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Relativistic wave functions for pion-nucleon and pion-nucleus scattering
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We use a modification of the method of Blankenbecler and Sugar to discuss various reduc-
tions of the Befhe-Salpeter equation to three-dimensional equations. Pion-nucleon and pion-
nucleus scattering are treated, and the advantages of the use of different Green's functions
are indicated. For the case of pion-nucleus scattering we propose a relativistic impulse ap-
proximation for use in construction of a relativistic optical model. The relations of the wave
functions resulting from the solution of the three-dimensional equations to the Bethe-Salpeter
wave function is indicated. Our method should be particularly useful in providing a frame-
work in which phenomenological studies of the off-shell pion-nucleon T matrices may be
made, since the relationship of our (relativistic) three-dimensional equations to a manifestly
covariant theory has been made explicit.

NUCLEAR REACTIONS Three-dimensional covariant equations for pion-nucleon
and pion-nucleus systems; relativistic multiple scattering theory.

1. INTRODUCTION

Recently there has been great interest in the
description of the scattering of pions from nuclei.
A great many calculations have been made includ-
ing some based on Glauber theory, "watson multi-
ple scattering theory, ' and field theory. ' (In the
latter case the attempt has been made to study an
infinite system of nucleons using Chew-Low theory
for the pion-nucleon dynamics in the medium. )
These schemes are somewhat limited in their gen-
erality and we feel there is a need for a unified
approach to the problem of the scattering of rela-
tivistic particles.

In this work we will attempt to present what we

hope will form a general dynamical approach to
pion-nucleon and pion-nucleus scattering aPpropri-
ate to the needs of uorkers in intermediate energy
Physics. %e see that the theoretical approaches
given by other workers in this field may be ob-
tained from our general approach. However, this
correspondence requires that an additional number
of kinematical or dynamical assumptions be made
in the general theory.

2. REDUCTION OF THE BETHE-SALPETER
EQUATION

In a previous paper' we discussed how the
Blankenbecler-Sugar reduction of the Bethe-Sal-
peter equation could be used to obtain Lippmann-
Schwinger equations for relativistic dynamics in-
volving the scattering of a projectile from a nucle-
us. This procedure is based on the general rela-

tion for the Bethe-Salpeter invariant amplitude I,
(2.1)

which may be rewritten as

(2.2)

where

U =K+K(G -g)U. (2.3)

The utility of replacing Eq. (2.1}by Eqs. (2.2)
and (2.3) depends on the appropriate choice of g.
In our previous work we discussed two choices of

g which both led to Lippmann-Schwinger equations
with energy dependent nonlocal potentials. ' These
two propagators were denoted as g, and g„where
g, was essentially the Lomon-Partovi choice, ' and

g, was characterized by having one of the particles
aluays constrained to the mass shell. %hile the
formalism as expressed in terms of g, or g, could
be used for pion-nucleus dynamics, it appears
more appropriate to discuss the consequences of
several other choices which will be defined in the
following.

Again, we note that K is an irreducible amplitude
for which we make the choice of kinematical vari-
ables as denoted in Fig. 1. Here 2W is the total
center of mass energy, L =(M, —M,'}/2W is a
factor whose origin is discussed by Partovi and
Lomon, ' and thus the four-vector k, =(ko„k,)
=(W +ho —,L, k), etc. , in —this notation. [Note k,2

=(uo)'-k' ]
Let us consider the pion-nucleon system in a

specific channel so that we can avoid some compli-
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cations of the isospin reduction. Ne may write

C(klW) =— 1
2v (W+k —2L) —m, +A)

we see that T, satisfies a relativistic-wave equa-
tion of the form

&k I T,(W) lk') = &k I V.(W) lk'&

1
y. (W —k+ ~L) —m)((+ir}

(2.4) + dpk V3$' p

and define

dW'
g,(klW)=Jt, . 6[(W'+k —~&L)2 —m, ']

x[2W —((()-+E-)+i(7] '

x&pl T,(W) lk'&. (2.14)

x e(W' + ko —2L)5[(W'- k+ 2L) —m„]
x e(W' —k'+-', L)[y (W' —k+-,L) +m„]

(2.5)

1
2W —(((r), +E-„)+ir}

In Eq. (2.6), ur„=(k'+m, ')')2; E-„=(k +m)r')')2;
A, (k) are the projection operators for positive
energy nucleon spinors, and

(2.6}

a, (k) =-,"(L+ (dk ET) . - (2.7)

Following the procedure used previously, ' with
the definitions

(klM~(W) lre& =-(k, k =6~(k) IM(W) Iic', k' =63(k')&,

(2.8)

&kIU, (w}lk'& -=(
~ k'=os(k) IU, (W) lk', k" =&,(k')&,

(2.9)

Indeed, Eq. (2.14) is of the form of the T-matrix
equation which would be obtained by application of
the Bakamjian-Thomas (BT) approach' to v-nucle-
on scattering (see Appendix A). Of course, we
have some advantage over the BT method, since
our "potential" (k I V,(W) Ik') is ultimately defined
in terms of the underlying field theory.

Now it is apparent that simple approximations
to V, (say of separable form) will not yield a T
matrix of the Chew-Low form. To expose more
of the physical content of the theory it is useful to
obtain an equation that for the pion-nucleon system
has some familiar properties with respect to the
energy dependence of the on-shell T matrix. To
this end we note that in Eq. (2.5) we can give up
the restriction to positive energy meson states.
If we define g, (klW) by removing 8(W'+k' ——,'L)
from the definition of g, (k IW) we obtain

m„( 6[k' —n„(k)]
2(s),E-„2W—(u&I, +E-„)+ir}

5[ ' —Z, (k)]
'2W. --'E-.i~ A"

and the restriction of Eqs. (2.8) and (2.9) to the
space of positive energy nucleon spinors, we have

&klM. (~)IP) &&I&( )I)k'=)))+f dp&RI(), ()F)Ii)

with

a.(k) =k(L-~I, -Er)

(2.15)

(2.16)

1
2W —((()p +Ep) +ir)

x (p IM, (W}1%'&,

(2.10)

Now since ko is restricted by either a, (k) or Z, (k),
it is not possible to write a single equation start-
ing with the two equations obtained using g4,

(2.17)

where U~ =K+K(G -g~)U4. (2.18)

E.n(p) -=2„E
P P

(2.11)
Therefore let us define, cf. Eq. (2.15),

g4=gs+gs =go +gi =g4 5[k —ag(k)]+g45Ik —ns(k)l,
Introducing

(~l T,(W) I%'& =A„)r"'(k)(klM, (W) I
k'&R, "'(k'),

(2.12)

&k I V.(W) lk'& =E,."'(k) &k I U.(W) lk'&It .."'(k'),

(2.13}

(2.19)

(klM" (w) lk') =&k k'=as(k) l«w) lk' k" =no(k')&

(2.20}

(klM' (W)lk') =(k, k =a~(k)IM(W)lk, k' =53(k')),

(2.21)
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and so forth.
We may write Eq. (2.17) as

where

M" M'

(2.22)

(2.23)

with g4 and the single equation obtained if g, is
used. [We note that for the physical values of 2W,
2S' ~ m, + n„we may drop the ig in the second
term of Eq. (2.25).]

3. STATIC MODEL AND SEPARABLE
INTERACTIONS

For our purposes we will define the static model
on the basis of the approximations

g = . , etc. (2.24)

dg'
g, (hlW)= Jt, . 5[(W'+h —2z)' —m, ']

x 5[(W —h+ ,'L,)' m„']—e(W—ho+ —,'1.)

x[@ (W —h+ —I.)+m ]

5[h' ~,(k)]

1
X

2W —(&ug + Eq ) + ig

where

+ . A (k),28'+ co[, -E[, +i@
(2.25)

h, (k) = (W+ ~I. —Eq ) . (2.26)

Clearly, comparing g, (hl W) and g, (hl W) we see
that the advantage of the latter is that it enables
us to avoid the use of coupled equations. Since it
is not clear as to which of these propagators leads
to a more convergent approximation scheme we
will discuss both the coupled equations obtained

Of course, we may obtain a single equation for
M"; however, that would take us back to Eq.
(2.10) with a somewhat more explicit expression
for U, . (Note that g,'=g, .}

Ne have gone to the trouble of constructing g„
Eq. (2.15), and Eq. (2.22) since, as we shall see
in the next section, elementary phenomenological
approximations to U, yield the familiar expres-
sions for the T matrix in the (—,', —,) channel. It is
therefore possible that a more detailed study of
Eq. (2.22) will yield useful parametrizattons of the
pion-nucleon T matrices, on and off the energy
shell. Ne would, in this manner, hope to also in-
clude some kinematical features not contained in
the static model.

It is important to note that we can keep both

parts of the pion propagator and avoid coupled
equations by introducing still another g, which we
denote as g, . As indicated in our previous work, '
it is possible to introduce a propagator in which
one of the particles is alseays on the mass shell.
In this case, putting the nucleon on the mass shell,
we have

(m„/Ep)- 1; R,„(k}-(I/2(dp); (2W -Ek)

A, (k)-0; Z~(k)-0; 6,(k)-0.
In this limit, therefore both g~(hlW) and g, (hlW}
may be replaced by g'(hlW) where

g'(hI W) =
2(dt „(d —(d~ + 1,'g (d + (dj + I'q

(3.1}

%e may then write for the static-model invariant
matrix

M'= V+ Vga/,
and defining

(k I
M'(cu)

I
k'& = (k, h' = 0I M'((o)

I
k', h" = 0&, (3.3)

&kl II'(~)lk'& = &k, h'=ol U'(~)lk', h" =o&,

(3.4)

we have, in the space of positive energy nucleon
spinors,

&kIM'(~)lk'& = &kl U'(~)lk'&

+ dp k U' p
P

1
+

CcP —KP + E'g (d + (dP + $'g

x(plM'(~) lk'&. (3.5)

Equation (3.5) is the dynamical equation for what
we have termed the "static model. " Now to indi-
cate the possible utility of our approach for study-
ing pion-nucleon dynamics (from a phenomenolog-
ical point of view) we will explore the consequence
of a simple separable approximation to the static
approximation, Eq. (3.5).

Let us put in a separable form for U', which is
expected to be reasonable in the (—'„—,) channel
near the resonance. We write (neglecting any &u

dependence of the strength X}

(3.5)

where P» contains the projection on angles and
isospin for the (—„-,} channel. The (static)
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invariant matrix is

'( )I '&=
-(~/2v') v(k) v(&i')/(u&(, (v-„)"'

1+ (2l(/(i)(v f (p' dp/urp')[v( p)] '/((u + (vp }((v —(vp +i i&)
'

-(X/2v') v(fi) v(k')/((vT(vT, )"'
1+ (l((v/v) f (d(v p/(v p'}p[v(p) J '/((v —(vp +ii&) '

(3.7)

(3.8)

where we have used the approximation (((&+(v&)(((& —(&p(+i@)= 2((&&(((& —((&p +i@) since ((» rn, . We further note
that the Z' matrix is related to the M matrix as in Eq. (2.12) so that in the static approximation

-(&/4v')[v(ii)/~kl [v(I~')/~k 1

I+(&~iv) f (d~, /~-, ')pl v(p)I'/(~ —~, +in)

This expression is similar to the Chew-Low result without the crossing term. On shell ~ =(FAT,
= ~T,

-(X/4v') [v(k)/(u 1
'

1 —(x(v/w) f (d(vp/(vp'}p[v(p)]'/((vp —(v -iq}
1 ts,3e» sin6»,

(3.9)

(3.10)

(3.11)

which, with v(k) =I(, is
-(X/4w')(k'/uP)

1 —(~((&/w) d(()p p /(()p (((&p —((& —1'g}
0

(3.12)

where 0 is a cutoff for the +p integration.
We remark that attempts to parametrize the off-

shell m-nucleon T matrices in terms of separable
forms might lead to the simplest form factors if
one makes this approximation in a relaNviztic
equation such as Eq. (2.14) or a more elaborate
parametrization may be tried using Eq. (2.22). In
the latter equation one could try separable approx-
imations for the submatrices of the %, matrix; i.e. ,
U", U', etc. , could each be written in separable
forms. The use of g, (fil W) without the "static" ap-
proximation clearly leads to a simple approxima-
tion if the corresponding potential (U, or V, ) is re-
placed by a separable form. If we use g, (&tlW) in-
stead of g'(klW) we are able to include some ef-
fects of the nucleon recoil.

Finally, it is clearly possible to include some ~
dependence of the coupling strength X, or to allow
the potentials to be complex above production
thresholds. (See Appendix C. )

4. WAVE FUNCTIONS

Assuming the reduction has been made to some
single three-dimensional equation (e.g. using g,),
we may write [see, for example, Eq. (2.10}]

&p' l~(w} lp& =&p'
I &(II')

I p&

PP'
I i&i. & =((i

I P) + f dii" 9(P'
I
~)&l(P')

& &p'
I II(W) I

0"
& &p"

I W. w&

(4.3)

Equation (4. 1) may be compared with the T-ma-
trix equation [cf. Eq. (2.14)]

&p'I T(w}l p) =&p'I I'(ll')
I p&

+ dp" p' VW p" 9 p" 8')

&&p" IT(w)lp& (4 4)

We may also write, ' defining &p"
I (&)& w),

(ii'IT(w)lii& f&ii (ii'I&(~)=lii"&(iY"')i&;, &.

(4.5)

It is then not difficult to see that the relation

where 9(p" IW) =[2II' —( z&v-+ zE-) +f &Ji'. Now we

may define a wave function l(&)~ „)by'

(ii' l&(W1) ii& =f &ii' I(&tw & le"&&ii &ii"
I T(i), ,

(4.2)

such that

+Jf dp"&p IU(II') lp-&9(p IW}f~(p-) ft"'(p)
&p It, &-owl/2( ),&p IWp, w& (4.6)

(4.C) is valid. We also note the wave equation for
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I Cp. w&

&F I @p, w& =&p'I p&+ Jl
d F'9(F I w) &F I I'(w) I p"&

x(p I Wp. w& ~ (4.7}

&p' IM(w) I p& =&p', p" =n (p') IM(w) I p, p' =n(p)&

which follows from Eq. (4.4).
The wave function

I Qz w& (and therefore
I Qz w))

may be related indirectly, to the Bethe-Salpeter
wave function, I+ &=—

I g, - p. Using Eq.
(4.2) and noting that (p'

I M(W) I p) may also be writ-
ten as

(4.4), or for the wave function, Eq. (4.7), it is use-
ful to define the quantity L as L =E~ —+&, where

P defined the relative momentum of the incoming
wave. Of course, in the "on-shell" case, where
2W = (p'+ m, ')"'+ (p'+m „')"', we regain the less
general relation I. = (m„' —m „')/2W. The more
general definition of L, L=EP —co&, allows us to
maintain the relation P =0 for the incoming wave
in our equations.

Again we may write a more symmetrical form
of Eq. (4.10) by introducing

(4.13)

where for both
I
p'& and I p ) we define

p', P' =4 p' U 8' p" d4p"

x(p" IP;,&,

we have the relation

(4.8)

p/ Pro g pI U gf Ptl d4PII Pll +Bs

Rz/2(p)
(P I Wp, w& Rl/2( )

&P I Wp, w)

In that case we may write, with I4& = I4),

where

(4.14)

(4.15}

p', P" =& p' U & p" P"=& p" p" 1
2W —(uT, +E k ) + I/i

x&p" I@.w&. (4.9) 1
2W+(erg —E), +zq

It is also clear from Eq. (4.9}that a knowledge
of I Q~ w) or

I Qp, w& and the quantity (p'
I U(W) I p) is

sufficient to calculate the on-shell invariant ampli-
tude.

It is also of interest to consider the coupled
problem as defined by Eq. (2.22} and the corre-
sponding wave functions. We may write % ='ILI 4 &

such that we obtain the (three-dimensional) equa-
tion,

and

( y++ I/+ -i
(4.16)

(4.17)

&pl I/l'(w) IF)=R"'(p) &p I I/."(W) I
p'&R"'(p'),

I4& =
I 4»+g.~l 4 & (4.10) (4.18)

Here I4/& may be divided into "large" and "small"
components:

etc.
In the case that we work with the coupled equa-

tions, Eqs. (2.22), we may generalize Eq. (4.9) to

Also, we have

(4.11)
k =++ k--L

2
Lp=+ p ——
2

) (I p'= ())
p

0 & 0
(4.12)

where P is the relative momentum in the incoming
wave. Note, if 2W =(P+m, ')"'+(p +m„'}"',then
p' =n(p) =0. The fact that p' =0 for the incoming
wave is a result of the subtraction of 2I from each
zeroth component of momentum (see Fig. 1). In
the case we wish to consider, the fully off-shell
three-dimensional equation for the T matrix, Eq.

k =W- k ——L
2 2 p ~Qf p

FIG. 1. The irreducible kernel for the Bethe-Salpeter
equation, where @' and L considered as four-vectors
have only seroth components. [See the work of Partovi
and Lomon {Ref. 6) for a discussion of this representa-
tion. j The double l.ine represents the heavy particle, a
nucleon, or a nucleus. The dashed line is a pion.
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the following set:

p, P -hp US' P dp P

p', P" =h p' U W p", P"' =h p" d p"

so that we may write

(kI T'(~}Ik') =&kI 1"(~)
I
k')

+ dpk V'(d p
P

x &p I
T'(~)

I
k') . (4.26)

p', P' =h p') U S') p",P"'=h p" dp"

x&p"
I W,) (4.19)

Jl &p', P" =&(p')
I U(w} I

P"&d'l "&p" 10-, p

If we define the static model wave functions I
p-'„"'&

through the relation

&pl T'(~) Ik& =&pl I'(~)10-'„",'&, (4.27)

we find the equation for
I
+"

& to be

P

(4.28)

p', p" =h p' U W p",p"'=h p" dp" with the definition,

&p I &(~) I
p') =-2~ &p I

~'(~) I p'& (4.29)

x(p" I
g-'

v&

+ p, p'=hp «) p, p -h p dp

We recognize Eq. (4.28) as the Klein-Gordon
equation with an energy-dependent, nonlocal poten-
tial U. In Appendix A we compare our "static mod-
el" result with a similar result based upon the use
of a different g.

x(p"
I tj'p ~& . (4.20)

5. PION-NUCLEUS SCATTERING

These equations may be summarized in the fol-
lowing notation:

UP =U"P' +U' (4.21)

UPBs =U 'P'+U

or more concisely,

(4.22)

«$Bs (4.23)

&%1T'(cu) I
k') = }»,&RIM'(&u) I

k') }»»

(4.24)

&k I
v'(~)

I
k'& = 2», &k I

Ii'(~) I k'&»g i
241k) 2(Ok )

(4.25)

We note that the above discussion is general and
could be used to discuss the wave functions for
pion-nucleus scattering (see Sec. 5). To facilitate
comparison of our methods to those based upon
Klein-Gordon equation, we derive that equation
using the static model introduced in Sec. 3. We
recall Eq. (3.5) for the invariant amplitude M'(&u)

of the static model and now define

For simplicity we consider a pion scattering
from a heavy nucleus of spin &. The preceding
formalism may be taken over with the nucleon
mass m„replaced by the mass of the nucleus m„.
If we put E& = (P +m„')"', we may define R,„(k)
= (m„/2&@|,EI}= (2&uT) '. Since the use of a Green's
function such as g, (kIW), which keeps the nucleus
on the mass shell. , is reasonable in this case we
will not discuss coupled equations in this section.
For the discussion of pion-nucleus scattering we

may use a g, denoted as g~, and defined by

g„(k I W) =2
" 5[k' —h„(k}]A,(k)

1 1
X +

2W —(uT, +ET, ) +i@ 2W + &uk —EI,

(5.1)

where A, (k) is now the projection operator for
positive energy nucleus spinors and A„(k)
=(W+ -~1)E=l0. Here I, =(m„' —m~')/2W. [We
might note, at this point, that if we go to the static
limit, replacing Ek by the mass of the target nu-
cleus in Eq. (5.1), we would have a propagator
which allows us to use the Klein-Gordon equation
for the meson. ]

Since in this work we are not concerned with the
details of the evaluation of the irreducible kernels
K we will only indicate some of the more impor-
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(a)

(c)

FIG. 2. Diagrams for the calculation of the invariant
potential. (a) Relativistic impul, se approximation, +here
the open circle is a presumabLy knovm vertex function
and the filled circle is the pion-nucleon scattering am-
plitude (off-shell). (b) A diagram involving the scatter-
ing from a correlated pair. The iteration of (a) must be
excluded from this diagram. (e) A diagram involving a
(&++ (r++) amplitude that is not expressible in the
form indicated in (b). (d) A crossed diagram which is
not contained in (a); that is, the pion is not absorbed
and emitted by the same nucleon.

tant features which should be considered in an ap-
proach based upon a relativistic impulse approx-
imation. The most important term to be included
in the irreducible kernel is shown in Fig. 2(a). In
this figure the filled circle represents an (off-
shell) pion-nucleon scattering amplitude and the
open circles are vertex functions describing the
(virtual} breakup of the target (baryon number A}
into a nucleon and a residual nucleus (baryon num-
ber A —1). As indicated previously, ' we may use
this diagram to make contact with the correspond-
ing leading term in the Watson multiple scattering
series. While the Feynman rules make precise
the exact "off-shell" aspect of the pion-nucleon
amplitude, it is often useful to consider the ap-
proximation in which the result of the evaluation
of this diagram is factored into an on-shell pion-
nucleon amplitude, depending upon the square of
the four-momentum transfer q' and a form factor
for the target. ' (The evaluation of this diagram

UA -KA +KA(G —gA)UA . (5.2)

Following the now standard procedure, we define

and other important diagrams will be discussed in
a future publication. )

Away from the main peak in the elastic scatter-
ing cross section, the "correlation" diagram of
Fig. 2(b) is expected to be important. This dia-
gram involves vertex functions for the breakup of
the target into two nucleons and a residual nucleus
of baryon number A. —2. The pion-nucleon ampli-
tudes entering into the calculation of Fig. 2(b) will
be much further "off-shell" than that of Fig. 2(a).
However, for sufficiently high pion energies we

may still hope to factor the result of the evalua-
tion of Fig. 2(b} into a pair of pion-nucleon scat-
tering amplitudes and a correlation function for
the target. This term then can be seen to corre-
spond to the double-scattering term of the Watson
series for the optical potential. [It is necessary
to point out that only the irreducible part of Fig.
2(b) should be calculated. The diagram as drawn
contains the iteration of Fig. 1(a), which must be
subtracted explicitly. This problem arises here
because of the composite nature of the target. ]

In general, the interaction of a pion with a pair
of nucleons will not be fully represented by Fig.
2(b) so that one might wish to consider additional
interaction terms. These are indicated by the
large circle in Fig. 2(c) which denotes that part
of the pion-two-nucleon scattering amplitude
which is not already contained in Fig. 2(b).

In Fig. 2(d) we have indicated a crossed diagram
which must be calculated such as not to include
contributions already contained in Fig. 2(a). Other
crossed diagrams may also be included; for ex-
ample, one may obtain irreducible diagrams by
interchanging the external pion lines in the itera-
tion of Fig. 2(a) or from interchanging the external
pion lines in Fig. 2(b).

We assume that some choice of diagrams has
been made and one has calculated a sum of irre-
ducible diagrams K„and, in some approximation,
the effective potential U„, which satisfies

(k'
I I'A(&}lk) =&.A"'(k') (R', ~"=~A(k')

I
UA(~') Ik, &' =&A(k)». A"'(k) (5.3}

and

(k' IT A(II') Ik& =&.A"'(k')(k, &" =&A(k') l~(+') lk, & =&A(k))&.A"'(k) .

We then have the equation

(5.4)

(&'IT*(~ilk) =(&'I (',t)('ll&)+ f (r))'*t))')Ik")&k" 2~, ,~, „~2~ „~ (ie'IT (((')lk)„
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which describes pion-nucleus scattering. Again,
it is clear that we may obtain the Klein-Gordon
equation by going to the static limit (2W —ET) —&u;

&„(k)-0. Finally, the above result may be gen-
eralized without difficulty to include inelastic
two-body channels. '

6. CONCLUSIONS

In this work we have discussed the derivation
of relativistic three-dimensional equations for
pion-nucleon or pion-nucleus scattering. In the
case of pion-nucleon scattering one may attempt
to construct phenomenological potential, s which,
when inserted in these equations, reproduce the
on-shell information. Of course, these potentials
cannot be determined only from a knowledge of the
on-shell T matrices. Therefore, we have all the
standard problems associated with the freedom
available in specifying the off-shell behavior of
the scattering amplitude. In this connection we

have shown how different off-shell extensions are
related to the choice of the g used in deriving rela-
tivistic three-dimensional equations. (For exam-
ple, see Appendix A. ) In this case it is obviously
desirable to have some fundamental theory which
will allow one to calculate the potentials which
enter our equations.

In the case of pion-nucleus scattering, we have
provided a theory which ie hope will replace the
standard Watson multiple-scattering analysis. '
The latter theory is essentially nonrelativistic and
unsuited to the description of the scattering of a
projectile which can be created or destroyed, as
is the case with the pion.

We are still left with major questions as to the
convergence of the theory. That is, it is not ob-
vious which diagrams, beyond the most obvious,
must be included in the calculation of the poten-
tials for pion-nucleus scattering. In a future work
we will discuss the calculation of the leading terms
of the relativistic impulse approximation and try
to answer some of these open questions.

APPENDIX A

Relativistic quantum mechanics has been con-
sidered as an alternative to quantum field theory
and analytic S matrix theory. A prescription for
constructing such a relativistic theory was pro-
posed by Bakamjian and Thomas. "lAccording to
this scheme, the interaction between two particles
is represented by a potential energy operator
which is incorporated in the theory in such a way
that the generators of a proper inhomogeneous
Lorentz group satisfy the Lie algebra of this
group. The potential is a rotationally invariant
function of the internal c.m. dynamical variables,

For the two-body case, Fong and Sucher" have
proved that if the potential introduced in the Ba-
kamjian- Thomas Hamiltonian vanishes sufficiently
rapidly for large relative position vector, then the
associated S matrix is covariant. The Bakamjian-
Thomas Hamiltonian is therefore the most general
form of interest from the viewpoint of relativistic
scattering.

For m-N scattering, the Bakamjian- Thomas
Hamiltonian in the c.m. system can be written as

H =(k'+m ')"'+(k'+m '}'"+V (r, k s ) (Al)

Here r and k are the nonrelativistic relative posi-
tion and momentum operators, respectively, and
s„ is the spin of the nucleon. If 2W is the total
c.m. energy of the system, then the wave equation
ha.s the form

where

x(l I T(W) Ik'&,

(m
2 ~@2)1/2 E (m

2 p2)1/2

(AS)

Equation (AS) is in analogy to Eq. (2.14) of the
text. The only difference is that the potential in-
troduced in Eq. (2.14) can be determined, at least
in principle, from the meson theory, while the po-
tential introduced in Eq. (AS) is an unknown arbi-
trary function of r, k, and s„. Now, if we identify
these two equations, we find that the potential in
BT equation can be identified with the potential in
Eq. (2.14}. Thus we have provided a method to ob-
tain the potential used in BT equation from field
theory.

We must point out however that different approx-
imate Green's functions may lead to similar wave
equations having different off-shell extrapolations.
To see this, we consider the Gross approxima-
tion. " We recall that in the treatment of Gross,
the nucleon is put on its mass shell and no approx-
imation is made for the pion propagator. We may
therefore write the corresponding approximate
Green's function as

g, (kIW) =VI(W-k 'Z+)' m, ']e(W--k'+-.'f.)

x h (W —k+ zL) +m„]

I
(W + k —2 L) —m ~' + iq

(A4)

(A2)

and the corresponding Lippmann-Schwinger equa-
tion is

(kI T(W) I
k') =(kI V I

k')

'f~"~ ~~)2R — --z- n
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which is obviously different from g, (klW) of Eq.
(2.25).

It is easy to show that with g~ we obtain for pion-
nucleon scattering in the static limit

are "elastically-equivalent" potentials, in that
they yield the same on-shell T matrices.

A list of various possible choices for g, all of
which lead to somewhat different three-dimension-
al relativistic equations, can be found in Ref. 12.

+ k U~e pdp
P

x &p I
hf'(~)

I
k'), (A5)

with &kl M'((d)
I
k') and (k I Uo ((d) I

k') defined by equa-
tions analogous to Eqs. (3.3) and (8.4). We also
note the difference between Eq. (A5) and Eq. (3.5).
If we now define

k) k')
27( )t(d) V(dk~

(Bl)

APPENDIX B

In this Appendix we will indicate the solution of
our coupled equations for I)I &, Eq. (2.22). For
simplicity we consider U" = U' = U ' = U . We
may choose, then,

&kl T'(~) lk'& =
2

&kloof'(~) lk'&
~2

(A6)
the form we used in the static model. It is then
easy to obtain with P' =

I
p' I, P =

I pl, etc. ,

&kl v'(~)1%'& = ~z&k I fto(~) I
k')

~z
(A7)

&
p, g,

&

5(p -p'}
pp' 2(up.gq. 2W —cop —Ep +ig

we may write Eq. (A5} as

&k I
T'(~)

I
k'& = &k1 v'(~)

I
k'&

+ k Pc@ pdp
P

with

o(p') o( p)
2v' ((d~ (d~}"'D((d) ' (a2)

x&p I
T'(~) I

k'& . (A8) U(~)= ('2PJUU"(2 'U )l (P")l'

&kl T'(~) lk') =&&I v'((d)
I i-'„l",&

satisfies the equation

(A9)

Then, we observe that the static-model wave func-
tion 1(I)-'„("), defined through 1 1

X +
2W —+~- —E~- +ig 2W + co~- —E~- +iq

Further

(S3)

&p I q-'„",) & =&p I »+ . .„.„&p I » v'(~}
I e".'&,

P
(AIO}

(A11)

which has the same structure as Eq. (4.28). Yet
the off-shell extrapolation Eq. (A6) is very differ-
ent from that in Eq. (4.24). This difference van-
ishes, of course, in the on-shell limit. This im-
plies that %)((d} of Eq. (4.29} and

&p I u((d) I
p') -=2(d &p I

V'((d} I p'&

m„ 1 X v( p') v( p)
2(d()rEy 2W + (d(, r —Ey 2v ((d( (d()) D((d)

(E4)

Inspection of Eqs. (B2) and (B4) provides one with
an idea of the relative magnitudes of the "large"
and "small" components in the separable model.
The T matrix for the static approximation may
also be readily obtained.

APPENDIX C

In this Appendix we consider the case of an energy dejendent potential and replace Eq. (3.6) by

(k)U'( ) I(i') = —2, ((k)(—)U(k)P'
Then Eq. (3.7) is replaced by

-(i(./2s')I)(k)K(k')/(d
ss " =

1+Rf ((d)

where

p'dp [v(p)]'
W (dp 2(d (d —Grp' +llew (d + (dp

(Cl)

(c2)

(c3)
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If ere then define a "renormalized" constant A.„by
X„=1/[1+XI(0)],

we may obtain for the T matrix

-(&„/4s )s(h}B(k')/(&o'+Ter„.)"'
& —(&a~/s) f (P d~p/~ p')[s(P)P[&!(~p —& -A})—&/(~+ ~p)] '

(C4)

(C5)

-(Xs/4s') [v(k}]'/ru'
& —(~s&/s) f (P&~p/~p')[p(P)]'[&/(~s —u tq) —-&/(u + u-, )l

'
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