in
Sec. III, and the results are shown in Sec. IV.
Lengthy equations have been relegated to an Ap-
pendix at the end of this paper. We use units in
which k=c =1.

II. CALCULATION OF THE BREMSSTRAHLUNG
CROSS SECTION

Labeling all particles by their momenta, we are
considering the process

p +p ~ p +p +k

The Hamiltonian is

H =Ho +Ho +V+H',

whereH", is the sum of the kinetic energies of the
two nucleons and H, " is the free Hamiltonian for
the electromagnetic field. V is the (strong) inter-
action between the tmo nucleons and H ' describes
the interaction between the nucleons and the elec-
tromagnetic field. This last terra contains a small
coupling constant and will be treated to first order.
The bremsstrahlung matrix eleraent is written

r =(Z Z Z'Z'k)"'(y& &u, e (H'~ tj&'-&&,

where (I', e& is an eigenstate of Has" describing a
photon of momentum k and polarization e. The
E& and E,' are the initial and final total energies
of the nucleons. The state ( g,'"& is a solution
of the Schrodinger equation

(4)

which contains a plane mave of unit amplitude with
the asymptotic momenta, plus an outgoing scat-
tered wave.

~ gz ') is written similarly with an

incoming scattered wave. H' can be written in
terms of the charge and current densities p(x)
and j(x) as

H ' = d'a[A'(x)p(x) —A(x) j(x)]

and taking the part of the matrix element in Eq.
(3) which refers to the photon gives

2m l/2

T =(E E E'E'k)'
1 2, 1

d'xe '"'"
q~(

' ~'px -Z. j x) q,
(')
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In this paper the charge and current densities
are taken to be p, (x) and), (x) defined in Eq. (1).
The limitations of this procedure have already
been touched upon in the Introduction, and will
not be taken up again until a future paper. We

work in a gauge with d'=0 and Z k=0. Writing
each wave function as the product of a plane wave
for the center of mass coordinate with total mo-
mentum P& z times a function of the relative co-
ordinate g, z(r), and carrying out the integration

over x in Eq. (6) gives, for equal mass particles

r =-(2v)'6")(P, -P,-k)Z M,

2m 1M-=(E E E'E'I )"' — d'r . (e,e ' "" e,e-' "")ly,*(r)V,&»(r)l

+i y~*(r)(e '" ' "p,k+7, +e'" "(mp, kyar, )y, (r)

in writing Kq. (7) we have dropped a term proportional to (p(+p~) by evaluating M in the center of mass
system in which this vector is in the direction k, and making use of the transversality condition. Special-
izing to two protons with p, =2.792e/2»n, and again using the transversality condition leads to the final ex-
pression

(t r
M = (E,E,E,'E,'k)"* — — d'r -2 sin gq (r}V„g, (r)

+ —»,"(r) icos
q

Lr(», +»,) ~ sia
q

"ice(», -ir.)»;(»)}, (8)

where a =2.792.
The differential cross section for unpolarized initial particles, summed over the polarizations of all the

final particles is

der = ——g g —(M* M —}M rs/k}')p,24. . . 8 (9)

where the invariant Qux 8 and the invariant density of states p are expressed in terms of laboratory vari-
ables as 8 =m }p,[:

p» 'pi" (6p&/6 e» )
P (2v)8 Ei

[ ((Eii+k)(+E(~(, (~( ~
) }

'7 1 2 ' (10)

The summations in Eq. (9) are over the initial and
final total spine (of the protons) and components
along the beam axis. The solid angles in Eq. (10)
refer to the two protons, and &z is the polar angle
of the photon.

The initial and final wave functions must be anti-
symmetrized in the spin and space coordinates.
Writing the spatial parts of the initial and final
relative wave functions at infinity as exp(ip, & r)
+ exp(-i p, & r), the factor of —,

' in Kq. (9) corrects
for the normalization of the initial state.

m. TREATMENT OF THE COULOMB POTENTIAL

In high angular momentum states where the nu-
clear potential is unimportant, the proton-proton
wave function becomes a Coulomb function, cp',
so we write P =(p' +(g —(p') for both the initial and
final states, and the matrix element becomes a

sum of four terms

&61ff» lt(&=&my IH-IW(&+&V~ IH Ie(-m(&

+ &4y
—Vy IH»»LI Pt&

where

+&6-A IH. I A -et&,

H =- d'xZ jiexp-ik x .

The first term is pure Coulomb bremsstrahlung,
the second and third terms are called single nucle-
ar scattering, and the last term is double nuclear
scattering. The pure Coulomb bremsstrahlung
matrix element can be evaluated analytically, ~

and is very small over the entire range of energies
and angles reported on, of the order of a few nb/
sr'. One could attempt to evaluate the single seat-
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tering terms in analogy to their treatment in the
absence of the Coulomb potentia, :: first write

g —y' =6' t'y' where 6' is the pure Coulomb
Green's function and f' is the nuclear t matrix
defined with respect to Coulomb functions-the
on-shell values of t' are measured in elastic scat-
tering-and then insert complete sets of pure Cou-
lomb states into the bremsstrahlung matrix ele-
ment. In the problem without Coulomb potential
this procedure leads to a direct evaluation of each
single scattering matrix element as an off-shell
t matrix &energy denominator x electromagnetic
vertex. With Coulomb functions, however, there
would be an integration over the momenta of the
complete set of states already in the single scat-
tering terms, and a double integration if the same
technique were applied to the double scattering
term.

For this reason we decided to evaluate the single
and double scattering terms directly in coordinate
space. Each g in Eq. (8) is expanded in states of
definite angular momentum which are obtained by
solving the partial wave Schr5dinger equation with
an assumed nuclear potential plus Coulomb poten-
tial. For energies up to 62 MeV we permitted the
nuclear potential to act in states of angular mo-
mentum up to j =3, and for higher energies
j =5. Even if g-Q' vanishes for j&j, there
are still single scattering contributions of the
form

spond to magnetic dipole radiation plus portions
of the electric dipole and electric quadrupole.
Above 62 MeV we kept l = 2 and 3, which extends
through magnetic octupole and portions of the elec-
tric octupole and electric hexadecapole. ) At 158
Mev we included states in P' through j = 9 (which

is the maximum value that can be connected to

j = 5 with l =1}and we have verified that all terms
higher than 1=3 or j =9 make negligible contribu-
tions to the matrix element. Table I illustrates
this at 6) =10', e~ =40'. At 99 MeV we omitted the

states from j = 6 to 9; they contribute less than 3%

to the cross section.
After the angular integration in Eg. (8} is carried

out [for just the final three terms in Eg. (11); the

first term is done analytically] there remain radial
integrals of the form

J
Qf x )f g kF gj

0
where each u is either a Coulomb function or the
difference of an exact wave function and a Coulomb
function, for definite angular momentum. There
are two additional integrals arising from the term
in Eq. (8) with the gradient operator; these in-
volve du/dr or an extra factor of r '. All these
integrals were evaluated numerically up to a large
radius A, and analytically beyond. Although the
I's become linear combinations of regular and
irregular Coulomb functions once the nuclear po-
tential becomes negligible, we were not able to
end the numerical integration there, simply be-

which are limited, however, since M receives its
dominant contribution from the lowest orbital angu-
lar momentum portions of cos—,'R r and sin —,

'
R r,

1 =0 and 1, respectively. (For energies up to 62

MeV we retained just these 1 values which corre-

TABLE I. Breakdown of the contributions to the p-p
bremsstrahlung cross section at 158' MeV, 8 =10', 8&
=40' by angular momenta for the Coulomb function Q~,
and also for the photon, according to Eqs. (8)-{11).Since
the nuclear potentf. al only acted in states up to j~~ = 5,
the double scattering term terminates there. The first
column, j = 0-5, includes single and double scattering,
and shows the changes in the cross section due to the
addition of more angular momenta for the photon. The
second column shows the changes in the cross section
due to four additional angular momenta in the Coulonb
functions. AQ contributions underlined were included in
the 15S MeV results presented in this paper.
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l =0, 1
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-0.013
—0.001

Single scattering
j=6-9 j&9

-0.025
0.001

e, =e, (deg)
FIG. 1. The maximum possible photon energy as a

function of the {common) angle of the two protons in the
coplanar symmetric geometry. The maximum occurs
when the photon goes forward. Curves are labeled by
the incident proton energy (in MeV). The insert in the
upper right corner illustrates the geometry.
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cause we did not have a general analytic expres-
sion for the indefinite integral of a product of
Coulomb (and Bessel) functions (and a power of
r). As a result we were forced to continue the
numerical integration out to much larger distances
where the asymptotic series for the Coulomb func-
tions becomes valid. A value of 8 approximately
equal to 200 fm was adopted. Tests of this pro-
cedure on known integrals of the same general
type gave excellent agreement with the exact
answers.

Marker and Signell" have carried out an approxi-
mate evaluation of the Coulomb effect on nucleon-
nucleon bremsstrahlung. Their starting point is
the conventional one in which all the Coulomb
functions in Eq. (11)are replaced by plane waves
(it is still a correct identity), and then the scat-
tered wave is expressed in terms of the free parti-
cle Green's function, P-q=G, kp, where t is the
t matrix due to the sum of the nuclear and Coulomb
potentials, t = (y ( V„+V, )

P'"). P'" is the exact
solution with both nuclear and Coulomb potentials
present. Marker and Signell make two approxi-
mations to evaluate f. (i) ln the term (y ( V„~g"')
they replace g'" by the solution of the problem in

which the Coulomb potential is absent; this should
be a good approximation if the energy is not too
small. (ii) Theterm(cp

~
V, (g"') (which they call

the Coulomb correction) is approximated by the
on-shel/ pure Coulomb scattering amplitude Bt
some energy intermediate between the initial and
final values. Since P"' has strong nuclear dis-
tortion in the low angular momentum states we
find it very surprising that this procedure gives
a good result. We judge that to be the case by
comparing the cross sections integrated over
photon angle in Hef. 10, with and without Coulomb
correction, to the cross sections calculated by us
(and shown in the next section).

As an example of the accuracy of the Marker-
Signell procedure, at 62 MeV with the protons at
30 in the harvard geometry, their approximate
treatment of the Coulomb effect lowers the cross
section by 0.24 pb/sr' (out of a total of 2.7 pb/sr').
In our exact calculation including the Coulomb ef-
fect lowers the cross section by 0.19 pb/sr~. Con-
sidering the uncertainty in the experimental num-

ber, +0.24 pb/sr, their treatment is adequate.
For other proton energies at this same angle the
conclusion is similar. Since they did not publish
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FIG. 2. The differential cross section for proton-pro-
ton bremsstrahlung vs photon angle in the symmetric
coplanar geometry. The top portion is for protons
emerging at 30'; middle portion 20'; and bottom portion
10'. The Hamada-Johnston potential is used, and the
solid curve includes Coulomb potential, the dashed curve
omits it. Both curves include double scattering. Incident
proton energy is 5 MeV.
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FIG. 3. See caption to Fig. 2. Incident proton energy
is 20 MeV. Data are from Ref. 15 and include some ef-
fect of noncoplanarity.
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results for proton angles less than 25', where the
Coulomb effect becomes larger, we cannot make
any comparison there. These snmll a~les, where
the P-p system is far off-shell, are the physically
interesting ones.

Mcouire" has performed a calculation at 52 MeV
for proton angles of 9, with a treatment of the
Coulomb effect sim&&r to Marker and Signell, but
a very different prescription for calculating the
I matrix (at this far nff-shell point). McGuir'e

found that the Coulomb effect increases the cross
section by an order of magnitude or more. This
is in violent disagreement with our results shown
in the next section.

IV. RESULTS

Almost all the calculations reported on in this
paper were performed for the symmetric, co-
planar, Harvard geometry in which the two pro-
tons are detected at equal ~~les to the beam and
making a pl.ane with the beam. Measurement of
the energies of both protons overdetermines the
event and yields the energy and angle of the photon.

Figure 1 shows the maximum possible photon
energy as a function of the common polar angle

I )
I I I

)
I I I [ I

E=42 MIV
4 ~

8 of the two protons, for several values of the
beam energy. (This maximum occurs when the
photon goes forward and the two protons have
equal energies. ) Since the main reason for per-
forming bremsstrahlung experiments is to learn
about the off-shell behavior of the nucleon-nucleon
t matrix, one wants to produce photons of the high-
est possible energy, and this requires proton de-
tectors at the smallest possible angles. Most of
the experiments have been performed at 8 = 30',
and calculations at this angle are rather insensi-
tjve to the choice of potential.

Since the counters often subtend a significant
angle out of the plane, it is necessary to calculate
the variation of the theoretical cross section with
azimuthal angle in order to compare with experi-
mental numbers. Such calculations have been per-
formed by Drechsel and Maximon" and we have
confirmed their results for a couple of energies.
(For the Orsay experiment at 156 MeV, where the
proton angles are small and asymmetric, we have
performed our own out-of-plane calculations. )
Some authors have used the Drechsel and Maximon
calculations to extract coplanar cross sections
from their data. Marker and SigneQ' tabulated
coplanar cross sections do/dQ, dQ„ integrated
over the photon angle, at 8=30 and 35', and Hal-

8=30 E~62 MeV
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FIG. 4. See caption to Fig. 2. Incident proton energy
is 42 MeV. Pata are from O'. V. Jovanovtch et el. I.Phys.
Bev. Lett. 26, 2VV (1971)]and includes some effect of
none oplanarity.

O.oo 80
8& {deg)

)20 160

FIG. 5. See caption to Fig. 2. Incident proton energy
is 62 MeV. Data are from Ref. 16 and includes some ef-
fect of noncoplanarity.
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bert'4 has brought this up to date with all the data
available as of 1971, including nonsymmetric
geometries. %e have relied heavily on Halbert's
excellent review article, and have indicated with
arrows on Fig. 9 those points which he says should
be regarded as upper limits rather than true cross
sections.

On Figs. 2 to 7 we show photon angular distribu-
tions da/dQ, dQ, de„ for proton angles 8= 10, 20,
and 30'. The curves a.re drawn for the coplanar
symmetric case. Since the data points which are
shown contain noncoplanar contributions as well
as the effect of binning, they cannot be directly
compared to the curves and are shown just for
qualitative purposes. Theoretical histograms
which include the effect of noncoplanarity at 20
and 65 MeV are shown in Befs. 15 and 16. The
158 MeV data" is nearly coplanar and the required
corrections should be very small.

Cross sections integrated over photon angle,
do/dQ, dQ„are shown on Figs. 8 and 9. As dis-
cussed above, these experimental values have
been corrected for noncoplanarity, and should be
compared directly to the calculated curves. There
is more data in the symmetric Harvaxd geometry

2.0—
8=30'

E=I58 MeV

at other energies and angles, "especially large
angles, where we have not performed calculations.
The agreement between the calculated integrated
cross sections and the measured values is fair,
with the greatest discrepancy occurring at 99 MeV,
35'. The unusual behavior of this point —which is
fairly close to the elastic region and less subject
to model dependence —has been noted before.

A look at Figs. 8 and 9 shows that the Coulomb
effect is as large as the error bars for a few ex-
perimental points. If an experiment were per-
formed near 150 MeV at angles less than 10'—
which would be very interesting for learning about
the potential —the Coulomb effect would be quite
important.

The figures also show the effect of omitting the
double scattering term (with no Coulomb potential).
This decreases the cross section for proton angles
of 30' and increases it for 10', with the largest
effect occurring when the photon is nearly forward

I

E =99 M@V

I.o— 10 —--

0.5—
0.5

Ch

lO 8=2o
I 0

8= 20'

0.5

o

b
1.5~

8= 10 0.5
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8=10'

l I I ~ I I I I
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8& (deg)

FIG. 6. See caption to FQ. 2. The dotted curves omit
double scattering as weH as the Coulomb potential. Inci-
dent proton energy is 99 MeV. l3ata are from F. Sannes,
J. Trischuk, and D. G. Stairs [Nucl. Phys. A146, 438
(1970)] and includes some effect of noncoplanarity.

1.0

0— I I I I I

0 20 40 60 80 100 120 140 160 180

ez {deg)

FIG. 7. See caption to Fig. 2. The dotted curves omit
double scattering as dwell as the Coulomb potential. Inci-
dent proton energy is 158 MeV. Data are from Ref. 17.
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or backward, At 158 MeV, 30, our result for the
size of the double scattering term is in good agree-
ment with Brown's" over the whole photon M@u-
lar distribution. Although this is the only pub-
lished result for double scattering in the sym-
metric geometry, we are also in excellent agree-
ment with an unpublished" result at E =158 MeV,
10', 8„=2.6', where the omission of double scat-
tering increases the cross section by 0.29 gb/sr'r.

The agreement for the actual magnitude of the
cross section at this energy is not quite as good. l2—

I t I
)

I ] I
f

I ) I
)

I
)

I

Table II shows a comparison of our calculations
without Coulomb potential at 158 MeV, 20', with
those in Ref. 8, taken from Fig. 11 of that paper.
%e do not understand the discrepancy at backward
photon angles. At 62 MeV, on the other hand, we
agree very well with Brown's cross sections.

A recent experiment performed at Orsay" at

l0— IO—

8

OJ

Cg
5

b

0 I I I I I I I I I I

0 20 40 60 80 IOO l 20 l40 l 60
E

l b (MV)

'o I

IO 20
8 {deg)

j

4O

FIG. 8. Cross section for proton-proton bremsstrah-
lung integrated over the angular distribution of the pho-
ton vs the proton angle in the symmetric coplanar geom-
etry. Curves are labeled with the energy of the incident
proton. The Hamada- Johnston potential is used, and the
solid curves include the Coulomb potential, dashed
curves omit it. Data are from these references: 11 MeV:
W. Vfolfle and R. Miiller, Jahresbericht 1970, Labora-
torium fur Kernphysik, Eidgenossische Technische
Hochschule, Zurich (unpublished), p. 26; A. M. Green,
private communication; 65 MeV: Ref. 16; 99 MeV:
F. Sannes, J. Trischuk, and D. G. Stairs, phys. Rev.
Lett. 21, 1474 (1968); Nucl. Phys. A146, 438 (1970);
158 MeV: Ref. 17.

FIG. 9. Cross section for proton-proton bremsstrah-
lung integrated over the angular distribution of the pho-
ton vs the energy of the incident proton in the symmetric
coplanar geometry. Curves are labeled with the angle of
the emerging protons. The Hamada-Johnston potential
is used, and the solid curves include the Coulomb poten-
tial, dashed curves omit it. All the data are at 30' ex-
cept for the one point marked 20'. The data at 11, 65,
99, and 158 MeV are from the references given in the
caption to Fig. 8. Other data are from these references:
3.5 MeV: E. A. SQverstein and K. G. Kibler, Phys. Rev.
Lett. 21, 922 (1968); 33.5 and 46 MeV: I. Slaus et al. ,
Phys. Rev. Lett. 17, 536 (1966); 42 MeV: J. V. Jovano-
vich et al. , Phys. Rev. Lett. 26, 277 (1971); 47.1 MeV:
D. L. Mason, M. L. Halbert, and L. C. Northcliffe, Phys.
Rev. 176, 1159 (1968); 48 MeV: R. E. Vfarner, Can. J.
Phys. 44, 1225 (1966); 64.4 MeV: D. O. Galde, M. L.
Halbert, C. A. Ludemann, and A. van der Woude, Phys.
Rev. Lett. 25, 1581 (1970); 65.0 MeV: Ref. 16. The
points with arrows on them are to be considered as up-
per limits, according to Ref. 14, which should be con-
sulted for other comments about the data.
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TABLE II. Comparison of our cross sections for sym-
metric cop1anar p-p bremsstrahlung at 158 MeV, 20,
with those calculated by Brown (Ref. 19). All numbers
are computed with the Hamada- Johnston potential and

without the Coulomb potential. Units are pb/sr r.

e,
(deg)

Brown
j~4

Present work
j(5

30
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FIG. 10. Differential cross sections for the 156 MeV

Orsay experiment, Refs. 20 and 22. Proton number 1 is
detected at 15 to the beam, and proton number 2 at the
four different angles shown. The curves are computed
with the Hamada- Johnston plus Coulomb potentials, for
three different values of the out-of-plane variable y
—= 2(180'+q2-y&): p =0' (coplanar), 4', and 6'. The
maximum experimental value of p is 4.8' at 82

——27', and
increases to 5.7' at 82 =18'.

156 MeV detects one proton at 8, =15' and the other
at e, =18, 21, 24, or 27' (on the other side of the
beam}. This is a region which is somewhat sensi-
tive to the potential. " To reduce background, the
photon was also detected in a range of angles in
the back hemisphere on the same side of the beam
as the 15' detector. . Brown" found agreement with
the data at the (15;18') point, but the calculations
and experiment diverge as 8, increases.

Since the detectors subtend a significant angle
out of the plane, we have computed noncoplanar
cross sections to see how this modified Brown's
results. A word of caution is in order. In Ref. 20
it is stated that "no corrections were needed for
noncoplanarity"; and also that "the maximum non-
coplanar angle y (in the notation of Drechsel and

Maximon) was 9.6'. . . ." If this latter statement

were correct, there would be a.. large correction
for noncoplanarity. [Indeed, with the exception of
the (15', 18'}point, a portion of the proton detec-
tors would have been beyond the kinematically
allowed region. This is due to the fact that the
photon detector reaches back to approximately
150; and the farther backward (or forward) the

photon goes, the more nearly the coplanar is the
event constrained to be. ] We have since learned"
that the number 9.6 refers to tzvo times the vari-
able y defined by Drechsel and Maximon, "

rp

= ~(180'+y, —y, ). As 8, decreases from 27 to
1S', rp, „, increases" from 4.S to 5.7'. (These
values are in reasonable agreement with what one
calculates from the statement in Ref. 20 that the
proton detectors subtend an angle at the target of
+1.5' in the vertical plane. )

Lacking detailed information about the efficiency
of the detectors as a function of angle, we simply
plot on Fig. 10 the cross sections calculated from
the Hamada-Johnston potential at y =0' (coplanar),
4', and 6'. Keeping in mind the fact that —as a
result of parity conservation and analyticity —the
cross section vs q is flat at q = 0, the coplanar
value will be emphasized when an actual integra-
tion over the detectors is carried out. Examina-
tion of Fig. 10 shows qualitatively that the effect
of noncoplanarity is to make the discrepancy be-
tween theory and experiment somewhat greater
than it was though to be when the coplanar cal-
culations were made. " The calculations shown
on Fig. 10 include the Coulomb potential. Omitting
it raises the cross sections by almost 5%.

If the true normalization were such as to raise
the data by the full uncertainty" of +12%, this
would reduce the discrepancy with the calculations,
but it would still be several standard deviations at
8, =24 and 27'. Before concluding that the Hamada-
Johnston potential is unable to fit this data, which
would be an extremely interesting result, it is
important to consider what corrections need to be
applied to the calculations. The ones which pertain
to the electromagnetic current will be taken up in
a second paper, but we would be surprised if they
shift the calculations by as much as 1 standard
deviation of the data.

Relativistic corrections have been calculated
by Celenza et a/. "for the conditions of this experi-
ment and they find" that these lower the coplanar
calculations at 8, = 27' by -5% at the small e„end
of the detector, and -12/p at the large 8& end. This
reduces the discrepancy but still leaves it large.
For example, at 8, =27', 8& =126.2', the theory
is off by 5 standard deviations. Even if the experi-
mental value is raised by 12% corresponding to
the normalization uncertainty, the discrepancy is
still more than 4 standard deviations.
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V. SUMMARY

The Coulomb effect in proton-proton bremsstrahlung calculations is not negligible for some of the exist-
ing experiments, and will be quite important if experiments are perforxned at very small proton angles.

If the large discrepancy between theory and experiment at 156 MeV persists when all corrections are
included, the Hamada-Johnston potential will be ruled out. It wiQ be interesting to see if any potential
can fit these data along with the elastic scattering data.
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In this Appendix, we have compiled the principal equations used in the calculation of proton-proton
bremsstrahlung discussed above. These equations have been separated into three groups: the first re-
lating to the calculation of the proton-proton scattering wave functions, the second displaying the partial
wave expansions of the four amplitudes which specify the bremsstrahlung process, and the third giving the
expression for the bremsstrahlung cross section in terms of these amplitudes. Some of these relations
may be found in other articles or texts, but are repeated here for the sake of completeness and explicitness.

A. Proton-proton scattering equations

The partial wave expansions for the singlet even and triplet odd two-proton wave functions used in the
present calculation are, respectively,

((,(5, r)=—Q Q ''e" "",(pr)(; ( )r,"„(()x,
m= -f

(Al)

)+1 1

l "=tj-ll p=-1
odd

~ ~

~

~

1 j p
m m m+m, m+m —p g m+m

Here, p is the relative momentu~f the two protons in their center of mass system, m, is the z component
of the triplet spin, |4I), and 5, are the pure Coulomb and singlet even phase shifts for scattering in angular
momentum state l, and X, and X, „are the singlet spin function and the triplet spin function with z projec-
tion of p. , Clebsch-Gordan coefficients for the coupling of angular momenta t, and l, to angular momentum

j are represented by

A factor of 1/&2, related to the antisymmetrization, has been omitted from these functions.
The singlet even functions u, (Pr) and the triplet odd functions s(0»(pr) and a(«(pr) satisfy the uncoupled

wave equation

d2 l(l+1} me2, , m—
~a +P' ft'(r)-p }'(".i f('(p r) =0 (A3)

where m is the proton mass, V, , (r) is the appropriate nuclear potential, and index s =0, 1 distinguishes
singlet from triplet states. The remaining triplet functions are solutions of the coupled equations

d l (l"+2) me'
~

m
~ ~

m
a +& (e'( (- (P» pl'('&, (-(r)-(e( (- (p, r)-p. &,'.l„,-(r}s, , „(p,r) =0,

~ ~ ~
~dr* 2 ~ +p ~(.("+2(p~r} a 1'(" ("+2( }"( ("(P~r) — 1'(",,(-+2(r)(, (-+, (P, r) =0.
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The index I of functions gggg g (pr) labels the two distinct pairs of solutions obtained from Eqs. (A4).
Solutions of FAI. (A3) are normalized to the asymptotic form

f, '(r)-cos5g sin(Ag +egg}+sin5'g cos(&g +4{g),

where

hr
~r =~ —qln2 Pv ——

2

and g is given by the Breit relativistic prescription"
e'

@ g 1
(gggc2}'ov„{mog +R{oogg)

If the asymptotic form of the solutions of Elis. (A4) are written as

gggg g Il(pr) Cg g
tt sin(Ag + pg t&}+Dg

g
~~ cos(Ag ~& + 4{g +)

and

g, g "+ (2P} ~ gg+2, S (~g "+2+4 g "+2)+Dg,g"+2C S(~g "+2+41 '+2}o

proper normalization is achieved in E{I.(A2) by taking Qg ', " to be

Q
1 e g{2g(c gD} 1 e g{2g

For the uncoupled triplet states of Eq. (A2)
&s'

Q~ ~n =Q~ ~22+

8, Partial wave expansion of the bremsstrahluna transition amplitudes

The ppy transition amplitude in the center of mass system has been given by Egl. (8). In order to carry
out the spatial integrations indicated there, partial wave expansions of the initial and final two-proton state
functions and of the emitted photon state have been used. The expansions for the proton wave functions
have already been given by Elis. (Al) and (A2) above. For the photon functions, we have used

oio =owl' I i' 'j, (
—)v, „{o'lY",„{P{ (A5a)

N=-L
odd

ft r krcos =4gg Q Q i j~ —F2 „(k)F~„(r) (A5b)

rather than a more complicated multipole expansion. Four distinct amplitudes are listed, depending on
whether the initial and final protons are in a singlet or triplet state. Insertion of the various partial wave
expansions into the amplitude integral

-M Tj& = d'rf& r 2sin V + — icos o+o, k+sin o, -o, k f& r2 ' 2

gives the following expressions upon performance of the angular integrations:
(1) Singlet to singlet

(A6)

8(4gg)'

s= -1 l fft= -1 N=-I lg J=IE -1(1
CVOll

{g'&, 1Z) fig 1 Z'I (& Z Il (& Zf, '}

"{""{(go+{)'"""' ' '""'"'"""'"'~'"{o'{'"{{' o o og {o ) (o o o, { Mg

gf Ng, (pr) (I, -d)(l, +Z + I) gggg(pr)~

~drggg p'r)j& — ' +
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(2) singlet to triplet

T, ,(~)="- ", P e,*xRP
s =-1 1 =1 j-ll

odd

Z Z
1'=1j-11 r "=lf-11 L

odd odd

2~t + 1 I/2
x g g (2},+1) zzz"z"-'(q - zs'"") s"" 'z" 'z '1, .(p')}z (})

2L, +1 z

N= -L

(&1, ~(
(mm m+mfj (m+mf —s s m+mfj (0 0 0) (m+ f—

x t &zs', -, (p'r)jz, —
zz) (pz');

a'r
(A8)

(2) trip]et to singlet
I

a=-I m= 1 L g=-L
even odd

~1 0 ~ &=1j~-11
odd

'*""ZZ ZZ Z
f I+ 1 +1

(2l +1)(2l,+1)(2l,'+1) '".zz, z, z, z (y, z, ) q
-z ze, -) + (" )

t I=
1 f 1-11 i "=

1 j1-11 +

(}1,' L,)(l L' L, )(/, 1 j, )( /,' 1j,)
xl(00 0)(mm, -s M)(0m, m, j(m, —s sm, )

a'y
x dr zzz(p'r)j z,

—zs', }.z. (pr);
40 ~I I

(A9)

(4) triplet to triplet

T»(mf, m, ) =R, ,(mf, mz)+z —Rz z(mf m» ), (A10)

where the gradient interaction gives

8(4s)z z w

R, ,(m„m, )=, P e„'g
)(=-I j=o 1 =1j-ll

odd

k z
l '=1 j-11 l "--1j-11 I

old odd

l 1= 1 j I 11 & I= 1 f l-ll
odd old

l I'=1 jl-ll
odd

l'=l l '-l I ~= -I
I

(2l'+1 2l, +1)(2i,'+1)

(11 j )( i 1 j )(i 1 j, q
x!

(m mf m +mfa (m +mf —s s m +m„j (0 m

»)(1, »l( 1, » )(1 ~ L') (
(m, —s s mzf LO 00)(,m, —s X m, —s+Xpg0 0 0](m+mf smz s+g MJ

40

00 sz, , (l,'-Z)(l,'+J+1) ~", , , (u)
It lz( P )zJ z 2 d zs( II ) l (PY) + (A11)
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and the magnetic moment contribution is

8(4w)'
5, ,(m, rllg}=, P g (-5.,t., e, +&.

~t, e, +«, ., eo)PP'

jr+r. jr+1

j=o r=ij-x~ m=-»'=) j-y) r"=[j-x)
o@l ygQ ~ OVNl

L jy-o r g=) jl 1l f =~ jy-ll r "=Ij~-1l
odd ~ odd

((21 +1)(211+ 1)(24 +1} ~ sl+I +I (q
-1 &0& "

)(q
-& &I «) y+ (pl)y' (Q}

(2I.+ 1} r, l ~ r I'r 1 r, m L,N

The notation used in the above equations is:
(a) The relative wave vectors of the initial and final proton pairs in their center of mass systems are,
respectively, p and p'. The wave vector of the photon is k.
(b) Unsubscripted l 's and j refer to angular momenta of the final state protons, and 1,'s and j, to the
initial state proton angular momenta.
(c) The magnetic quantum of a final proton triplet state is represented by m~, and that of an initial triplet
state 5y sf).
(d} ~ =2.792 is the proton magnetic moment in units of eg/2mc.

The radial integrals of these amplitudes were computed as the sum of a numerical integral from r =0 to
r =R and an analytic integral using asymptotic expansions for the proton wave functions from r =R to r = ~.
The separation radius 8 was chosen so that u, (pr) and w, », (pr) could be written in terms oi' nuclear phase
parameters and asymptotic Coulomb functions with a high degree of accuracy.

It should be added that the somewhat forbidding appearance of the above amplitudes due to the large num-
ber of summations is, in fact, deceptive.

C. Differential cross section

Taking as independent variables the laboratory polar and azimuthal angles 0 —= [8, Pj of each of the two
final state protons and the polar angle 8& of the outgoing photon, the differential bremsstrahlung cross sec-
tion for unpolarized initial ind final particles may be written as

e'/ffc
do/dQ, dDId8y =

(4 )4( ~), [E,ERE,'E2)

(T+ T-!k T!')
pE,[(E+mc' —E,)p,'+E, p, (p, —p)) 88„

spies CJll.

Brackets subscripted by c.m. indicate that the enclosed quantities are to be calculated in the center of mass
system. AQ. other quantities refer to the laboratory frame. Subscripts 1 and 2 refer to the two protons,
Sr and Ea are their initial energies in the center of mass system, and p and E are the wave vector and
energy of the incident laboratory proton. Final state quantities are unprimed. The relativistic relation

Ef( %pc)' (+m c)']' is used for all energies. The form T*~ T-)$ T!' for the squared transition element
follows from the summation over the two polarization states of the photon. Finally, the derivative of the
final momentum of proton 1 with respect to the photon angle 8& for fixed 0, and Q„which arises from the
density of final states factor, is given by the somemhat complicated result of

8(S'cP,) aD —y
88' 5-PD '
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where

e =sin28& sin'8&+ p,~ cd 8, -cos'8 -2p y sin'8 + co6~87 j Y gC 7

I

+(ccs's, -cosSI) e-8)'- -O' —88coss, (88888, -88, Ii )I

E+mP- E,+2 sin8& '
fp,(cos'8, —cos'8&) —p cos8, sin'8&] I

p =2(cos'8, —cos'8„)[p,(cos'8, —cos'8&) —p cos8, sin'8&]- 2A cos8,(p, p, cos*8& —cos8, cos8, )

+2 cos8~ co68~ ~ cos 8~+cos
1

~o

y= —A + (cos 8, —cos 8&) 2sin28&(B-Acos8, )' —4(B-Acos8, ) sin28&(pcos8, -p, p, pe)

" ntc ' (B+ntc'-B,)

(z+ mP z,}-
cos8, sin8& + 2(B Aco-s8, )' cos8& sin28&c

5 =4(B Acos8,-)cos'8„A'+ ( &
(cos'8, —cos'8 )

x (8, )) cossc
—cess, eos8) —cos8 '

eossc
—coos)

1

~88(II-goose )'eos'8I 8' cosSI- coco j,3 ~Pi
1

E+ ogP- E,
p -p, cos8, —co68„ kc

B=p,(p, p, cos'8&- cos&, cos8,)+pcos8, sin'8&,

2

D=(cos*8,—cos'8„) p'sin*8„+p, '(cos'8, —cos'8 )-2pp, cos8, sin*8 + cos*8

+A'(cos'8, +cos'8&) - 2AB cos8, .
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