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The self-cranked generator coordinate (SCGC) formalism described earlier for computing
the mass parameter for collective nuclear motion is cast into a form containing no explicit
reference to the Hamiltonian. The expression is then specialized to the nuclear model of de-
formed harmonic oscillators. The usual Gaussian overlap approximation is eschewed in
favor of direct evaluation of the appropriate matrix elements. Exchange terms are handled
by a diagrammatic technique. The validity of certain assumptions made in the derivation of
the mass formula is tested numerically. The effects of pairing and of short-range Jastrow
correlations are investigated. The SCGC mass parameter is computed for several N =Z nu-
clei and found to be smaller than either the cranking or the irrotational values, if no correla-
tions are included. The inclusion of short-range correlations is shown to lead to important

changes in the value of the mass parameter.

cranked generator coordinate formalism. Correlations included.
Compared to irrotational flow values.
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I. INTRODUCTION

In a previous paper,' hereafter referred to as I,
we derived an expression for the mass parameter
associated with collective nuclear quadrupole mo-
tion. A number of approximations and assump-
tions about the behavior of certain matrix elements
was necessary, and it is the purpose of this paper
to study in a simple model how well these matrix

]

for the mass parameter B,

Jda'(a|H -E| a')(a' - a)?
Jdo'(a| ')

Bl (a)=~

elements conform to the expected behavior.

The idea of I was to modify the Hill-Wheeler
projection technique? to incorporate the dynamics
of the deforming system into the formalism. In
particular the system is self-cranked in such a
manner as to guarantee that the total energy is a
minimum. Such a self-cranked generator coordi-
nate (SCGC) approach yields two possible forms

2[ [da'(a|(Q ={Q) JWH - E)| o’)a'= 0)]?/[da’(a] a’)

~ Tda (@] (@—{ @ JH -EXQ ~( Q)| @)de’ 7 da'(a](@ —(Q) FH-B)] ) °’ (1)

where H is the total (microscopic) Hamiltonian of
the nucleus, E the total energy, and Q=31 ¢;
the mass quadrupole moment operator. The
rounded bras and kets refer to the intrinsic nu-
clear wave functions (Hartree-Fock, shell model,
or exact) and o @’) may be any convenient label
denoting the deformation of the state. Below, the
variable « is explicity related to the potential
deformation € in a convenient way. The angular
brackets require a coordinate space integration
with respect to wave functions of the indicated

r

deformation. B, represents the form of the mass
appropriate to the classical (E > V) region, and
B, that appropriate to the classically forbidden
(E<V) region.

The actual evaluation of Eq. (1) is complicated
by the appearance of matrix elements having bras
and kets corresponding to two different deforma-
tions. This means that the various exchange
terms which would vanish in the case of an ex-
pectation value do not in general vanish here. It
is still possible to study Eq. (1) numerically in

353



354 P. K. HAFF AND L. WILETS 10

an approximate but simple way, and in Sec. II

Eq. (1) is reduced to such a form suitable for
calculation with, e.g., constrained Hartree-
Bogolyubov wave functions. For the sake of sim-
plicity and clarity the wave functions |a) and | a’)
are assumed to be composed of deformed harmonic
oscillators, but no spin-orbit coupling is included.
The effects of pairing are included by way of the
BCS formalism. Two-body correlations of the
Jastrow type are also included. In Sec. III nec-
essary formulas are compiled, in Sec. IV numeri-
cal results are given for particular matrix ele-
ments of interest, in Sec. V the SCGC mass of
Eq. (1) is compared with the irrotational liquid
drop model and the effects of correlation are
shown; in Sec. VI a brief summary is given.

pears in Eq. (1) to act upon (a| yields

II. SIMPLIFIED MASS PARAMETER

Although deformed harmonic-oscillator wave
functions are used ultimately, it is assumed for
the moment that more realistic wave functions are
available. Thus suppose that the intrinsic wave
functions | @) are very good to begin with (before
projection), so that they nearly diagonalize 3¢
=H+&Q. Here & is a Lagrange multiplier chosen
such that the solution has a specified quadrupole
moment (@), a function &. Then, at the extremum
points in the potential energy curve characterized

by @=0,

(a¢|(H-E)~0 .

Commuting (H - E) to the left everywhere it ap-

p. - Alda'(e|(Q-(@)Q| o) +[da'(@| @] ') &’ - @)] [da'(a| @)

for E>V and

for E<V. Here

2[fdo’(a] Q| &')ta’ - @)]? o
5 - izjda’(al é(Q‘(Q)q’)‘ ) +Ida’(a[(Q—(Q))éf ) +Ida’(a| é, a’)(a' - a)} fda’(&! a’) (2b)
< 2[[da'(a] Q] a’')(o’ - &)]?
and
. - A
Q=i[H, Q] . (3) Q= Z Zliqu (4e)

Equation (2b) is included for the sake of com-
pleteness alone since for the harmonic oscillator
the potential energy curve does not turn over with
increasing a and consequently, only the energy
region E>V is appropriate. The Hamiltonian H

is not explicit in either Eq. (2a) or (2b). In the
following section the matrix elements in Eqs. (2)
are specialized to the case of deformed harmonic-
oscillator wave functions.

III. SOME NECESSARY FORMULAS

Equations (2) for the mass involve matrix ele-
ments of the operators

1, (42)
A

Q=Y a, (4b)
i=1

. A .

Q=) 4=i[H,q], (4c)
i=1

. A
QQ= Y ai,, (4d)

i, §=1

each taken between states at different deformations.
Consider the single-particle matrix elements. The
simplest of these is just the overlap

[ Vinny (9923 i (0p2; )T

=(mnng a|lm'n'n; o), (5)

where a and o’ label the deformation and in gen-
eral a#a’. Since only cylindrically symmetric
nuclear deformations are considered, the wave
functions are given as functions of the cylindrical
coordinates (¢, p, 2). Then n and n, enumerate
quanta in the p and z directions, respectively, and
m is the z projection of angular momentum. Equa-
tion (5) may be factored as follows:

<mnl; cxlm’n’n,’; al> = 6mm’ (R:(YP); R:"(Y'p»
X thy, (A2), thyy (N2, (6)
where y(y’) denotes the scale of the potential in

the p direction and A(X’) that in the z direction.
The requirement of conservation of nuclear volume
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leads to the relation
Ay? =constant. )

The quantities, A, y are related to the frequencies
w, and w,, in the z and p directions, respectively,
by the equations

/
x—(ﬁ_}_‘_“’_)
, (8)
_ (B 172
v= (L),

overlap is found to be

2 \Y/2/ntnlt\1/2

=n

2 2
= ATEENX
(ng=nz)

y i/z <)Jz _A2>2h+(n;-n')/2<

where p is the nucleon mass. Neutron and proton
masses are taken to be equal to each other.

The wave functions in the z direction are cne-
dimensional harmonic oscillators

A 1/2 _ 2
u,,‘()\z)=(—ﬂ—”—22—"—‘—'—l‘—l> e '2/2H,,x()\z) ,
(9)

where H,,‘ is a Hermite polynomial. Using the
generating function for Hermite polynomials,® the

4XX' Ng -2k __)k
r—ﬂ ( (10)

B [5(n] = ng) +k) 1 [n,—2k]1

Equation (10) is valid if n, - n, is even (otherwise the overlap is zero), and if n, <m;. If n,>n}, the overlap

may be found by exchanging n, with n, and X with A’

The wave functions in the p direction are the two-dimensional harmonic oscillators

R(yp) =7<[( 2nl

m+n

1/2
TsTs)  exp= Gy e LI,

(11)

where L) is a Laguerre polynomial. Using the generating function for the Laguerre polynomials,® the

overlap is found to be

f dppR,’{'(Vp)R.':"(Y’p)=( 2n )M< #inl

)1/2

yZ+y'2 (m+n)! (m+n)!
n+n’ (m+k)! ek 72_712>2k—(n+n')
XL G R -mi =T ) (552 ' (12)

(n=zn')

Equation (12) is valid if n=n’. If n<n’, the overlap may be found by interchanging n with »’ and y with y’.
Consider now matrix elements of the quadrupole operator

q=2z*-p*, (13)
namely
(mnn,| g[m'n'nl) = Sl 2mn|mn’) (n | 2% (1) = (n[n}) (mn| g* [mn')], (14)

where the bar indicates that the wave function depends upon either A’ or y’. The overlap integrals in Eq.
(14) have been computed above. Equation (14) may be rewritten as

(mnny| qlm'n'n.) = 6ppm [2 (mn|mn) Y (n|2?|n%)(n

n
nz

?[nly = (ng|nl) Z {(mn)| pzlmn’>(mn”|m—'):|_

(15)

Each sum will contain at most three terms. The nonvanishing matrix elements of p* are

(mn|p?|mn") = f dppRI(vp)p*RIw(vp)

1
-;—2(2n+m+1), n"=n

n"=n-1,

e fatmem)

\

—-;15[(n+1)(m+n+1)]1/2, n"=n+1

(16)
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The nonvanishing matrix elements of z? are
(nglz2|n.) =f dzu, (/\z)zzu":()tz)

(1,

FE[(mz)(nu)]l/a n"=n+2

”n —

"
A

1
'iz"(n +3), n

n"=n-2.

;—zé[n(n - 1)]1/2,

L
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(17)

The operator g is taken to be the commutator of ¢ with the kinetic energy part of the Hamiltonian H=T

+V:

- T2, 8 8
q=d7T,q]= M [Zzaz—pap},

(18)

where p is the nucleon mass. The matrix element of ¢ may be decomposed in a manner similar to Eq.
(14). It is then necessary to know matrix elements of z(d/9z) and p(8/0p) between states belonging to the
same Hamiltonian. The nonvanishing matrix elements of p(8/9p) are:

mn”> = f dppR,’."(rp)p—a%— Ryu(yp)

-

9
Pap
‘[(n+1)(m+n+1)]1/2, n”=n+1

={-1 " =
(n(m +n)]/2, n"=n-1

and the nonvanishing matrix elements of z(8/92) are:

(o

a
2 7= 2 ww
252 n,> f dzu, (A2)z 55 Unn(A2)

(n, +1)(n, +2))'/2, n?=n,+2
’ ng=n,

_%[n‘(n‘_l)]l/z’ nlzlznx_z'
The generating functions of the Hermite and La-
guerre polynomials were used in obtaining Eqs.
(16), (17), (19), and (20). )

The two particle operators of interest are Q@
and QQ . Their matrix elements are treated in a
fashion similar to the above. Consider

. A -
Q= au, .

hi=1

(21)

If Z #j, the matrix elements of (21) will reduce to
products of the matrix elements of ¢ and ¢, which
are discussed above. For the case i =j the inser-
tion of a complete set of states again reduces the
problem to the evaluation of matrix elements
already studied. The operator Q@ is handled in an
entirely- equivalent manner.

(19)

(20)

r

Attention may now be turned to the evaluation of
matrix elements of the operators of Eqs. (4) with
respect to the complete many-body nuclear wave
functions. These wave functions are taken to be
antisymmetrized combinations of single-particle
functions. These latter functions are deformed
harmonic oscillators. Furthermore, the effects
of short-range residual interactions is simulated
by means of the BCS pairing formalism. Jastrow-
type correlations will be introduced at a later
stage. Thus the basic wave function for an even-
even nucleus may be written

W(Fl,...,FA)=H(u,+u,a;_aI)|0), (22)
i=1

where u;(v;) is the probability amplitude that the
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—

single-particle state ¢ and time reversed state

7 is unoccupied (occupied). The index i goes over
neutrons and protons separately. The amplitudes
u; and v; satisfy

ul®+v?2=1, (23)

The operator a;r creates a wave function for the

state ¢ when it operates upon the particle vacuum.
a; annihilates such a state.

The BCS coefficients u;, v;, as well as the op-
erators a;r and a;. are functions of the deformation
variable a’. Thus

U(F,...,T)=¥F,...,Fsa)=]a). (24

The occupation amplitudes were computed from

a pairing strength G ranging from 0.3 to 0.5 MeV,
the larger values for lighter nuclei. Since wave
functions at all deformations are included in the
definition of the mass B [Eq. (2)], deformation-
dependent pairing strengths should in principle be
employed. As little is known about the deforma-
tion dependence of G, the pairing strength is as-

—

For the neutron overlap

sumed independent of the nuclear shape (see,
however, Ref. 4). The number of proton or neutron
states used in the pairing calculations was on the
order of 12 states on each side of the Fermi level.
The levels entering the calculation were chosen
from the lowest members (at the desired deforma-
tion) of that group of states which included levels
up through the two shells above the spherical
Fermi level.

It is necessary to write down the many-body
matrix elements of the operators, Eq. (4), in
terms of the BCS coefficients u;, v; and the single-
particle matrix elements discussed above. While
it is not feasible, for a large-A system, to include
all possible exchange terms, the many-body
matrix elements can be expressed in an approxi-
mate fashion by considering all contributions
through terms arising from each distinct pair of
paired particles. Since neutrons and protons are
considered separately, only neutrons are treated
here. Protons are dealt with in a completely
analogous way.

(] @) =(0] (4, +v,a,a1 Nu, +vya,a5) » + (4} +v2'a"zfa':) (w! +v{a’;a’j)l 0); (25)

the lowest-order term is the direct term,

H (unue) +v, 02 n|n)?) ,

where the primed quantities are functions of o’. Single-particle bras are understood to be functions of
a, while single-particle kets are functions of a’. Use has been made of the anticommutation relation

{a,,a”T}=(ilj).

(26)

The next terms to be considered arise from the contributions of each set of two pairs. In this case,

(al @) =TT (o + vy Cnln)?)

u 0,0 05€1]2) 2% +vyu, vl wl (2| 1) 2+ v0, 000! (2| 1) 3(1]2)2=2(2]2)(1]1)(2[1)(1|2))

X 1+Z

1<2

(upttg + 0,05 (2] 2) 2)uuf +v,0! (1] 1)?)

@7

Here the numerals 1, 2 are shorthand for n,, n,. The overlap for the whole nucleus, including protons,
is just the square of Eq. (27) if the number of neutrons equal the number of protons. This is the case con-

sidered here.

The various terms which enter Eq. (27) may be illustrated graphically in the following manner

=00l vi(2]2)%(1]|1)2 .

ol R

(28)

The numbers on the left of the diagram refer to orbitals of deformation @, while those on the right refer
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to orbitals of deformation o’. The topmost horizontal line for each state represents the overlap matrix
element for a (j, +m,) particle, the lower line that for the time reversed state (j, ~m,). Here j,m; are
the angular momentum and z projection of the particle. The example above, for the two occupied pair
states, gives the direct term. If the (j,, —m,,) particle is exchanged with the (j,, -m,l) particle, then

I Q/ 9 |

/

N =—uwuu(2(2)(11)(1]2)¢2 (1) (29)
S

If both particles are exchanged

~ / )t

TN

Y \} =+o,0,0 00 (2)1)%1]2)2 . (30)
N\,

The above examples all carry factors of v,v,v] v; since all states were occupied. However, another pos-
sible contribution would be

IQ\\ Ot
O =ouuli(12)? . (31)
20 S e

The diagrammatic approach is unnecessary for the elucidation of the terms of the simple overlap (a| a’),
but becomes useful in a systematic listing of the terms of (a| 6| @’), where © may be a two-, three-, or
four-body operator. .

The matrix elements of the single-particle operators @ and @ may be written down in a manner very
similar to that leading to Eq. (27). For the quadrupole operator @

(el Ql a'>~4(a|a'>{2 - v'qd‘(lm

mn

+ Z vluzvz’v{qx2<1|2)+vlvzv1’vz'(qlz<1,2)<2“>2-411<2|2><1l2><2|1>‘q12<1‘1><2|2><2“>)(
myn, d,d, )’

(32)
where

‘IuE<ilQIj>
and

d;=ugul +v,0){i|i)? .

In the result Eq. (32) we sum over one nuclear species only. An example of the type of diagram contained
in Eq. (32) is

QO //9 |

\\( = r gt 2

PaPN = 90,0 v q,,(2]|1)(1]2)?, (33)
2b 7 T~ Do

where the line with the cross represents a matrix element of q.
Finally to be considered are the quantities (a| QQ| a’) and (a| Q@ | a’). The operator of the first expres-
sion is

QQ-= Z Qi?11= Z %ids +Z 4. (34)
ied i

i=4
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The first sum on the right-hand side is a single-particle operator which has been treated above. It is
useful to break up the second two-body term in such a way that neutron and proton coordinates are ex-

plicitly exhibited:

Z 41214: Z q(nq.j" + Z qi’.qj’ + Z q‘p.q",, +Z: qi,,zl;p . (35)

i=j in#=i, ip=p

ipudn ipdy

Matrix elements of the last two sums are products of the matrix elements discussed above. All contribu-
tions corresponding to the first two sums may be found from diagrams such as

= - 0,001 V) 41,,,2[2)(2|1),

«\%/'”/;2

(36)

where X represents the matrix element of ¢ and O and that of g. The complete expression for (o QQI a’)

is lengthy and is not reproduced here.

IV. OVERLAP MATRIX ELEMENTS

The derivation in I of Eq. (1) of this paper made
use of certain assumptions about the shapes of
overlap matrix elements (a| ©| @’), where O is a
few particle operator. In particular it was as-
sumed that (a|©| @’) has a peaked shape about
a’ = a, in contrast to the diagonal matrix element
(a’| @] @’) which is supposed to be smoothly varying
with @’. This is most clearly seen in the case of
the normalization overlap (a| o’). If o’ is slightly
different from «, then the corresponding single-
particle states ¢ have overlaps v; with each other
that are slightly less than unity. If an average
overlap is v, then (a| @’) is reduced from unity by
a factor v#, where A is the number of nucleons.

!(6(6’)

045 030 -05 0 05 030 045

DEFORMATION €’

FIG. 1. The overlap of the many-body function | €’)
=¥ (7y,°** 7 4; €) with the wave function |€) is shown for
two different mass numbers, A =40 and A =224. The
quantity €’ is related to the potential deformation and is
defined in the text. €’=0 corresponds to zero potential
deformation. €=0.

If A is large, then v* may be quite small even
though v~ 1. This is a statement that (a| a’) is
sharply peaked about a’=a. The approximation
requiring the matrix element to be sharply peaked
should then be better for heavier nuclei.

This argument of fast falloff as presented is
strictly true only for small |a’ - a|. When o’
# o, in addition to the direct term

A
(el =T] G; eli; a?, (37)
i=1

there are exchange terms present since in general
(¢, @|j, a’) #0. These terms appear as corrections
to Eq. (37),

A
(ala) =] G; ali; a1 +Ci(a, 2], (38)
i=1

and their explicit form is given approximately in
Eq. (27). For a’=a, C;=0. As ja’'-al in-

(€'lQl€’)

069 075 08 087 093 099
DEFORMATION ¢

05 057 063

FIG. 2. The variation with deformation €’ of the ma-

trix element (€]|Q[€’) is compared with that of (€’|Q] €’).
A =224.
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creases, |C;| will increase. The direct term is
dominant, however, and as shown below the ex-
change only modestly affects the falloff widths.
These falloff patterns are well known in the cases
of nuclear rotations® and vibrations.® In the latter
case, however, the approach is usually to employ
the “Gaussian overlap approximation” rather than
to use the actual shape of the matrix element.
The Gaussian assumption is discussed below.

The more complex overlap functions (a| 0| a’)
are expected to behave in a manner similar to
(a| @’) if © is a few particle operator. In that
case the majority of the nucleons (the “core”)
enjoy the same overlap properties as in the nor-
malization case, so that for large A the peaked
property should obtain. There are cases where
(a| ©] @) will not be peaked, and in fact will vanish
at &’ = @; for example if © is an odd operator.
The shape of the matrix element is then such that
its absolute value rises from zero as | a’ - a|
increases, but then decreases again quickly as
the damping effect of the core nucleons comes
into play.

Some of these results are shown in Figs. 1-17.
Figure 1 shows the overlap matrix elements for
a nucleus with equal numbers of protons and
neutrons. Here the parameter &’ is directly
related to the potential deformation and is called
€’. The nucleon potential is taken to be’

V=3p[(x?+y?)w? +22w,?], (39)
where
w, = wo(1 = 3€) 7' = wy(1 +3€),
L (] 3 (o] ‘ 3 (40)
W, = wo(l - %5)2 z‘-')0(1 - %E) ’
and
w,%w, =w,® =constant . (41)

Positive € decreases the frequency along the
symmetry direction compared with the spherical
case €=0, so €>0 refers to prolate distortions
and €<0 refers to oblate distortions. The curves
in Fig. 1 are approximately symmetrical about
€’=0, and as expected the A =224 width is nar-
rower than that for A =40. In fact, the curves
oscillate slightly far out in the wings, but the
amplitude is too small to be seen on the scale

of the figure.

Figure 2 shows a comparison between the ma-
trix elements (e| Q| €’) and (€’| Q| €’) for the A
=224 nucleus at €=0.75. The diagonal matrix
element is a smoothly varying function of €’,
while the overlap is peaked at e’=€. The curve
corresponding to (e’| @|€’) for the case of the unit
operator (€’|€’) would be a horizontal line in Fig.
1.

72030 -0I5 0 015 030
DEFORMATION €’

FIG. 3. The effect of particle exchange on the overlap
is demonstrated. The lower curve shows the overlap
with exchange contributions neglected. To obtain the
overlap values with exchange, the lower curve must be
multiplied by the upper curve. A =184.

In Fig. 3 is shown the effect of particle exchange
on the overlap (€| €’) at e=0. The lower curve
gives the falloff if no exchange is included. It is
to be multiplied by the upper curve to get the
proper shape for inclusion of exchange. At €’
=0 exchange has no effect because the single-
particle orbitals ¢, j on opposite sides of the
matrix element have vanishing overlap unless
i=j. As |e—-¢€’| increases from zero, exchange

A ele)

045 030 05 0 0B 030 045
DEFORMATION ¢’

FIG 4. The effect of pairing on the overlap is demon-
strated. The solid curve is for the case of no pairing,
while the dashed curve shows the effect of pairing, with
strength G=0.4 MeV. A =184.
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effects are felt. They tend to broaden the peak
a bit. Although the exchange factor seems to be
shooting up rapidly for prolate (¢’>0) deforma-

tion, the direct termis falling much more rapidly.

Pairing tends to have the opposite effect on the
overlap; namely, it narrows the peak. In Fig.

4 this effect is shown for wave functions without
pairing and for wave functions with a pairing
strength of 0.4 MeV. Both functions are normal-
ized to unity at €’ =0.

It was assumed in I that the width A(a) of the
normalization function (a| @’) was not rapidly
varying with @. In Fig. 5 (€|€’) is plotted as a
function of €’ for several values of € corre-
sponding to oblate, spherical, and prolate de-
formations. In Fig. 6 A is plotted as a function
of €’. The prolate and spherical widths (e=0.75,0)
are not very different from each other. The
oblate width (e = - 0.75) is somewhat larger. The
prolate deformations will generally be of the
greatest interest.

In I it was suggested that the integrals over o’
be carried out by an expansion technique which
approximated the shape of (a|©|a’), for small
enough |a’ - a|, by a Gaussian form

(a|0] @) =e~ @~/ 2% A(a) + B(ay o’ - )] ,

(42)
where
B(a, 0)=0 (43a)
and
Ale)=(a|0|a) . (43b)

Because of difficulties concerned with the con-

10

— 4 ) LN >
-045 -030 -0I5 O 0I5 030 045
DEFORMATION INCREMENT Ae’

FIG. 5. The overlap (e|l€’) is plotted as a function of
€’ for several values of €, corresponding to an oblate
potential (€ =-0.75), spherical potential {€ =0), and a
prolate potential (€ =+0.75). A =140.

vergence of these types of expansions,® and be-
cause of the difficulties of evaluating B, the func-
tions (a| ©] @’) have been numerically integrated
with respect to @’ in the present paper according
to the requirements of Eq. (1). Nevertheless, it
is still of some interest to see how closely the
overlap, for instance, may be approximated by

a Gaussian form. In Fig. 7 the “exact” overlap
(€| €") for A =40 is compared with both a Gaussian
exp(-33/9 €’?) and a modified Gaussian exp(- 33/
9 €’2)(1+33/9€’3). The falloff distance comes
from a consideration of the A =40 configuration

at spherical. These expressions are exact to
order €’? and €’3, respectively. The modified, or
skewed, Gaussian form is somewhat better than
the pure Gaussian, but this approach is not pursued
below.

As one check on the calculations, the overlap
generated from Eq. (27), but with pairing turned
off, is compared to an overlap expression com-
puted without any initial reference to a pairing
force, but including exchanges among all distinct
groups of two, three, and four particles. The
curve labeled “exact” in Fig. 7 was computed in
the latter manner and agrees very well with the
curve calculated from Eq. (27). The contribution
from exchanges among all distinct groups of
three and four particles was too small to sig-
nificantly affect the curve of Fig. 7. This result
supports the use of truncation as discussed in
connection with Eq. (27).

V. MASS PARAMETER

In I the mass parameter B was identified in the
Schrodinger equation for the wave function f(a)
describing the quadrupole motion. The differential
equation is approximately equivalent to an integral
equation, derived from a variational principle.
The approximation of going from the integral to
the differential form involved the neglect of terms

Ale))
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FIG. 6. The overlap width A is shown as a function of
deformation €’ . A =140.
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containing derivatives of f higher than the second.
The relevant parameter involved in the expansion
of f(a’) about a’=a is A/L, where A is the falloff
distance discussed above and L =27/k is the local
collective wavelength associated with f. Here

1/2
kz(—z—l%_%LB> fm™ . (44)

E is a typical vibrational energy and B is the
effective mass. If A/L is small, then the neglect
of higher derivatives of f is valid. To get an
estimate of the size of this quantity, E.; may be
taken to be 1 MeV and B to be the irrotational
result®

BU™ ~0.036 MeV/(fm? ¢2) . (45)

This particular value is taken for the A =140
system at spherical (see discussion of irrotational
mass below). Converting the dimensionless fall-
off parameter A, as given in Fig. 6, to fm?:

A/L~0.06. (46)

The true mass B may, in fact, be an order of
magnitude larger than the irrotational estimate®
Eq. (45), in which case A/L is about three times

(eleh
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FIG. 7. The overlap for A =40, with exchange, is
compared to a Gaussian shape and to a skewed Gaussian.
The solid line is the Gaussian shape, the dot-dashed
line the skewed Gaussian, and the dashed line the exact
overlap. The shape of the “exact” falloff curve differs
from the A =40 curve in Fig. 1 first, because pairing is
not included in Fig. 7 and second, because of the number
of single-particle states included. In the above figure
the lowest ten states at spherical are used at all deforma-
tions, while in Fig. 1 the lowest ten states at each defor-
mation are included.

larger than the result in Eq. (46), but still small.

The results for the mass parameter are shown
in Fig. 8. The quantity actually plotted is Bg,
which corresponds to the inertia appropriate to
the kinetic energy (3) BQQZ. The solid lines cor-
respond to the irrotational flow result,® while the
dashed lines refer to the SCGC approach described
in I and calculated according to a simplified pre-
scription in this paper. Since the negative kinetic
energy region at spherical [where Egs. (2) are
valid] is inaccessible in the present model, only
values for B, are given.

The general trend of the curves with mass num-
ber A may be understood in terms of scaling ef-
fects. The irrotational result (at spherical) is®

By =i (47)

where u is the nucleon mass. This quantity de-
creases with mass number in proportion to A-S/ 3
S0

BG) ~A-/3 (48)

The masses are plotted as a function of potential

60

DEFORMATION €’

FIG. 8. The mass parameter for irrotational motion
(solid line) is plotted vs the deformation parameter €’
and compared to the mass computed according to the
self-cranked generator coordinate (SCGC) method (dashed
line). The unpaired cranking model coincides at spheri-
cal with the irrotational result. The curves are labeled
by mass number A .
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deformation. However, the particular form (2)
used for the projected mass is valid only at the
equilibrium points in the potential energy curve.
For the simple harmonic oscillator this means
the projected result should be consulted only at
€’=0. The projected mass has been computed at
a number of other deformations, with pairing
included, to test the utility of the diagrammatic
expansion of the matrix elements. The effect of
increasing the pairing strength G from zero is to
increase the mass by up to a factor of 2, but as
G increases further the mass begins to decrease.
Thus pairing appears to have less of an effect
here than in the cranking model where an increase
of B by an order of magnitude is indicated.® In-
creasing by one shell the number of states from
which levels are chosen for the pairing calcula-
tion increases B, by about 10%. Increasing the
number of states actually used in the pairing
calculation by 10 leads to a reduction in B, of
about 10%. These figures are rough averages
for various mass numbers and deformations.

The projected masses of Fig. 8 are to be com-
pared with the irrotational flow value, which may
be shown to be given by

(i) o #

Bo = 42A(r?) +Q] * (49)
(See also Ref. 9.) Equation (47) is a special case
of Eq. (49). One usually associates'® the values
of Eq. (49) with a lower limit on the physically
allowed values of the mass. The fact that the
projected results turn out in the present case
to be still lower suggests several conclusions.

The first of these is that the harmonic-oscillator
model employed for the intrinsic wave function
even with pairing may not contain sufficient cor-
relations to provide for the possibility of the type
of collective motion considered here. The diag-
onality assumption on the Hamiltonian, leading
to Egs. (2), neglects those features of H which
would tend to produce a more correlated wave
function. (Note that below we study the effects
of Jastrow-type correlations.) Looked at in
another way, the approximation (H - E)| a)~0,
for very simple wave functions | a), implies
that the solution to the wave equation is known so
well a priori that no room is left for the model
to contain the possiblity of collective motion. It
would be desirable to recompute the mass with
more realistic wave functions, retaining explicit
reference to the many-body Hamiltonian H, as in
Eq. (1).

One improvement on the diagonality assumption
would be to account explicitly for the extra vibra-
tional kinetic part AE of the total energy, which
is otherwise neglected (neglect of kinetic effects

on the kinetic parameter itself). In this case

(H-E;)| @)~-AE|a) . (50)
At equilibrium it may be shown that
B,(AE)=B,(0) +AE¢t, (51)

where ¢ is positive. Thus kinetic effects do appear
to increase B,, but at least for the A =40 case,
where ¢t was computed, AE!? is only a few percent
of B,(0).

Finally, there is the question of why the SCGC
result should disagree with that of the cranking
approach. For a spherical harmonic oscillator
(no pairing) the cranking result' is the same® as
that given by the irrotational liquid drop model.
The addition of pairing increases the cranking
result. The present projected mass is thus less
than the cranking prediction. In the cranking
approach the speed of cranking is controlled ex-
ternally. If the system is cranked slowly enough,
then the computed mass is expected to be correct
in the sense that it is a perturbation theoretic
result and the perturbation is small. The formal-
ism for the SCGC mass, however, does not work
this way. The system is self-cranked in such a
way as to minimize the energy. The collective
velocity is nowhere explicit, and is not neces-
sarily equivalent to the cranking velocity.

Furthermore, the derivation of the vibrational
cranking result (time-dependent perturbation
theory) suffers from difficulties attendant upon
a time integration of the Schrodinger equation. In
particular under the usual approximation the time
variation of the shape variables a(¢), and con-
sequently the nonperiodic variation of the wave
functions and energies, is neglected. These ap-
proximations are circumvented in the projection
approach as described in I. It will be useful to
see by way of numerical integration'? how valid
such approximations are for the cranking model.

The effects of correlations of the Jastrow type
may be introduced in a relatively simple manner.
Such correlations can be expected to affect the
falloff distance A. From an examination of Eq.
(2a) it is evident that the denominator depends
upon A according to A%, while terms in the nu-
merator are proportional to A° and A%. Thus an
increase in the sharpness of the falloff curve
should lead to a larger value of B,. With this in
mind, the dependence of A upon the presence of
correlations has been studied. Note from this
argument that Fig. 4 indicates directly that at
least for a moderate value of the pairing strength,
the mass parameter should increase above the
unpaired value. This is the observed behavior.

The pair correlation function is taken to be of
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FIG. 9. The mass parameter calculated according to
the SCGC method, with short-range correlations included,
is plotted for several different values of the product &¢d.
Positive values of & correspond to an attractive short-
range interaction. The uncorrelated values (¢d =0) differ
somewhat from the values for A =60 of Fig. 8 dueto a
difference in pairing strength used. In this figure G=0.5
MeV.

the §-function form, thus
Yao(T1, T2) = 9alF) (B[ 1 - £ 0(F, - F)],  (52)

where ¢q(T,) = ¢.(F,; @) =| @) is a single-particle
state and ¢ gives the strength of the correlation.
The normalized (pair) overlap is then

< wab(d)l wab( a'» =< al“) ( b | b>[1 - ggab(a’ C!')] ’
(53)
where the convention is that bras are functions of

« and kets functions of o', and

g = [ dT(2ha(F; o @) - ha(F; @, @) - ha(F; o, @)

(54)
Ay
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FIG. 10. The correlation factor d is plotted against
deformation for two choices of the increment 6¢ [see
Eq. (57)]. This graph may be used in conjunction with
the value of ¢ to find the value of the mass parameter in
Fig. 9.

Finally

Q:(“)%*(a)%(a')d) (a’)
(alaolsy - (%9

Equation (54) must be summed over all pairs to
give
gla, @) =12 37 gula, a). (56)
a=<p

The many particle overlap is then modified by
a factor of the approximate form

heo(T; @, ') =

1-¢d(a’ - a)~exp-[td(a’ - a)f] (57)
to emphasize that corrections to the overlap only
are under consideration. Here d is given by

_8la, a+6a)+g(a, a-ba)
d= 2(5a)2 (58)

and
da=a'-a. (59)

In Fig. 9 the mass parameter for A =60 is plotted
against the deformation variable o’ =€’ for several
values of the product ¢d. Positive ¢d leads to a
decrease in the overlap width, and consequently,
to an increase in the mass. A negative value
for ¢d has the opposite effect. The indication is
that the flow characteristics are quite dependent
upon the type of two-body correlation.

In Fig. 10 the quantity d of Eq. (58) is plotted
against deformation. The goodness of the Gaussian
approximation is indicated by the dependence of
d upon the chosen value of the increment 6e. The
function d is shown for two choices of 6e.

For any given value of £, the corresponding mass
parameter may be interpolated on Fig. 9. Thus a
positive value of { =1 fm3, which corresponds to
a repulsive particle force at short distances, leads
to a negative product at spherical ¢d~- 155 and
consequently to a lowering of the mass parameter
from the uncorrelated value. Conversely, choosing
¢ to be negative, corresponding to an attractive
force, raises the mass parameter.

These results emphasize the importance when
calculating the mass parameter of using wave func-
tions which contain realistic information about
the contribution of the short-range forces to the
flow pattern. The pure harmonic-oscillator wave
functions employed in the bulk of this work are
deficient in this respect. A large step in the right
direction would be to use Hartree-Fock wave
functions and retain explicit reference to the
microscopic Hamiltonian H.

VI. SUMMARY

The behavior of certain matrix elements which
enter into the theory of the mass parameter for
collective quadrupole motion (see I) have been
studied using deformed harmonic-oscillator wave
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functions. These matrix elements include (e|€’),
as well as those of the form (e’ |©]€’) and (€]©] €),
where 0O is a few-body operator. The actual eval-
uation of the nondiagonal matrix element (€| ©|€’)
is complicated by the existence of the many ex-
change terms which ordinarily vanish for e=¢€’.
Introduction of pairing further complicates the
picture. Both exchange and pairing contributions,
however, may be organized in a straightforward
way by the use of a diagrammatic technique. The
calculations were carried out and the expected
falloff behavior of these quantities as functions of
€’ was verified. The nondiagonal matrices are
peaked at €’ =€ and vary more quickly with €’

than the diagonal matrices (e’ | O] €’). The sharp-
ness of the falloff becomes more pronouned as

the mass number A increases. Pairing and ex-
change tend to narrow and broaden the curves,
respectively, but do not alter the general features.

The falloff distance, A, was found not to have
a strong dependence on deformation, expecially
for spherical prolate deformations. This feature
had been already incorporated in the development
of the formalism in I.

The requirement that the derivatives of the
collective wave function f higher than the second
be neglected is related to the smallness of the
quantity A/L, where L denotes the local collective
wavelength. This quantity can be expected to be
less than about 0.2 on the basis of estimates above.

Finally, the mass parameter itself was com-
puted. The general expression for Bz was reduced
to a simplified form which contained no explicit
reference to the many-body Hamiltonian H. The
accompanying approximations restrict the range
of validity of the results in the present case to the
spherical point e=0. The mass, nevertheless,
has been computed at a number of different de-
formations to show the utility of working with the
truncated exchange expansion as derived from the

diagrammatic approach. Only the expression B,
has been given since the region E<V at spherical
is inaccessible in the harmonic-oscillator model.

The mass B, was compared with the irrotational
flow result B¢™) for several A values and was
shown to be smaller. The cranking result at
spherical for a system of harmonic oscillators
reproduces the irrotational mass so B, is less
than either B(™) or B¢  Since B(') is usually
considered to be a lower limit for physically
allowed inertia, there is the question of why
B,< B . Rough estimates indicate that this
is probably not due to neglected kinetic effects
on B,, but may be related to the use of exact
relations between the Hamiltonian H and the state
| @) or to the simplicity of the harmonic-oscillator
basis. To study this last point, Jastrow-type
correlations were introduced and found to give
important modifications to B,.

The SCGC approach is in some ways related to
the cranking approach, but the system is cranked
self-consistently in a way which yields the best
energy. Thus, the cranking mechanisms of the
two methods differ, with the SCGC result being
derived in a quantum mechanical way. Assump-
tions about the time dependence of the deforma-
tion paramters which are necessary for the usual
derivation of the cranking results are circum-
vented in the present approach. Consequently,
the results in Fig. 8 may cast some suspicion
on the validity of the cranking model.

With the basic assumptions of I borne out by
the present calculations, it would be interesting
to redo the calculations of the mass (including B.)
with more realistic wave functions.
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