¹⁶O(t, ³He)¹⁶N reaction and the low-lying T = 1 levels of mass 16[†]

E. R. Flynn

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

J. D. Garrett

Brookhaven National Laboratory, Upton, New York 11973 (Received 27 March 1974)

The ¹⁶O(t, ³He) reaction at an incident energy of 23.5 MeV has been used to study the lowlying levels of ¹⁶N. A comparison of these results with a previous study of the ¹⁶O(³He, t)¹⁶F reaction permits assignment of $J^{\pi} = 0^{-}(1^{-}), 1^{-}(0^{-}), 2^{-}(3^{-}), \text{ and } 3^{-}(2^{-})$ for the ground, 0.197-, 0.424-, and 0.720-MeV states of ¹⁶F, respectively.

 $\begin{bmatrix} \text{NUCLEAR REACTIONS} & {}^{16}\text{O}(t, {}^{3}\text{He}), & E = 23.5 \text{ MeV.} & {}^{16}\text{N levels, analog identi-} \\ & \text{fication in} & {}^{16}\text{O}, & {}^{16}\text{F}, & \text{deduced } J^{\pi} & \text{in} & {}^{16}\text{F}. \end{bmatrix}$

The lowest T = 1 levels of mass 16 are explained as single-particle, single-hole excitations relative to the ¹⁶O ground state. Four low-lying states are observed: $J^{\pi} = 0^{-}$ and 1^{-} and $J^{\pi} = 2^{-}$ and 3^{-} corresponding to $p_{1/2}^{-1}s_{1/2}$ and $p_{1/2}^{-1}d_{5/2}$ configurations, respectively. The wave functions of these states are expected to be quite pure as there are no other known¹ T = 1 levels below an excitation of 3 MeV. These levels are known¹ in all three nuclei of the T = 1 triad ¹⁶N($T_{z} = 1$), ¹⁶O($T_{z} = 0$), and ¹⁶F($T_{z} = -1$); however, in ¹⁶F, spins and parities have not been established for these levels.

¹⁶F can only be studied using three light-ion induced transfer reactions: ${}^{14}N({}^{3}\text{He}, n)$ (Refs. 2, 3), ${}^{16}O(p, n)$ (Ref. 4), and ${}^{16}O({}^{3}He, t)$ (Ref. 5). A study of the systematics of the analogs of levels in ¹⁶N and ¹⁶O utilizing the expected energy shifts between ¹⁶O and ¹⁶F suggests³⁻⁶ a spin sequence of 0⁻, 1⁻, 2⁻, 3⁻ for the four low-lying levels in ¹⁶F. However, a sequence of 0^- , 2^- , 1^- , 3^- has been indicated based on the widths of the levels of ¹⁶F measured in a study of the ¹⁴N(³He, n) reaction.² Several other experiments with information regarding the spins of these states also have been reported: (1) Tentative L values have been suggested from studies³ of the ${}^{14}N({}^{3}\text{He}, n)$ reaction at incident energies of 10, 12.5, and 13 MeV; however, angular distributions are not shown and the $J^{\pi} = 1^{+}$ ground state spin of ¹⁴N does not permit a unique spin determination except for L=0 transitions. Furthermore, it has been shown⁷ that nondirect stripping processes may dominate the $^{14}N(^{3}\text{He}, p)$ two nucleon transitions to the ^{16}O ground state at incident energies up to >13 MeV. Similar effects might be expected in the ${}^{14}N({}^{3}He, n)$ reaction, (2) The relative cross sections of this same ¹⁴N(³He, *n*) study have been compared³ to ¹⁴N(*t*, *p*) transitions⁸ to the analogs of the four low-lying

states in ¹⁶N; however, the selectivity among these levels is not large in the two nucleon transfer reactions. (3) The second and third excited states in ¹⁶F are populated with much larger cross sections than the ground and first excited state in the ¹⁶O(p, n) reaction⁴ and especially in the ¹⁶O-(³He, t) reaction.^{5, 9}

The present communication presents data for the ¹⁶O(t, ³He) reaction populating the low-lying levels of ¹⁶N. Assuming isobaric invariance, the ¹⁶O(t, ³He) and ¹⁶O(³He, t) reactions should populate analogs in ¹⁶N and ¹⁶F with similar strength. Since the second and third excited states in ¹⁶F were populated with ¹⁶O(³He, t) cross sections over an order of magnitude larger than the ground and first excited states^{5, 9} it should be possible to study the analog identification between ¹⁶N and ¹⁶F by comparing results of the ¹⁶O(³He, t) and ¹⁶O(t, ³He) reactions.

The ¹⁶O(t, ³He)¹⁶N reaction was studied using the 23.5-MeV triton beam of the Los Alamos Van de Graaff facility. The reaction products were measured at laboratory angles of 20, 25, and 30° using an $E-\Delta E$ silicon surface-barrier detector telescope. The experimental procedures were identical to those in Ref. 10. A ³He energy spectrum measured at a lab angle of 30° is shown in Fig. 1. Similar transitions are observed from reactions on ¹⁶O target impurities in the spectra of previously published (t, ³He) studies.^{10, 11}

The ground state, $J^{\pi} = 2^{-}$, and the 0.297-MeV level, $J^{\pi} = 3^{-}$, of ¹⁶N are consistently observed (see Fig. 1 and Refs. 10, 11) to be selectively populated by the ¹⁶O(t, ³He) reaction when compared with transitions to the 0⁻ and 1⁻ states at 0.121 and 0.397 MeV in ¹⁶N. The shape of the (t, ³He) angular distributions for such bombarding energies does not vary rapidly with angle.¹² Therefore, it

409

FIG. 1. ³He energy spectrum for the reaction ¹⁶O- $(t, {}^{3}\text{He})^{16}\text{N}$ measured at a laboratory angle of 30° and at an incident energy of 23.5 MeV. The subscripts 0, 1, 2, and 3 identify the ground, 0.121-, 0.297-, and 0.397-MeV states in ¹⁶N.

is possible to identify the ground, $J^{\pi} = 2^{-}$ and 0.297-MeV, $J^{\pi} = 3^{-}$, states in ¹⁶N that are selectively populated in ¹⁶O(t, ³He) with the 0.424- and 0.720-MeV levels in ¹⁶F which were populated with large ¹⁶O(³He, t) cross sections.^{5,9} Similarly the 0.121-MeV, $J^{\pi} = 0^{-}$ and 0.397-MeV, $J^{\pi} = 1^{-}$ levels in ¹⁶N can be associated with the ground and 0.197-MeV states of ¹⁶F. This identification assigns either 0⁻ or 1⁻ to the ground and 0.197-MeV states of ¹⁶F and 2⁻ or 3⁻ to the 0.424- and 0.720-MeV states of ¹⁶F. Since the splitting of states in a

FIG. 2. Summary of the low-lying T=1 levels of mass 16. The diagrams corresponding to individual isobars have been shifted to account for the Coulomb energy and neutron-proton mass difference.

particle-hole configuration is 200-300 keV in ¹⁶N and ¹⁶O and should be independent of T_z , it is assumed that the spin sequence within the $p_{1/2}^{-1}s_{1/2}$ and $p_{1/2}^{-1}d_{5/2}$ configurations do not reverse between ¹⁶O and ¹⁶F. Therefore J^{π} of 0⁻, 1⁻, 2⁻, and 3^{-} are preferred for the ground 0.197-, 0.424-, and 0.720-MeV states, respectively, in ¹⁶F. This is the spin sequence consistent with the predicted energy shifts of the T = 1 nuclei of mass 16. The scheme of levels for ¹⁶N, ¹⁶O, and ¹⁶F are summarized in Fig. 2. The diagrams for the individual isobars have been shifted to account for the Coulomb energy¹³ and the proton-neutron mass difference. The downward shift of the 0^- and $1^$ states with increasing Z has been explained^{5, 6, 14} in terms of the Thomas-Ehrman shift.¹⁵

The authors acknowledge the assistance of S. Orbesen in obtaining the data and discussions with Professor F. Ajzenberg-Selove.

- [†]Work performed under the auspices of the U.S. Atomic Energy Commission.
- ¹F. Ajzenberg-Selove, Nucl. Phys. <u>A166</u>, 1 (1971).
- ²C. D. Zafiratos, F. Ajzenberg-Selove, and F. S. Dietrich, Phys. Rev. 137, B1479 (1965).
- ³W. Bohne, H. Fuchs, K. Grabisch, D. Hilscher, U. Jahnke, H. Kluge, and F. G. Mastersen, Phys.
- Lett. <u>47B</u>, 342 (1973). ⁴C. E. Moss and A. B. Comiter, Nucl. Phys. <u>A178</u>, 241 (1971).
- ⁵R. H. Pehl and J. Cerny, Phys. Lett. <u>14</u>, 137 (1965).
- ⁶T. A. Tombrello, Phys. Lett. 23, 134 (1966).
- ⁷O. M. Bilaniuk, H. T. Fortune, J. D. Garrett,

R. Middleton, and W. P. Alford, Nucl. Phys. <u>A180</u>, 69 (1972).

- ⁸P. V. Hewka, C. H. Holbrow, and R. Middleton, Nucl. Phys. <u>88</u>, 561 (1966).
- ⁹Groups corresponding to ¹⁶O(³He,t) transitions to states at 0.424 and 0.720 MeV in ¹⁶F also have been observed at incident energies nearer to that of the present ¹⁶O(t, ³He) study. See, e.g., J.-M. Loiseaux, G. Bruge, P. Kossanyi-Demay, Ha Duc Long,
- A. Chameaux, Y. Terrien, and R. Schaeffer, Phys.
- Rev. C 4, 1219 (1971) and N. Mangelson, M. Reed,
- C. C. Lu, and F. Ajzenberg-Selove, Phys. Lett. 21,
- 661 (1966). In these studies groups corresponding to

the more weakly populated ground and 0.197-MeV states of ¹⁶F were not observed because of poor statistics. It is apparent, however, that the cross sections corresponding to the 0.424- and 0.720-MeV levels are considerably larger than those for the ground and 0.197-MeV states at incident ³He energies below that of Ref. 5 and comparable to the incident triton energy of the present ¹⁶O(t, ³He) study.

- ¹⁰E. R. Flynn and J. D. Garrett, Phys. Rev. C <u>9</u>, 210 (1974).
- ¹¹E. R. Flynn and J. D. Garrett, Phys. Lett. <u>42B</u>, 49 (1972).

- ¹²E. R. Flynn, to be published.
- ¹³The Coulomb energies were calculated using Eq. (2) of J. A. Nolen, Jr. and J. P. Schiffer, Annu. Rev. Nucl. Sci. <u>19</u>, 471 (1969). A value of 3.48 fm corresponding to $r_0 = 1.38$ fm was used for the charge radius.
- ¹⁴See also R. J. de Meijer, H. F. J. van Royen, and P. J. Brussaard, Nucl. Phys. <u>A164</u>, 11 (1971).
- ¹⁵R. G. Thomas, Phys. Rev. <u>81</u>, 148 (1951); S. B. Ehrman, *ibid.* <u>81</u>, 412 (1951).