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We show that there are simple relations between the valence model of neutron capture and
the optical model. These are derived without recourse to any particular formal framework.
The relations show that the predictions of the valence capture model involve the full optical
potential and that it is inadequate to use the real part alone.

Recently the valence model of neutron capture
has been discussed' ' within the framework of the
shell-model theory of nuclear reactions. This
study presented estimates for experimental quan-
tities like background (inter-resonance) capture,
suggesting that it is reasonably accurate in prac-
tice to obtain these from the real part of the opti-
cal potential (see Fig. 1 of Ref. 2 and Sec. 2 of
Ref. 2). In a study' in 1960, the full potential was
used. In this note, we see that it is unnecessary
to air these matters within a particular framework
(such as the shell-model or R-matrix theory of
reactions) Inste. ad one can, from a few simple
equations, derive all interesting quantities for
capture, and settle the issue about the optical
potential.

For simplicity we will confine the discussion to
incident s waves and spinless particles. These
restrictions are readily removed. The neutron
capture cross section at energy E to a final state

ls

o„,(Z)=vk'iS„, (z) j',
where k is the incident wave number mv/5, . The
quantity S„& may be expressed in terms of reac-
tance matrix elements

$0 is the target state. All unimportant factors are
absorbed into the operator D. For all quantities
Sn f y Kn f y K„„, a bar indicates that E is replaced
by 8+i ~ where ~ » level spacing. The average
value of S„~ is:

S„~= 2i K„~(-l —i K„„)

K„„may be divided into local levels plus a back-
ground of distant levels which may be identified
with ReK„„; similarly with X„~. Ignoring the
local levels in K„„,K„z in (2) leads to a quantity
that we can call the background capture amplitude:

(b k)
-28' ReKf y

~ -i ReK„„'

For a single level ) and no background.

K„„=fI'g„(Eg —E) ',
K„,= —,'(r,„r„,)'"(E,—E)-'.

When both the ba, ckground and a single level are
present, we get, on adding background terms to
(8) and inserting in (2):

S„,(z) = -2f K„,(Z) [1—f K„„(z)]-'.

K„„ is related to the elastic scattering phase
shift 6:

K„„=tan5,

(2)
. (r „„r„,)'~'+ 2(Z, —E)(ReK„,)

(Z, -Z)(I - 8 ReK„„) —,'; I,„
(r r )1 /8e -i8

S„,back +
E'~ -E - —,'ir~„

and K„z may be written as the El matrix element

where g~ is the elastic scattering standing-wave
solution with asymptotic form

[sin (kr) +K„„cos(kr)]P, .1

r(av)'~f

cotP = ReK„„-
&n ReK„f

(10)

The imaginary parts of K„„,E„& determine the

The last expression results from rearrangement
of the first one. %'e give explicit form only to the
relative phase p since there has been interest in

sI f 3 f 5 ~ 6
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average residues:

2v ImK„„=&I')(„&p,

2v Imrf„, = &(r,„r„,}'~'&p,

(11)

(12)

widths of the giant resonance. Using (19), (20) in
(15):

sin[a(r —a)]
IC„y =(,xg2 sec(&a) +y I D

ISvj r
where p is level density.

We identify the valence model" contribution to
capture as that from the entrance channel compo-
nents in the initial and final states. Defining where

—,
' sec (ka)(r,„r,~)')'

E0-E-i' (22)

u, (r) =-&y. I q, &,

u, (r) =-&y. If&,

the model expression for K„z is, from (4):

(13)
r„'"=(u, I D

I u, &. (23)

u0 is u0 for r&a; for r&a, u is continued as a
cosine:

Z„j= &u~ I
D I us&; (14) cos(kr)

u, (r) a) = u, (a) cos[ka) (24)

Z„~= (u~ I
D

I us(opt) &, (15)

where us(opt) is the optical model solution. By
definition this equals u&~„,&

= u. Similarly

K„„=tan6(opt), (16)

where 6(opt) is the optical model phase shift.
Equations (15) and (16) give K„~ and K„„ in terms
of the optical model. From ("I) and (11), (12) we
get similar expressions for other quantities:

us(opt) = ' .'" u, (r),
—,
' sec(ka) (I',„)'~'

0 ~ 0

while, for x&a'.

us(opt) =,~, sin[@(r —a)]sec(ka)
1

r av'"
-', (r,„)sec'(ka)

~ 'E'"o . )c coc(cc)) (co)

u (r) is normalized inside r= a:
a

I u, I
'r'dr= 1.

0

1 0„, 2W'0 are the natural decay and broadening

(21}

( )
. Re&uIIDIus(opt)& (17)

1 —f Retan6(opt) '

(
rzz '~2 1m&up I

D
I us(opt)

I ),„ Im tan6 (opt)

where for (18) we have assumed &rgy' 'r) „' 2) =

&r~~&' '&r),„&' '. These agree, in the low-energy
limit, with the expressions used in the early
study4 of capture, but disagree with those used re-
cently. ' ' Equation (18) is equivalent to (85) of
Ref. 4 when specialized to low energy.

Suppose that the optical model solution us(opt) is
dominated over an appreciable energy range by a
single giant resonance, say u, (r) with d(u, r)/dr=
0 at r = a, a being the nuclear radius. For ~c a,
we have:

The quantity D is D for r&a and zero for r&a.
Near the dominant giant resonance, the optical
model phase shift is given by:

cos ka . (26)

Insertion of this into (10), along with (22), (25),
gives:

coop=)oo(co) —
(

,'r,„(E,—E)—
0 0

if the external (D) term in (22) is neglected.
S„z(back) is obtained from ("I), (22), (25). When
ka&&1, it is:

mk '~'
S„,(back)=-2f, u, I

D I

, (ro. ro&)"(Eo —E)
(Eo —E)~+ W,m

(28)

Without resorting to any special framework of
formal theory, we have derived in a simple way
expressions for interesting quantities character-
izing capture. This has been done generally [Eqs.
(6)-(12)j and for the valence model [Eqs.
(15)-(18)]. It is clear that the background capture
amplitude (17) involves the real part of the optical
model quantities, not quantities from the real part
of the Aptical potential. This is of crucial impor-
tance. From (2'7) and (28) we see that, near E,=E,
the latter view leads to the large values for tanP
and S„~(back) that have been given in recent publi-
cations. ' ~ The values of S„&(back) are in sharp
contrast to the small values near E0=E reported
in earlier calculations4 which used the optical po-
tential. We disagree with the assertion in Ref. 3,

K„„=tan6(opt) = —tan(ka)+ ' '" . . (25)E, —E —i~'0 '

From (18), (22), (25), noting that &rz ' r
&rq~&' '&r), „&'~' exactly in the present special situ-
ation:
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Sec. 3 that the contribution of distant resonance
terms (i.e., background capture) can be accurately
estimated from a real potential (as depicted in
Fig. 1 of Ref. 2). Ttus is true only for less inter-
esting situations (those with no nearby single par-
ticle state). This difference in calculational recipe
between Refs. 3 and 4 can be traced partly to a
difference in physical interpretation. Ref. 3 sug-
gests that one should not use a complex potential
for situations in which no resonance average is
taken. This novel view is in conflict not only with
Ref. 4 but also with the original study' on the opti-
cal potential in which zero-energy scattering is
fitted. In our view, the complex potential can and
should be used.

Finally, we comment on the evaluation of (26)
for low energies where cos()ta)-1. In the
studies" of p-wave neutron capture in ~NO and
~Zr, I,„was evaluated with the single-particle
reduced width 3g'/2mcP, whereas I',z was taken
from the publi. shed values' of El matrix elements
involving an initial state up bound by an energy of

the order of 100 keV and normalized over all
space. One now sees that both Fp and I"py should
be increased: 1p„because the Woods-Saxon val-
ues of the reduced width are larger than 3g'/2ma~,
and I'p~ because the correct quantity should have

Qp normalized ove r the interior only For a Woods
Saxon potential with a diffuseness parameter 0.69,
the single-particle reduced width" is 4.2A ~/ma'.
Numerical calculations of 1 pf using aWoods-Saxon
potential" have been carried out for s-p and p s
transitions in the 3s and 3p giant resonances, re-
spectively. (Note that, for general I wave the cosp
function in (24) is replaced by the irregular Bessel
function pj,(p) with p = kr or ka. ) When the nor-
malization of up is carried out over the interior
region, the results show that Fpz is 1.5 to 5.0
times larger than previous estimates. ' As a re-
sult, the bvo corrections for Fp„and 7pz are com-
parable and cancel each other.

We are grateful to Dr. C. Mahaux for exchanges
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