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A coordinate-space boundary-matching method is used to solve the problem of including
the long-range Coulomb interaction in momentum-space calculations of elastic scattering.

There has been considerable interest in mo-
mentum-space methods for solving the Lippmann-
Schwinger equation for scattering problems. Al-
though traditionally one solves the Schrédinger
equation in coordinate space, and obtains phase
shifts and differential cross sections from the
solution of the Schrdédinger equation, it is often
advantageous to solve the scattering problem in
momentum space. Particularly when one has to
deal with nonlocal potentials, it may be easier to
work in momentum space. One example is pion-
nucleus scattering, where the optical potential
derived from a multiple scattering theory is non-
local.! Another example is the treatment of heavy-
ion collisions,? in which the Pauli principle re-
quires a strongly nonlocal optical potential.

The difficulty of incorporating the Coulomb inter-
action in momentum-space methods has discour-
aged their use, in spite of the attempts of several
previous authors to solve this problem. One ap-
proach is to include the Coulomb potential in the
Green’s function that appears in the Lippmann-
Schwinger equation, so that only the short-ranged
part of the interaction need be represented in
momentum space. The required momentum-space
Coulomb Green’s function is easily calculated®;
however, its singularity is not a simple pole,
which could be treated by a subtraction method,*
but a complex power with negative real part,
whose infinitely rapid oscillations demand the
development of entirely new methods. A second
approach uses a free Green’s function, but adds
the momentum-space representation of the Cou-
lomb interaction to the nuclear interaction. Un-
fortunately, standard momentum-space methods
then become invalid, because the Coulomb matrix
elements (k| V.|k’) are singular at k=k’. A math-
ematically correct (but numerically inefficient)
method of overcoming this difficulty is to intro-
duce an exponential screening factor in the Cou-
lomb potential, and extrapolate calculated cross
sections to the limit of infinite range of screen-
ing.® A third approach is to expand the scattering
wave function in terms of regular Coulomb func-
tions. The complete matrix of the short-ranged
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interaction between regular Coulomb functions is
then required. Although this method is valid in
principle, in practice it would require a very
time-consuming calculation of large numbers of
Coulomb functions.

Several quick approximate methods have been
suggested. In one of these methods,® the nuclear
phase shift is approximated by adding the nuclear
phase shift produced by the deviation of the Cou-
lomb potential from the point-charge form to the
phase shift obtained without Coulomb forces. This
is accurate if the phase shifts are small. In
another method” the phase shift is calculated for
the potential truncated at a distance R. Subtracting
an asymptotic term of order (kR)”! then gives an
approximation to the nuclear phase shift in the
presence of the Coulomb interaction. By using
the momentum-space method without regard to
the singularity at k =k’, Chalmers and Saperstein®
find empirically that the phase shift obtained for a
point-Coulomb potential differs from the Coulomb
phase shift 0, by an amount o which is independent
of I. They give a rough argument to explain this
result, which enables them to calculate cross sec-
tions in the presence of the Coulomb interaction.

In this note, we show how the Coulomb inter-
action can be handled in momentum space by ex-
actly the same boundary matching methods that
are used in coordinate-space calculations.

For elastic scattering, the mathematical prob-
lem to be solved is to compute the so-called “nu-
clear phase shift” 5,,, which is defined by

U (k, 7)o Fy(kr, n) +tand,,; G,(kr, n). (1)

Here F, and G, are regular and irregular Coulomb
functions with Sommerfeld parameter n=2,Z,e*u/
ik and ¥, is a solution of the complete Schrédinger
equation. Once 6, is known, the cross section
can be computed from the “total amplitude” by the
exact formula®

F(8)=1c(6) +£u(6), (2a)
where the point-Coulomb and nuclear amplitudes
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are, respectively,

fe(0)= —;—k sin? <-§—> exp [Zi (ao - nlnsin%)] s
(2b)

fa(0)= E;lg D~ (21+1) exp(2io, )l exp(2i5,;) - 1] P, (cos8) .
1

(2¢)
The total potential is the sum of nuclear and
Coulomb parts
V=V, +V.. 3)

The Coulomb potential is produced by the nuclear
charge density. This can be separated into dis-
joint long- and short-ranged parts, as follows:

V=V, +Vs, (4a)
Vt =(Vn+Vc)9(r—R): (4b)
Vs=(V,,+Vc)9(R—’V), (40)

where 6 is the Heaviside step function defined by
8(x) = (1, x>0;

) (5)
6(x)=10, «x<O0.

In addition, we assume that it is possible to choose
R so that for 7> R

Vab=0 , Ve=2,Z,6*/r (r>R). (6)

It is best to choose R as small as possible, con-
sistent with Eq. (6). With these approximations,
the form (1) is exact for all »>R. Moreover, for
r <R the wave function is equal to a regular solu-
tion ¥,; of the Schrddinger equation with potential
V. If we know §g;, we can determine §,; by
matching the logarithmic derivatives of y; and
¥, at r =R. This method in no way depends on
how ¢,; is calculated. Therefore, ¢¥,; may as
well be calculated by solving the Lippmann-
Schwinger integral equation in momentum space,
instead of a coordinate-space differential equa-
tion.

The matching procedure is as follows: Let 0,
be the phase shift calculated for the potential V,
so that

Y1 (r) = F;(kr,n=0) +tan b5,G,(kr,n=0) .  (7)

The condition for this to match smoothly at v =R
with

Y, (r)Y<F,(kr,n) +tan b,; G,(kr,n)
is
_tandylF, G )+ [F, F,)

tans,, =
A = TF,, Gl tano,,[G,, G] - @)

Here the subscript 0 indicates n=0, the square

bracket is of Wronskian form, e.g.

dF _dG
[F,G ]Jc —-F——Q-J , 9)
01T | Yogy dar 1.,

and the angular momentum label / has been omit-
ted. We note that Coulomb functions are required
only at the single radius R. Now that fast, accurate
algorithms for the Coulomb functions are available,
the matching involves negligible computation. No
comparison calculations or extrapolations are
necessary.

Often the momentum-space wave function is
needed, in addition to the phase shift. Provided
that only matrix elements of short-range opera-
tors are to be calculated, this presents no dif-
ficulty, because it then suffices to calculate the
wave function only for »<R. The coordinate-
space version of the wave function ¢,; that is com-
puted by solving the Lippmann-Schwinger equation
is correct for ¥ <R, except for an over-all con-
stant factor. This factor is easily determined by
comparing the properly normalized y,, and y,,
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FIG. 1. Aplot of differential cross section do/dQ vs
c.m. scattering angle 8. The pion kinetic energy (lab)
is 30 MeV. Parameters involved in the calculation are
explained in text. On this scale, coordinate-space and
momentum-space calculations are indistinguishable.
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both evaluated at » =R in terms of F, G, F,, G,
and the known phase shifts §,; and §,,.

As an example of the boundary-matching method,
we present calculations for positive and negative
pions on 0, using an optical potential

@u/n%) V,==Al(b,+b)P2p()+3b, V()]  (10)

where b, and b, are (-0.7723 +0.94997) fm® and
(8.164 +0.4438¢) fm?, respectively,

_ E.(Py)
H=17E,(P,)/Mc

is the reduced mass of the pion and the target of
mass M, P, is the asymptotic wave number in the
pion-nucleus c.m. frame, and p(7) is the nucleon
density. For p(r) we used the modified harmonic
oscillator form

p@)=p,(1l+ar?/r)exp(-r?/r?) , (11)

with @ =%, 7 =1.7 fm and p,=1/[r% 3(1 +3)].
The Coulomb potential V. was taken as due to a
uniformly charged sphere of radius 2.7 fm. An

approximate Klein-Gordon equation

(v2+P02)4)a =(2“/h2)(Vn + Vc)% (12)

was solved in momentum space by the matrix-in-
version method described in Ref. 4. In our calcu-
lation we chose R="17.5 fm and used 24 grid points.
The stability of the calculation under the change
of number of grid points was checked by doing the
calculation with 16 and 32 grid points. Results of
this calculation were compared with those of a
conventional coordinate-space calculation. The
boundary-matching procedure did not perceptibly
increase the computation time.

Figure 1 shows the cross section computed for
a neutral projectile, compared with the Coulomb-
corrected cross sections for 7* and 7~ projectiles,
all calculations being done at E,(lab)=30 MeV. On
the scale of these graphs, the momentum-space
and coordinate-space calculations are indistin-
guishable. Similar accuracy was found at other

TABLE I. Nuclear phase shifts 6,; for point-Coulomb
potentials for P,=0.776 fm™~!, The exact values are
identically zero. The tabulated values were calculated
by applying boundary matching to the results of a mo-
mentum-space calculation with » grid points. The ac-
curacy is seen to decrease somewhat for large Z,Z,.

Z,Zz,=1 R=10fm Z;Z,=10 R=10fm
l n =24 n =32 n =24 n =32
0 3.6x10°¢ -3.7x107% 4.2x107¢ -—2.1x107*
1 1.1x107%  -7.9x1077 2.5x107* —7.2x107°
2 2.7x 1078 1.1x1077 3.9x107 3.9%x107°
3 —8.9x10"7 -4.3x10"% 5.5x107° 2.6x107°
4 4.1x1077 -4.9x107% 1.7x107* 3.3x107°

energies. The influence of the Coulomb attraction
and repulsion and the Coulomb-nuclear interfer-
ence effects are clearly visible.

In order to indicate the numerical accuracy of
the method, we present the results of the calcula-
tion in which the total potential was just the point-
Coulomb potential (V. =Z2,Z,e?/r). The exact
nuclear phase shifts for this problem are identical-
ly zero. The results of momentum-space calcula-
tions are presented in Table I. The errors may
be larger here than in the realistic case because
of the singularity at » =0.

We believe that this simple accurate method re-
moves what previously seemed a serious obstacle
to the use of momentum-space methods in problems
where the Coulomb force is important. The method
can easily be extended to other cases (such as in-
elastic scattering) as long as the nuclear potential
can be treated as of strictly finite range.®

ACKNOWLEDGMENTS

We wish to thank G. A. Miller and R. A. Eisen-
stein for instruction in the use of their coordinate-
space elastic scattering code, and F. Tabakin for
the encouragement he gave us in several discus-
sions.

*Work supported in part by the National Science Founda-
tion.

lE.g., R. H. Landau, S. C. Phatak, and F. Tabakin, Ann.
Phys. (N. Y.) 78, 299 (1973); M. G. Piepho and G. E.
Walker, to be published.

2W. Glockle, Ruhr Universitat report (to be published).

3S. Okubo and D. Feldman, Phys. Rev. 117, 292 (1960);
L. Hostler, J. Math. Phys. 5, 591 (1964); J. Schwinger,
J. Math. Phys. 5, 1606 (1964).

4M. 1. Haftel and F. Tabakin, Nucl. Phys. A158, 1 (1970).

SW. F. Ford, Phys. Rev. 133B, 1616 (1964); R. M.

Thaler, in Lectures in Theoretical Physics (Univ. of
Colorado Press, Boulder, Colorado, 1966), p. 519.
8G. Faldt and H. Pilkuhn, Phys. Lett. B40, 613 (1972);
V. Franco, Phys. Rev. D7, 215 (1973); H. A. Bethe,
Ann. Phys. (N. Y.) 3, 190 (1958); E. Kujawski and

M. Aitken, to be published.

"Review of contributions and discussions at the working
seminar on Generator Coordinate Method for Nuclear
Bound States and Reactions, Ljubljana, 1972 [Fizika
Suppl. 5, 73 (1973)l.

8J. S. Chalmers and A. M. Saperstein, Phys. Rev. 156,



394 C. M. VINCENT AND S. C. PHATAK 10

1099 (1967). arises in a correct treatment of the Klein-Gordon
9Some modification of the method may be useful in equation with the Coulomb potential can be removed
treating potentials V, that fall off more slowly than an from V, if F and G are replaced by more appropri-

exponential. In particular, the » ~2 potential that ate hypergeometric functions.



