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Lanczos's algorithm for the matrix eigenproblem is used to project out angular momentum
(J) components from a given deformed intrinsic wave function, containing A' different values
of 4 Using this method, it is proved that the low'-lying energy spectrum of a nucleus ob-
tained by using the wave functions projected from a deformed intrinsic state (Hartree-Fock,
Hartree-Fock-Bogoliubov, or random-phase approximation) has a general form suggested
by Bohr and Mottelson in their macroscopic approach,

E(J) = E(P) + Q A„(P)J"(j+1P .
i

Expressions for E(P} and A„(P}are derived. The first iteration gives Skyrme's formula
for the nuclear moment of inertia. The above analytic form of E(J) is exploited to deduce
certain conclusions about the nature of the projected energy as a function of J;

As early as 1958 it was realized that the results
of shell-model calculations can be reproduced us-
ing the projection method. ' The projection meth-
od' has been preferred over the shell-model ap-
proach to study the low-lying energy levels of
many-nucleon systems because of the prohibitively
large dimension of the eigenvalue problem in the
latter approach. A new computational method,
based on Lanczos's algorithm for the matrix eigen-
value problem has recently been proposed for the
shell-model calculations. ' This method is very
efficient to calculate few low-lying eigenvalues
with a minimum of additional useless information.
However, the serious disadvantage of the method
is that it justprovides numbers and no physical in-
sight. The problem of understanding nuclear struc-
ture depends on finding good approximations for
the eigenvalues and the corresponding eigenfunc-
tions of a many-nucleon Hamiltonian H. Our dis-
cussion here is limited to open shell nuclei. Ne
can assume that the effective interaction between
nucleons in a nucleus is already known from the
Brueckner-Bethe-Goldstone theory. Since our in-
terest here is to study only the low-lying states of
H, one can use the powerful variational methods
which have either the Hartree-Pock (HP), Hartree-
Pock-Boguliubov (HPB), or ground state of ran-
dom-phase-approximation (RPA) form of the wave

function. The rotational symmetry of H makes it
very difficult to carry out such a variational cal-
culation. Therefore, one often finds a variational
solution of a lower symmetry first (such as axial
symmetry). The approximate variational solution
of H is then obtained by projecting the appropriate
angular momentum J from it. This is used to cal-
culate the approximate eigenvalues E(Z) of H. '

Irrespective of the wide popularity of this ap-
proach, no effort has been made to investigate
analytically the general features of the projected
spectrum. With certain assumptions, based on
the observation of numerical results, we' tried to
find the approximate form of E(J) as a function of
J. These assumptions have been criticised by
MacDonaM. ' In this paper, our aim is to investi-
gate how closely the projected spectrum resembles
a rotational spectrum. The failure of the earlier
attempts to answer this question was partly due to
the use of the well-known projection operators.
The recent new forms of the projection operators'
are also not suitable for our purpose. Therefore,
we propose another new method to project out N
different angular momentum components from a
deformed intrinsic wave function. This method is
based on the Lanczos algorithm' for the matrix
eigenvalue problem.

Let y, be the deformed intrinsic wave function
obtained from either the HF, HFB, or RPA ap-
proach. In order to use Lanczos's algorithm for
the matrix eigenvalue problem, let us define the
orthonormal set of wave functions y, (i =0, 1, . . . ,
N) by the follwoing set of equations

J @o=Joo&0+ Jio&j. ~

+0 j Jj-j. i 0 j-y+ Jjj 9 i + Jj +y j 0 j+z y

+2
+N-1 JN 2N-1 +N-2+ JN-&N-& +N

Let us assume that the intrinsic state y, has X
components of different values of J. This would

imply that there are only N independent sets of
functions y; and that J'y„=0. In Eq. (1),

~(g =~y~ = (A I &I V'y) .
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The matrix J„in Eq. (1}can easily be diagonaiized
in this basis set of functions. Using the known ei-
genvalues X~ =J(J+ 1}, the eigenfunctions of J' can
easily be found from Eq. (1):

y(J) = Q x„rp„,

keeping only the first iteration in Eq. (8),

D~[&~l- I J~g -I z8igl (3)

where x, =1 and

x„=(-I)"D„[A.]/[J„J'„J„„,] for n-1.
(2)

The polynomial D[X~] in X~ is the leading princi-
pal minor of order n of the determinant

The moment of inertia g, defined by the coefficient
of J(J+ 1) in Eq. (9) to be equal to 5'/2S is identi--
cal with Skyrme's formula. ' The approximate pro-
jected energy E(J}in Eq. (9) is the same as that
obtained by Das Gupta and Van Qinneken" using
the conventional projection operator.

The J dependence of E&J) in Eq. (8) arises only
from the determinants D„[a~]. Expanding these
determinants one obtains

The operator which projects out a component of
given J from po is

P(J) = I +g Dn [~z]X)n [J+J ]/[ Jx o Joy
' ' ' Jn n-xl

The normalization of the projected wave function
(p( J}is such that &

gaol

y( J)& =
& rpoI P(J) I iso& = 1.

The operators 3)„'s are defined in terms of g)„[&~]
with the replacement of A.~ by J'J . In what follows
below, let us assume that y, has an axial symme-
try with the quantum number K=O. Since J' does
not break this symmetry, all the y&'s are eigen-
functions of J, with eigenvalue zero. This implies
that

J cp) =J J (p) =J J+ (p ] .
From Eqs. (1) and (4) it can be seen that

Joi =J,o
=

& vo( J' J -J~}'I v o&
'",

E(J) =E(p)+ Q &.(P)J"(J+1)"

In Eq. (10)

H(p) & IHI )
~' D.(p)&vol Hm. I J'J II vo&

and

where

D.(P) =D.[~~ =o]

(10)

(12)

(13)

for 1 «i «N-1. (6)

E(J) =
& v. lHI s.&

These relations are useful in the evaluation of J,~.
The approximate eigenvalue E(J) of H obtained
from y( J) is

z J &v(J)IHle(J)& &e.lHIq(J)&
& v (J) I e(J)& & v. l q (J)&

Equation (7) follows from the fact that H commutes
with J'. Using Eqs. (2) and (4), the expression for
E(J) takes the following form N-1

H,„=Z(P)+g A„(P)J'" . (14)

The central line in the bracket indicates the diago-
nal element of a nxn tridiagonal determinant
D„(P), and the upper and the lower diagonal ele-
ments are given by the upper and the lower lines,
respectively. For later use, we supplement the
definition of J(0, n) in Eq. (13) with

J(I, P) =1 for t&P and D [A.]=1.
The Bohr-Mottelson Hamiltonian" for the descrip-
tion of a nuclear collective motion which mould
give the same energy as E&J) in Eq. (10) is

At this stage, .it may be worth pointing out that

(8)

Following Baranger and Kumar, "one has to carry
out the constrained HF or HFB calculations in or-
der to obtain E(P) and A„(P) as a function of defor-
mation parameter P. As one is treating P quasi-
static, one has to add to Hs„ in Eq. (14) the kinetic
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energy arising from the rate of change of P. In or-
der to perform variation after projection, the mini-
mization of E(J) with respect to I8 can be carried
out from Eq. (10), using the known functions of
E(P) and A„(P).

For a tridiagonal matrix D~[x],
gn

~ D~[x]=(-1)"s! Q d, „„(x). (15)

In the above equation d& „«represents a princi-
pai minor of order P - s in D~[x] The. sum runs
over all such minors of order P —n. The minor
d, « is defined to be unity. It can be proved' that

the principal minor of J(0, P) obtained by dropping
(i,i,), (imi2) to (i„i„)rows and columns is the fol-
lowing product:

d~" „=Z(0, i, —1)J(i, + 1, I, —1) J(i„+1,P) .
(16)

In obtaining Eq. (16), it is assumed that 0 -i, &I,
& i, ~ ~ ~ & i„+P. The ordering of i„'s does not change
the value of d~ «. The sum in Eq. (15) is to be
taken over all the sequences (i„i„f.„.. . , I„) satis-
fying this ordering. From Eqs. (12), (15), and

(16) it follows that

&„(p)=(-1)"Q
' ' ~' ——"

2O' Q J(O, i, —1)J(i, + I,i, —1) . J(i„+1,p
2 n

The zeros of the determinant D„[&]are the val-
ues of X~ corresponding to 4 = 0, 2, 4, . . . . Since
~~ ~ 0, it follows from the variational principle
that

J(i,j ) & 0. (18)

D„[X=0]=D„(P)&0 for all n &N l. (20)

There are only X-2 zeros of D„[A.] which are
greater than X, (the zero of D„[A.] corresponding
to 8 =2). Therefore, only N- 2 consecutive pairs
of the sequence in Eq. (19) have the same sign.
This could happen only if all the D„[A,] for
s & N, (&N) change sign from positive to negative.
It is also to be noticed that D„[&,] for «N, have
now the smaller positive values than D„[0],

0&D„[X,]&D„[0]=D„(I8) for s&H, . (21)

From the separation property' of the roots of
D„[A.], one expects X, to be nearer to N-1. Con-
tinuing this argument, one can say that
(a) there are more and more consecutive pairs of
opposite sign in the sequence in Eq. (19) as J is in-
creased and that the changes in sign are expected
to start from the end of the sequence.

The lower members of the sequence which have
not changed their original sign even once are be-
coming smaller in magnitude with increasing J.

From the Sturm sequence property, ' S(X~}, the
number of agreements in sign of consecutive mem-
bers of the sequence

S =(D,[~,], D,[~,], ~ ~, D„[i,]} (19)

is the number of zeros of D„[X]which are strictly
greater than X~. Since X~ =0 is the minimum zero
of D„[X](all other zeros are &0, and D, = 1, it fol-
lows from the Sturm sequence property that

Bohr and Mottelson" were the first to find that the
low-lying energy levels of a well deformed nucleus,
in the macroscopic model, has a form similar to
that in Eq. (10). They also predicted that for such
nuclei A.„'s alternate in sign with m. The analysis
of Sood" later showed that very good agreement
between the experimental spectra of many well de-
formed nuclei and the generalized Bohr-Mottelson
formula can be obtained only with alternating signs
of A„.

From Eqs. (8), (11), (17)-(21}and comment (a),
it is easy to prove that for the wave function y,
and the Hamiltonian H for which (y, l

Hu„[Z'J ]l y,)
& 0 for all n, the projected energy E(J = 0)
&(yolHl y,), E(Je0)&E(Z=O) and the coefficients
A„(P) alternate in sign.

In the projection method, it will be almost im-
possible to extract the nature of E(Z) without as-
suming any structure of the Hamiltonian II and the
intrinsic wave function q, . In the case of even-ev-
en nuclei, we assume the following general proper-
ties of H and (jt}'0,

(b) all the E(J)'s are negative, and are of the same
order of magnitude.
(c) a~, the probability of y(Z) contained in y„ is
much smaller for J & 2 than that for J ~ 2.

It follows from Eq. (18) that the square bracket
in Eq. (17) is a positive quantity. The denominator
in the same equation is clearly a positive definite
quantity. Expanding cp, in the orthonormal set of
functions p(Z), we obtain

J'=0 ( even)

= a, D~[0]E(G) + a, 'D~[X, ]E(2) .
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The last step in Eq. (22) follows from (c). From
Eq. (21), D~[0] is positive for all p &N- 1 and

from comment (a) D~[X,] is expected to be positive
and less than D~[0] at least for P&N, =N —1. From
this discussion and assumption (b), we conclude
from Eq. (22) that

(y, (H&&[J'J ]) y, ) &0 at least for P&N, =N 1. -
(23)

Thus from Eqs. (17) and (23) A„'s will alternate in
sign at least for a few lowest values of n for which
the main contribution to A.„comes from P&X,. The
rest of the contribution is expected to be small both

due to cancellation of the sum over P &N, as
(y, (HS~[J'J ]( rp, ) then alternates in sign, and

due to their relatively small. er values. From Eqs.
(11), (20), and (23), it follows that E(0) =E(P)
&(y, ~H(cp, ). Similarly, from Eqs. (8), (11), (21),

and (23) and comment (a) one obtains E(0) &E(2).
From comment (a) one may also expect that for
larger values of J', E(J)&E(2). These results are
found to be true in all the calculations carried out
so far using the projection method.

The author would like to express his thanks to
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