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It is shown how to construct Lippmann-Schwinger equations for the scattering of relativ-
istic projectiles from nuclear targets. The method is based on the Blankenbecler-Sugar re-
duction of a covariant equation. Among other topics, we discuss the optical model, the rela-
tivistic impulse approximation, coupled channel equations, and inelastic scattering.

It is somewhat surprising that one does not cur-
rently have a well developed theory of the optical
model appropriate to relativistic projectiles. The
eikonal theory of Glauber' has, of course, had
great success in interpretating the data in the rel-
ativistic domain; however, this theory rests on
specialized assumptions, and a theory which does
not presuppose the fixed-scatterer and eikonal
approximations from the outset is clearly desir-
able. Further, while the multiple-scattering theo-
ry of Watson, ' or Kerman, McManus, and Thaler'
has been used for relativistic projectiles, ' these
applications are somewhat ambiguous in that these
multiple-scattering theories are based completely
on non-relativistic dynamics. In this work me hope
to provide a basis for a systematic discussion of
the scattering of a relativistic projectile from a
nucleus and to indicate w'hich approximation
schemes may be useful. This mork, further,
forms a natural extension of the theory presented
previously for the scattering of non-relativistic
projectiles from correlated nuclei and mill reduce
to that theory in the non-relativistic domain.

As in the case of previous theories of the scat-
tering from a complex target, we mill assume that
the properties of the target and its various excited
states are completely known. As me shall see, this
means that me require a knowledge of a class of
vertex functions describing the (virtual) breakup of
the target and/or its excited states into their "con-
stituents. " %e also assume that we may introduce
a separate field for each nuclear bound state, that
is, we treat each nuclear state as an elementary
particle having its own propagator. This last as-
sumption allows us to use Feynman diagrams to
describe the dynamics of the scattering process.
The further assumptions necessary for a viable
theory will be indicated as we proceed. %e nom
turn to a review of the Blankenbecler-Sugar' ap-
proach based on the discussion of Partovi and
Lomon. '

The invariant amplitude, M, for the scattering of
a projectile (particle 1) from a target nucleus (par-

ticle 2) satisfies the integral equation (see Fig. 1),

M= U+ UglM,

U=K+E(G-g) U,

(2)

(3)

(a)

(b)

p, =W+p- L
2

k2=W- k-L p2=W- p-L

(c)

FIG. 1. (a) Schematic representation of the covariant
equation for nucleon-nucleus scattering. The double line
represents the nucleus. (b) A set of equations equivalent
to that in (a). (c) Graphical representation of IC(k, p( W)
where 2W is the total energy in the center-of-mass sys-
tem, k and P are relative momenta, and the four-mo-
mentum I has only a fourth component L = (m~ -mf )/2'
As discussed in Ref. 7, the use of I- serves to eliminate
the relative time dependence in the incoming wave func-
tion. Similar diagrams may be drawn for M(k,

pj's')

and
v(a, pi w).

M =K+ Kt"M,

where E is an (irreducible) kernel and G propagates
the projectile and nucleus between interactions.
Equation (1) is equivalent to the set of equations
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where g is a new Green's function. The choice of

g is somewhat arbitrary and a judicious choice is
necessary for a good approximation scheme. Cer-
tain choices reduce E(l. (2) to a three-dimensional
equation of the Lippmann-Schwinger form, with a
non-local energy-dependent potential. For defi-
niteness we consider the scattering of a spin--,'

projectile from a spin--,' nucleus and note two pos-
sible choices for g. First we write E(ls. (1}and

(2) as [see Fig. 1(c))

Now the Partovi-Lomon choice for g is
l2

g(A]((']= I([, ~„.5[((("+0-(I]' -m, ']

xe(W +k'- ,'1,)6-[(W' k+-,'r, )*-m, ']

x]e(W' —k + 'L)[y—(W'+k- gL)+mr]

x[y (W'- k+ ,'I.)-+m, ]
with

M(p ', p I W) = K(p ',p I W)
2W = ($2+m, ')'~'+ (g'+m, ')'~' (6)

+ d~kE p', k W C k 8' M k, p 8'

(4)

= f (p', pl w}

+ d~kUp', k 8'gk 8" Mk, p W,

(6)
where using the notation of Fig. 1(c),

1
G(k I

w}=—'
2]( y. (W+k ,I.) —m, +i—))1

2W'=((1" +m ')' '+(g" +m ')' '
Evaluating the integral in E(1. ('7) we have

g, (kl W) =

()[k' - n, (k)] ~(,)~(I)
(l'/2y, -E*/2)(, + i))

where p. is the reduced mass and

Z (k)=(k'+m ')' ' Z (k)=(k'+m ')' '

~,(k) =-,'[I.+Z, (k) —Z, (k)).

xl
y ~ (W-k+-,'L,)-m, +i)) (6)

A P) is the positive energy projection operator for
particle 1 etc.

Among the various alternate forms for g we also consider a form in which one of the particles is always
on-shell,

x 5[(w- k+ —,
' I )' —m, ']8(w- k'+-,'I )(2m, A (+2) }

m, +m, ()[ko- n, (k)]

Z, (k)+Z, (k) g'/2i], -k*/2)], +i))
(12)

with

n (k) = W+ 2 L —z2(k} .
made relating U to U, so that M satisfies,

M(p, p'I w)= V(p, p'I w)
It is also useful to define the quantity,

R(m„m„k) =- (m, +m, )

z, (k)+z, (k)

+ dkU p, k
(I*/2g -k'/2p + i))

and, for either function, n, (k} or n, (k}, we define,

M(5 O'Iw)-=M[p p'=&(5) 5' p"=&(5')Iw]
(14)

x R(m„m„k}M(g p'
I W}.

Finally, defining a T matrix through,

7'(p, 5'
I w}

(16)

with the further restriction that M is only defined
if matrix elements of E(l. (14) are taken between
positive ener spinors. A similar definition is

= R(m„m„g)' 'M (P, p
'

I W)R(m„m, P' }' ',
(16)
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we find tha, t

r(P, P'
j W) = V(p, P'

j W)

+ dkV, k 8'

(IV)x Z'(h, p'j W),

if V is related to U as T is related to M.
It is clear that in Eq. (I I) we have the result that

the scatt)ering of a relativistic projectile from a
nucleus may be descxibed by a Lippmann-Schwing-
er equation with a non-local, energy-dependent
potential as long as the relative energy ll'/2p is
calculated using Eq. (8) to determine q.

Before proceeding to approximation schemes for
the determination of V(II, p'

j W), we may note that
Eq. (IV) may be generalized to describe the cou-
pling of the elastic channel to some given subset
of inelastic Aeo-body channels. To this end we
may label the relevant channels by indices i, j,
etc. The masses in channel j are then m,' and m,',
the propaga. tors are G ') and g~'&, etc. Equation
(IV) becomes

refers to the (off-shell) nucleon-nucleon scattering
amplitude and the open circles are various vertex
functions. The diagrams on the right of Fig. 2(a)
may be termed impulse, correlation, and exchange
diagrams. These diagrams are further analyzed
in Figs. 2(b), 2(c), 2(d), into diagrams of similar
structure, but having different numbers of parti-
cles in the intermediate states. Our understanding
of the target structure and the non-relativistic
multiple scattering theory leads us to believe that
this series can represent the most important (irre-
ducible) scattering processes.

To show' the utility of our approach we will dis-
cuss the first diagram in Fig. 2(b) in somewhat
greater detail. This is by far the most important
diagram at high energies for a target which may
be described using Hartree-Fock or Brueckner-
Hartree-Fock theory. (The other diagrams will
be discussed in greater detail elsewhere. ) Re-
ferring to Fig. 3, me note that if the energy of the
projectile is quite large it may be reasonable to
assume that the nucleon-nucleon scattering ampli-
tude depends only weakly on the momentum ~. In-
deed, let us assume that this scattering amplitude
depends mainly on e, the mean energy available in
the center-of-mass system of the two nucleons,
and upon the momentum transfer, q. With that
approximation one may perform the integral over

$i /2p, g
—f /2Jl g

+ f

x r„(R,p'jW), (18)

where 2W=($, '+mP)'~'+(g, '+m~")'~' and p, is the
reduced mass in channel 5. Further, M„and U„
are related to the invariant amplitude T,~ and V, &

through factors appropriate to the spins and
masses of the particles in the channels. For
example,

r„(p, P'
j W) = ft(m'„m'„p)'~'E7, (p, p'

j W)

x R(mf, m~„j5' )'~', (19)

where R(m,', m,', ll) is the appropriate numerical
factor for the channel i [given by Eq. (12) for two
spin--,' particles].

7M preceding formalism is not particularly use-
ful unless one has some idea as to a reasonable
set of approximations for the calculation of the
irreducible interaction K once a form for g is
chosen. As an example, we consider the case of
nucleon-nucleus scattering and define a decompo-
sition of E into diagrams vrhich are the relativistic
analogs of those appearing in the non-relativistic

ultiple scattering theory. These diagrams are
shown in Fig. 2 and are appropriate to a relativis-
tic impulse approximation, containing no explicit
meson propagators. In these figures the black dot

(a)

(b)

FIG. 2. (a) Decomposition of the irreducible kernel
into various terms, the cross-hatched regions analyzed
in the following figures. (b) Impulse terms decomposed
according to the number of free propagators in the inter-
mediate states. (c) Correlation terms decomposed as
in (b). (d) Exchange scattering terms decomposed as in
(b). These terms are small for high-energy projectiles.
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FIG. 3. The leading term in a xelativistic impulse
approximation. The single lines represent nucleons
and the double lines represent nuclei. The open circles
are vertex functions which are presumed to be known.

x, and obtain a factorized result of the form,

K(R, p ~
W) =II(e, q')p(q'), (20)

where 3g is an on-shell approximation to the nucle-
on-nucleon scattering amplitude and P ((I') is a
form factor. In the simplest approximation
(U =K), therefore,

V(p, p'
~

W) = ft(m„m„p)'"K(p, P'
~
W}

xg(m„m„|I~ /~2

=6)I (e, q')p(q') (21)

with q=g' —p, and

p(q') =- p(~'} l,~~p') -rh(p)

%(&, q') =-II(e, (I ') ~,o ~P') ~p) .
In Eq. (21) we have also used the fact that 8= 1

in the ease of a heavy target. It is possible to
show fmost easily if we use g2 of Eq. (12}] that
p(q') is simply related to the Fourier transform of
the target density. We also note that Eq. (21) may
be rewritten in terms of the Lippmann-Schwinger
two-body t matrix since a relation of the form of
Eq. (16) would relate that f matrix to the invariant

amplitude 5g. In the non-relativistic limit
[m, /E, (p)] =1, our result goes over to the stand-
ard result of multiple-scattering theory for the
leading term of the optical model which is to be
inserted into the Lippmann-Sehwinger equation,
le, I (p, 5'l&)=&(~, q')P(4').

We may also discuss inelastic scattering in the
impulse approximation. We have

2' (5 p'
I &}= &„(p,O'

I
&)

=II (e, g')p„(q') (24)

P(f@ ) Pig((f }I ~o &(()(pt ) Q(»( )

II (& q') =6)I(e, (I')
I ~~()(p. ) ~(»(p), (26)

where P,.&(q') is the inelastic form factor connect-
ing channels i and j and 4 ' is the function appro-
priate to the g being used, defined in terms of the
masses in channel i. It is worth noting that analy-
sis of a great deal of experimental data based on
the factorized form Eq. (24) has indicated that this
form provides an excellent approximation. ' Fi-
nally, it is fairly obvious how a relativistic dis-
torted suave Born approximation for inelastic scat-
tering may be formulated starting from equations
such as Eq. (18).

The above considerations should be particularly
useful in providing a theoretical framework for the
use of the Schrodinger equation (with relativistic
kinematics) for such process as nucleon-nucleus
or pion-nucleus scattering at relativistic energies.
Some of the difficulties of current formulations
based upon ad hoc Schrodinger-like relativistic
equations may be seen in Ref. 9.
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