α -decay branching ratios for high- and low-spin isomers in $^{151, 152, 153, 154}$ Ho[†]

W-D. Schmidt-Ott* $UNISOR, \frac{1}{7}$ Oak Ridge, Tennessee 37830

K. S. Toth and E. Newman Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

C. H. Bingham University of Tennessee, Knoxville, Tennessee 37916 {Received 19 February 1974)

 α -decay branching ratios were obtained for high- and low-spin isomers in $^{151,152,153,154}\mathrm{Ho}$. These activities were produced by bombarding 14 , 147 Sm with 11 , 10 B ions, respectively, accelerated in the Oak Ridge isochronous cyclotron. Kith the use of a gas-jet-capillary transport system it was possible to do α -particle, x-ray, and γ -ray counting simultaneously. Branching ratios were deduced in the main by determining the number of $K\alpha_1$ x rays emitted and then applying appropriate correction factors to obtain the total number of electron-capture and positron decays. For 152,154 Ho, where the γ -ray spectral measurements could be used to extract information concerning their decay to 152,154 Dy, it was possible to deduce alternate, and thus independent, α -decay branching ratios. (Incidentally, our results confirm those of Ward and Neiman for the decay of the high-spin 154 Ho isomer to levels in 154 Dy.) Within error limits the two sets of ratios for 18 , 154 Ho were found to be in agreement. For the two cases, i.e., 35.6-sec 151 Ho and 9.3-min 153 Ho, where experimental α -decay branches had been previously measured our data agree with the earlier results. α -decay reduced widths were calculated by using the formalism developed by Rasmussen and compared with values for neighboring even-even nuclei, which can be taken to represent unhindered α decay. The present study is the first systematic investigation of α -decay rates for a series of isotopes of an odd- Z element in the rare earth region. It was found that, as for odd- A isotopes in the heavyelement region, the α -decay reduced widths range from those of even-even nuclei down to much smaller values.

RADIOACTIVITY ^{151,152},¹⁵³,¹⁵⁴Ho; I_{α} , $I_{(K\alpha \times \text{ray})}$, I_{γ} , E_{γ} ; measured α -decay branching ratios; deduced α -decay rates. ¹⁵², ¹⁵⁴Dy deduced levels, J, π .

I. INTRODUCTION

In an earlier paper' the feasibility of measuring α -decay branching ratios by combining the helium gas-jet technique' with the use of high-resolution Ge(Li) x-ray detectors was demonstrated. Because this combination does away with the necessity of chemical separations it ean be used to measure branching ratios for isotopes with halflives in the seconds range if a capillary is used to transport the gas jet to a shielded area. This then allows α -particle, x-ray, and γ -ray counting to be made simultaneously. In the present investigation we utilized just such a transport system to measure α -decay branching ratios for the isomers of $151 - 154$ Ho whose half-lives range from ~ 36 sec to \sim 12 min.

Experimental branching ratios are lacking for a large number of α -emitters in the mass region below bismuth. As noted in the previous publication' these are important not only for comparison with α -decay theories but also because they can

296

be used to determine absolute cross sections for reactions in which products have been identified by means of characteristic α -particle groups.

II. EXPERIMENTAL METHOD

The holmium activities were produced by bom-The hominum activities were produced by bom-
barding 144 Sm and 147 Sm with 11 B and 10 B ions accelerated in the Oak Ridge isochronous cyclotron (ORIC). The experimental assembly utilized the $\frac{1}{2}$ as set technique,² the basis for which is that recoil product nuclei ejected from thin targets by the incident beam are stopped in helium gas and then swept out together with the gas through an orifice. In this particular setup a 9-m Teflon capillary (i.d. 1.3 mm) was inserted through the orifice into the reaction chamber. The other end of the capillary, situated outside the experimental room, was pumped on to extract the product nuclei into a shielded area. The recoils were collected on a catcher foil located in a 500-cm' collector chamber (shown schematically in Fig. 1). After a suitable bombardment time, the collector foil

was rotated to a location in front of the α -particle and Ge(Li) x-ray detectors. The Ge(Li) γ -ray detector [with an efficiency of \sim 19% relative to a 7.5×7.5 -cm NaI(T1) crystal] was located 2.5 cm from the collected sample. The transport of product recoils from heavy-ion-induced reactions through capillaries has been investigated' extensively at the Oak Ridge National Laboratory and the apparatus used in the present study was assembled with that experience in mind.

The x- and γ -ray spectra were stored simultaneously in a 4096-channel analyzer which is interfaced to an in-house computer. The analyzer was programmed to go automatically through cycles of counting for a preset time, of transferring the accumulated data to the computer, and finally of restarting the analyzer whose memory had in the meantime been automatically cleared. Each x- and γ -ray spectrum contained 2048 channels, covering the energy ranges 0-220, and 150-1300 keV, respectively. The α -particle spectra were stored in a second analyzer, also interfaced to the computer. For permanent storage and later data reduction, all information was transferred onto magnetic tapes. Computer codes were used to obtain peak positions and areas and to convert these into energies and intensities, respectively. The absolute efficiencies of the three detectors were determined for the particular geometries used by calibrating with standard sources of known strengths.

The samarium targets were electrodeposited as oxide layers (with thicknesses of $\sim 300 \ \mu g/cm^2$)

FIG. 1. Schematic drawing showing the collection end of the gas-jet-capillary system used in this investigation. The figure also shows the positions in which the α -particle, x-ray, and γ -ray detectors were located with respect to one another.

onto beryllium backing foils. The isotopic enrichments of the samarium oxides were 96% for 144 Sm and 98% for 147 Sm. The primary energies of the boron beams, 74 MeV for ^{11}B and 81 MeV for ^{10}B , were reduced as needed by the use of additional degrading beryllium foils.

The main procedure used for deducing α -decay branching ratios in this study will now be described. Because the α -decay characteristics of the holmium activities are well known, α -particle spectra were measured at about 4-MeV intervals to determine the optimum incident beam energy for a particular nuclear species. Once the bombarding energy was selected the irradiation and collection of activity was begun, terminated, and the counting cycles started. The determination of the amount of α activity I_{α} , presented essentially no problems because each holmium isomer had a distinct α group. The intensities of the other modes of decay were determined as follows. The dysprosium $K\alpha_1$ x-ray peaks were found to be well resolved from neighboring x-ray groups. From decay-curve analyses of these $K\alpha$, lines. intensities for the holmium activities of interest were extracted and the total number of K x rays calculated.⁴ The intensities of γ rays assigned to the particular activity were then used to correct for the number of K x rays produced in internal conversion processes.⁵ Finally, by using tabulated P_K values⁶ and fluorescence yields⁴ the number of electron capture decays I_{EC} was then calculated. For the determination of the number of positron decays the number of observed annihilation quanta could not be used. First, their detection efficiency is different from that for γ -ray quanta of the same energy since only a fraction of the annihilation takes place in the collector foil. Second, the analysis of the decay curve for the annihilation radiation is extremely complicated because no Z selection of the components is provided. Third, the contribution of positrons from recoils produced by reactions in the target backing and in the admixture to the transport gas, could not be excluded. Therefore, the number of positron decays $I_{\beta+}$ was calculated by using Q values from the 1971 Mass Tables' and theoretical electron capture to positron ratios' for allowed or first forbidden nonunique decays. From the three intensities, I_{α} , I_{EC} , and $I_{\beta+}$, the α -decay branching ratios were then deduced.

In the case of 152 Ho and 154 Ho some information available concerning their decays to 152 Dy an is available concerning their decays to 152 Dy and ¹⁵⁴Dy, respectively. Thus from the γ -ray data obtained with the Ge(Li) detector it was possible to obtain the sum of I_{EC} and I_{B+} and thus deduce branching ratios in a manner independent from the one described in the previous paragraph.

Holmium $K\alpha$ x rays were not observed. Typically, the upper limits for their intensities were less than 5% of those for the corresponding dysprosium x rays. This was taken to mean that the intensities of the isomeric transitions were quite weak. Supporting evidence is also available from α -decay studies. When the holmium α emitters have been produced directly (i.e. not from the decay of isotopes with higher atomic numbers) no initial growth periods have been observed in the decay curves of the individual α groups (see Refs. 9-11).

III. SUMMARY OF PREVIOUS WORK

The holmium activities being considered, with the exception of 3.25-min 154 Ho, were discovered⁹⁻¹¹ by the observation of characteristic α groups. The high-spin isomer of 154 Ho was first reported by Ward and Neiman¹² who investigated its decay to levels in 154 Dy. Published information concerning the electron capture and positron decay modes for the remaining radioactivities is extremely sparse, though preliminary results have appeared in annual reports¹³ for the 152 Ho high-spin isomer. The half-lives and α -decay energies of the $^{151-154}$ Hc isomers, taken from Refs. $9-12$ and 14, 15 are summarized in Table I.

Experimentally determined α -decay branching ratios are available only for the 151 Ho high-spin,⁹ and ¹⁵³Ho low-spin¹⁰ isomers. Estimates based on assumed reaction cross sections have been reassumed reaction cross sections have been re-
ported^{9, 14} for the ¹⁵²Ho high-spin isomer and for the ¹⁵¹⁻¹⁵⁴Ho low-spin isomers. These previously available ratios will be discussed when they are compared with the present measurements.

IV. RESULTS

A. ¹⁵⁴Ho isomers

The 154 Ho isomers were produced in the 147 Sm- $(^{10}B, 3n)$ reaction at incident energies of 41 and 45 MeV. The low-spin isomer α group was observed at both energies; that of the 3.25-min highspin species was seen at neither energy. The dysprosium $K\alpha_1$ x-ray line, however, was found to have a decay component with a \sim 3-min halflife at each bombarding energy. The interfering presence of the ¹⁵³Ho 2.0-min isomer did not have to be considered because its α -particle peak was not Seen at either 41 or 45 MeV. A small amount of the 9.3 -min 153 Ho low-spin isomer was seen in the α spectrum measured at 45 MeV. It was absent at 41 MeV; at this energy it was then assumed that the 10-12-min component of the $K\alpha$, line was due only to the decay of 11.8 -min 154 Ho. By using the number of counts in its α peak at the

^a Reference 15.

b Reference 9.

c Reference 14.

d Reference 10.

Reference 11.

 f From γ decay (Ref. 12).

two incident energies it was possible to obtain a value for its $K\alpha_1$ intensity at 45 MeV as well.

Energies and intensities for γ rays assigned to 154 Ho decay are listed in Table II where they are compared with the data of Ward and Neiman¹² for the 3.25-min isomer. The two sets of data are in reasonable agreement, the one major exception being the intense 295.8-keV γ ray which appears to belong to the decay of 2.0 -min 153 Ho (see below). Also, we tentatively assign a new 911-keV γ ray Also, we tentatively assign a new 911-keV γ ray
to 3.25-min ¹⁵⁴Ho, which fits well into the decay scheme (shown in Fig. 2) proposed by Ward and scheme (shown in Fig. 2) proposed by Ward an
Neiman.¹² We might add that they did not place the 295.8-keV transition in that decay scheme. Five γ rays are proposed to belong to the decay of 11.8-min 154 Ho. Its decay scheme is included in Fig. 2.

The total number of electron capture and positron decays of the 154 Ho high-spin isomer was obtained from the intensities of the two ground state transitions of 334.5 and 906 keV. The spin of 11.8-min 154 Ho is known¹⁶ to be 1. Therefore, to estimate the number of electron capture and positron decays for the low-spin isomer it was assumed that the direct feeds to the ground and first excited states in ¹⁵⁴Dy are equally intense. From these intensities the α -decay branching ratio for 11.8-min isomer was deduced to be (2.8 ± 0.9) \times 10⁻⁴ and a limit of \times 1 \times 10⁻⁵ was set for that of the 3.25-min isomer. With the use of the experimental $K\alpha_1$ x-ray intensity and of the procedure described in Sec. II the ratio for the lowspin isomer was determined to be $(1.4\pm0.3)\times10^{-4}$ This particular value utilizes a Q_{EC} of 5.76 MeV; if the decay energy is modified to 5.43 MeV by taking into account population of excited states in

Ward and Neiman ¹² 3.25-min isomer		Present work 3.25-min isomer		Present work 11.8 -min isomer	
E_{γ} (keV)	$I_{\gamma}(\%)$	E_{γ} (keV)	$I_{\gamma}(\%)$	E_{γ} (keV)	$I_{\gamma}(\mathcal{X})$
157.8 ± 0.2	3.9 ± 0.3	158	3	158 ± 1	20 ± 10
289.2 ± 0.2	4.3 ± 0.3	289 ^a	\leq 3		
295.8 ± 0.2	12.8 ± 0.5				
310.3 ± 0.25	3.0 ± 0.3	310 ^a	2		
334.7 ± 0.25	100	334.5 ± 0.1	100	334.4 ± 0.1	100
346.5 ± 0.3	12.5 ± 1.0	346.4 ± 0.2	13 ± 2		
407.0 ± 0.3	24.5 ± 1.0	406.8 ± 0.1	18 ± 1		
412.5 ± 0.3	84 ± 4	412.3 ± 0.1	74 ± 3	412.2 ± 0.1	25 ± 6
434.9 ± 0.4	2.5 ± 0.3	435.3 ± 1.0	2 ± 1		
444.2 ± 0.4	5.1 ± 0.5	443.4 ± 0.3 5 ± 1			
471.9 ± 0.6	2.5 ± 0.4	472 ^a	$\langle 2 \rangle$		
477.4 ± 0.4	$56 + 2$	477.1 ± 0.1	52 ± 3		
505.2 ± 0.4	16.2 ± 0.7	505.1 ± 0.2	25 ± 4		
523.8 ± 0.4	16.0 ± 0.7	523.9 ± 0.2	22 ± 3		
570.6 ± 0.5	10 ± 2	570.8 ± 0.1	12 ± 1	570.7 ± 0.2	16 ± 4
726.5 ± 0.7	13 ± 2	725.6 ± 0.1	14 ± 2		
815 ± 0.7	13 ± 3	814.9 ± 0.3	12 ± 2		
906 ± 1	1.5 ± 0.5	906 ± 1	3 ± 1	± 1.0 906.	5 ± 3
		911 ± 1	≤ 1		
1249.5 ± 1	$16 + 2$	1250.5 ± 0.1	19 ± 3		

TABLE II. Transition energies and photon intensities for ¹⁵⁴Ho isomers.

^a Not included in decay scheme.

FIG. 2. Levels in ¹⁵⁴Dy populated in the decay of the ¹⁵⁴Ho isomers. For the 3.25-min isomer the decay scheme is the one reported in Ref. 12. That information and our γ -ray spectral measurements allowed us to propo scheme shown for the 11.8-min isomer (its spin is known to be 1 from Ref. 16).

¹⁵⁴Dy (Fig. 2) then the ratio becomes (1.7 ± 0.4) \times 10⁻⁴. Within error limits it is seen that the 11.8min ¹⁵⁴Ho branching ratios deduced from the proposed decay scheme and from the dysprosium $K\alpha_1$ x-ray intensity are in agreement. They are also in agreement with the only value available in the in agreement with the only value available in the literature,¹⁴ $(4.2 \pm 2.4) \times 10^{-4}$, which is based on predicted cross sections for spallation reactions induced by 660-MeV protons incident on tantalum. Finally, the limit for 3.25 -min 134 Ho as determined from the $K\alpha$, x rays is $\leq 2 \times 10^{-5}$.

$B.$ ¹⁵³Ho isomers

Bombarding energies of 45 and 53 MeV were used for the production of ¹⁵³Ho isomers in the 147 Sm($10B$, 4n) reaction. As mentioned in the previous subsection, the α spectrum at 45 MeV showed the presence of the ¹⁵³Ho low-spin isomer. To obtain its $K\alpha_1$ dysprosium x-ray intensity a normalized contribution from the 11.8-min ¹⁵⁴Ho decay was subtracted, again as discussed above. At 53-MeV bombarding energy, the α -particle spectrum showed α groups due to both ¹⁵³Ho isomers and the low-spin isomers of 152,154 Ho. At this incident energy the decay curve measured for the $K\alpha$, peak was resolved into two components with half-lives of 2.7 and 10 min. Each component was known to include contributions from two activities, namely (1) 2.0-min 153 Ho and 3.25-min 154 Ho, and (2) 9.3-min 153 Ho and 11.8-min 154 Ho. The division of each component between the two contributing activities was estimated, and a 40@ error was ascribed to the intensities of the $K\alpha_1$ dysprosium x rays emitted in the decays of the ¹⁵³Ho isomers. Based on the number of α particles observed at 45 and 53 MeV the relative intensities of the $K\alpha_1$ rays assigned to the decay of the ¹⁵³Ho low-spin isomer were found to agree with one another. Because of its much larger α -decay branch the presence of the 152 Ho α group required at most a 4% correction to the 2.0-min 153 Ho xray component.

In Table III we list energies and γ -ray intensities for transitions that we propose to follow the decay of the 153 Ho isomers. Their γ -ray spectra have not been investigated previously. We base our assignments on half-lives and the variation of intensities with bombarding energy. No attempt was made to place the γ rays in a decay scheme; the information in Table III, however, was used to estimate corrections to the x-ray intensities resulting from internal conversion processes.

The 153 Ho α -decay branching ratios were deduced from the $K\alpha_1$ x-ray intensities as outlined in Sec. II. The Q_{EC} , 4.26 MeV, was taken from
the 1971 Atomic Mass Tables.⁷ To take into ac-

TABLE III. Transition energies and relative photon intensities for 153 Ho isomers.

Low-spin isomer 9.3 min		High-spin isomer 2.0 min		
E_{γ} (keV)	$I_{\gamma}(\%)$	E_{γ} (keV)	$I_{\gamma}(\%)$	
109 ± 0.5	6 ± 4	109 ± 0.5	2 ± 1	
162 ± 0.5	20 ± 7	162 ± 0.5	3 ± 2	
295.8 ± 0.1	13 ± 6	295.8 ± 0.1	100	
334.6 ± 0.1	40 ± 15	334.6 ± 0.1	45 ± 10	
343.0 ± 0.2	40 ± 3			
366.1 ± 0.1	13 ± 5	366.1 ± 0.1	4 ± 1	
438.1 ± 0.1	22 ± 5	438.1 ± 0.1	16 ± 2	
455.8 ± 0.2	15 ± 3			
566.8 ± 0.2	33 ± 3			
638.3 ± 0.1	100	638.3 ± 0.1	29 ± 5	
648.5 ± 0.2	20 ± 4			
		1087.2 ± 0.2	5 ± 2	
		1277 ± 14	10 ± 3	

^a Doublet.

count direct feeding to excited states in 153 Dy a reduced Q_{EC} of 3.46 MeV was also used, the decrease being based on an analogy with the known decay scheme¹⁷ of the isotone, 151 Tb. The two decay energies lead to α -decay branches for the 153 Ho low-spin isomer of $(1.2 \pm 0.5) \times 10^{-3}$ and $(1.8\pm0.8)\times10^{-3}$. These have to be compared with a previously reported¹⁰ experimental value of $(1.2 \pm 0.7) \times 10^{-3}$ and estimated values of (3 ± 2) $\times 10^{-3}$ (Ref. 9) and $(0.8 \pm 0.5) \times 10^{-3}$ (Ref. 14). For the high-spin isomer the two decay energies lead to α -decay branching ratios of $(3.4 \pm 1.7) \times 10^{-4}$ and $(5.1 \pm 2.5) \times 10^{-4}$.

C. 152 Ho isomers

The ¹⁵²Ho isomers were produced in the reaction 144 Sm($11B$, 3n) at a bombarding energy of 46 MeV. The most prominent α groups observed were those that belong to the two isomers of 152 Ho. The α groups due to ¹⁵¹Ho were about one hundred times less intense. The decay curve of the Dy

TABLE IV. Transition energies and relative photon intensities for 152 Ho isomers.

Bowman et al.,					
Ref. 13			Present work		
High-spin isomer				High-spin isomer Low-spin isomer	
52.3 sec			52.3 sec	2.36 min	
E_{γ} (keV) I_{γ} (%)				E_{γ} (keV) $I_{\gamma}(\%)$ E_{γ} (keV) $I_{\gamma}(\%)$	
491	60	492.8 ± 0.1 70 ± 5			
613	100	614.0 ± 0.1 100		614.0 ± 0.1 100	
647	94			647.6 ± 0.1 104 ± 6 647.6 ± 0.1 16 ± 4	
683	81	683.8 ± 0.1 102 ± 6			
		759.3 ± 0.3 15 ± 4			

FIG. 3. Levels in 152 Dy populated in the decay of the 152 Ho isomers. The decay schemes were arrived at on the basis of our y-ray measurements and on a survey (see Ref. 13) of available data for high-spin isomers in neighboring doubly odd nuclei.

 $K\alpha_1$ x rays was separated into a 2.4-min and a 52-sec component.

The assignment of γ rays to the decay of ¹⁵²Ho was based once again on the measurement of halflives and excitation functions. These γ rays and their intensities are listed in Table IV together with the preliminary results of Bowman, Haenni, and Sugihara¹³ who investigated the decay of the 152 Ho high-spin isomer. Based on a survey of neighboring high-spin isomers they proposed a decay scheme for 52.3 -sec¹⁵²Ho which consisted of a cascade of four γ rays depopulating ¹⁵²Dy states in the following sequence, $8^+ \rightarrow 6^+ \rightarrow 4^+ \rightarrow 2^+$ \rightarrow 0⁺. Our data for both isomers confirm their proposal and Fig. 3 shows the two decay schemes. We would like to discuss our confirming points in some detail. Since the 614.0-keV transition shows up strongly in the decay of both isomers it must represent the $2^+ \rightarrow 0^+$ transition in ¹⁵²Dy. The 647.6-keV transition which again shows up in both decays but with a smaller intensity in the case of the low-spin isomer is therefore the 4^+ - 2^+ transition. In the decay of 152 Ho high-spin isomer, the 492.8-keV γ ray has smaller intensity than the 683.8-keV γ ray. Thus the latter γ ray must represent the 6^+ -4^+ transition while the 492.8-keV transition deexcites the 8' level at 2438.¹ keV which is strongly fed in the electron capture and positron decay of the high-spin isomer. This is consistent with the suggestion of Bowman, Haenni, and Sugihara¹³ that the 152 Ho high-spin isomer can be described as the coupling of the $h_{11/2}$ orbital for the odd proton and $f_{7/2}$ orbital for the odd neutron to form a 9' state. If this is indeed the case then the fact that the 492.8-keV γ ray is less intense than the 683.8-keV γ ray means that there is a transition that populates the 6+ state from a level at a higher excitation energy in 152 Dy. We tentatively propose that the new 759.3-keV γ ray astatively propose that the new 759.3-keV γ ray as
signed to ¹⁵²Ho decay is this particular transitic and that it proceeds from a level at 2704.6 keV. The direct feeding of the 4^+ and 2^+ states in the decay of the 152 Ho low-spin isomer suggests that decay of the 152 Ho low-spin isomer suggests that its spin is probably 3.

From the decay schemes shown in Fig. 3 the α -decay branching ratios were deduced to be $4.0 \pm 1.0\%$ and $3.0 \pm 1.0\%$ for the high- and low-spin isomers, respectively. From the $K\alpha_1$ x-ray intensity and with the use of the decay schemes to obtain corrected Q_{EC} values the branching ratios

were calculated to be $6.4 \pm 1.3\%$ and $1.7 \pm 0.3\%$ for the high- and low-spin isomers once again. These ratios are much smaller than the estimated ones published⁹ in the literature, namely, $19 \pm 5\%$ for the high-spin state and $30 \pm 15\%$ for the low-spin isomer. From an earlier investigation¹⁸ of thulium α emitters, decay data were available that demonstrated a parent-daughter relationship between 156 Tm and 2.36-min 152 Ho. By assuming no independent production of the daughter it was then possible to derive an upper limit of $\langle 7\%$ for the α decay branch of the low-spin 152 Ho isomer.

D. ¹⁵¹Ho isomers

The ¹⁵¹Ho isomers were produced in the reaction 144 Sm(11 B, 4n) at bombarding energies of 61 and 68 MeV. At both bombarding energies, the α group of the $151H$ o high-spin isomer was the most intense one observed. The intensity of the ¹⁵¹Ho low-spin isomer α group at 68- and 61-MeV bombarding energy was 7% and 13% , respectively, relative to that of the high-spin isomer. The α groups of 152Ho were also present, and the decay curves of the Dy $K\alpha_1$ x rays, therefore, had to be corrected for the contributions from the 52.3 -sec 152 Ho decays. The remainder of the short-lived portions of the decay curves were then tentatively separated into 36- and 47-sec components, bearing in mind the relative intensities of the two α groups at 61 and 68 MeV.

 γ -ray spectra were measured at both bombarding energies. Because of the similarity of half-lives only tentative assignments could be made for the low- and high-spin isomeric decays. These γ rays are 1isted in Table V. No attempt was made to derive decay schemes; the γ rays instead were used to obtain corrections for internal conversion processes.

The decay energy for 151 Ho is given at 5.05 MeV

TABLE V. Transition energies and relative photon intensities for '5'Ho isomers.

E_{γ} (keV)	$I_{\gamma}(\%)$
210.2 ± 0.2 ^a $488.9 \pm 0.4^{\text{a}}$ 694.8 \pm 0.2 ^a $776.2 \pm 0.1^{\text{a}}$ $352.2 \pm 0.4^{\mathrm{b}}$	5.6 ± 1.0 4.8 ± 1.6 5.4 ± 1.1 $17 + 2$ 4.2 ± 1.6
$527.4 \pm 0.1^{\mathrm{b}}$ 551.0 \pm 0.1 ^b 653.8 ± 0.1 b 804.4 ± 0.1 ^b $1047.1 \pm 0.1^{\mathrm{b}}$	100 13 ± 2 13 ± 2 $22\,$ ± 2 4.6 ± 0.9

^a Probably low-spin isomer.

'

^b Probably high-spin isomer.

in the Mass Tables. 7 This value of Q_EC and anothe one decreased by $0.8~\mathrm{MeV}$ (in analogy with the decay scheme¹⁹ of the isotone ¹⁴⁹Tb) were used to derive branching ratios. For the high-spin isomer the two α -decay ratios were $13 \pm 5\%$ and $18 \pm 6\%$. Both values are in excellent agreement with the previously reported⁹ experimental ratio of $20 \pm 5\%$. For the low-spin isomers the ratios were calculated to be $9 \pm 4\%$ and $13 \pm 4\%$. These numbers are smaller than the estimated ratio of $28 \pm 14\%$, reported previously.⁹ Once again from the available data¹⁸ for ¹⁵⁵Tm α decay to the low-spin isomer of ¹⁵¹Ho it was possible to deduce an upper limit of $\leq 11\%$ for the holmium daughter.

V. DISCUSSION

Our α -decay branching ratios are summarized in Table VI and compared with previously reported values. It is seen that for the two cases, i.e., 35.6 -sec¹⁵¹Ho and 9.3 -min¹⁵³Ho, where experimental values had been measured our data agree with the earlier results. Also, the estimated branching ratios for 9.3 -min¹⁵³Ho and 11.8-min 154 Ho are in agreement with our measurements. The agreement is less good in the case of 47 -sec 151 Ho, and discrepancies appear for 52.3 -sec¹⁵²Ho and 2.36 -min¹⁵²Ho. There the estimated values are much larger than ours. Because the main features of the decay of the 152 Ho isomers to 152 Dy now seem to be fairly well established (see Fig. 3) we feel that, within the quoted error limits, our data are correct.

From the branching ratios α -decay half-lives can be determined and then considered within the framework of some α -decay-rate theory. In this manner relative decay probabilities can be obtained after the energy dependence is removed. One convenient α -decay formalism has been developed by Rasmussen.²⁰ In it an α -decay reduced width, δ^2 , is defined by the equation

$$
\lambda = \delta^2 P / h \,, \tag{1}
$$

where λ is the decay constant, h is Planck's constant, and P is the penetrability factor calculated for a barrier that includes an optical-model potential derived from the analysis of α -particle scattering data,

$$
V(r) = -1100 \exp\{ -[(r - 1.17A^{1/3})/0.574] \} \text{ MeV} .
$$
\n(2)

A centrifugal barrier is also included so that an l dependence can be taken into account.

The sensitive dependence of half-lives on α -decay energies can be minimized by using the most accurate energies available. Until recently, only the magnetic spectrograph measurements¹⁴ for the

		Present work from		
Isomer	X rays	Decay scheme	Parent-daughter relationship	Previous work
151 Ho low spin	0.09 ± 0.04 0.13 ± 0.04		< 0.11	0.24 ± 0.14 ^a
151 Ho high spin	0.13 ± 0.05 0.18 ± 0.05			0.20 ± 0.05 ^a
152 Ho low spin	0.017 ± 0.003	0.03 ± 0.01	<0.07	0.30 ± 0.15 ^a
¹⁵² Ho high spin	0.064 ± 0.013	0.04 ± 0.01		0.19 ± 0.05 ^a
153 Ho low spin	± 0.5 $\times 10^{-3}$ (1.2)			$\pm 2)$ × 10 ⁻³ a $(3 -$
	± 0.8) $\times 10^{-3}$ (1.8)			$(1.2 \pm 0.7) \times 10^{-3}$ b
				$(0.8 \pm 0.5) \times 10^{-3}$ c
153 Ho high spin	± 1.7 $\times 10^{-4}$ (3.4)			
	± 2.5) $\times 10^{-4}$ (5.1)			
154 Ho low spin	(1.7)	± 0.4 $\times 10^{-4}$ $(2.8 \pm 0.9) \times 10^{-4}$		$(4.2 \pm 2.4) \times 10^{-4}$ c
154 Ho high spin	$< 2 \times 10^{-5}$	$< 10^{-5}$		

TABLE VI. α -decay branching ratios.

^a Reference 9.

'

b Reference 10.

c Reference 14.

low-spin isomers of $^{153, 154}$ Ho quoted errors of $± 5 keV.$ For the remaining holmium activities the error limits were ± 10 (Refs. 10 and 11) and $±20$ keV (Ref. 9). Bowman, Hyde, and Eppley²¹ have now made available a list of more accurate energies for 40 α emitters. Many of the rare earths, including 151,152 Ho, now have quoted errors of ± 3 keV. We have utilized this list to reexamine our earlier spectral data¹¹ for the holmium α

emitters and have calculated new decay energies for $^{153, 154}$ Ho. These new values, good to ± 5 keV, compare with previous numbers (enclosed in parentheses) as follows: (1) 2.0-min¹⁵³Ho, 3.910 (3.91 ± 0.10) MeV; (2) 9.3-min ¹⁵³Ho, 4.011 (4.010 \pm 0.005) MeV; (3) 3.25-min ¹⁵⁴Ho, 3.721 (3.72 ± 0.01) MeV; and (4) 11.8-min ¹⁵⁴Ho, 3.937 (3.933 $±0.005)$ MeV.

Table VII summarizes the reduced widths calcu-

Isomer	E_α (MeV)	Partial α half-life (sec)	Reduced widths (MeV)
151 Ho low spin	4.607 ± 0.003	(5.22×10^2) ^a	0.0066 ± 0.0039
		(3.62×10^2) ^b	0.0096 ± 0.0053
		$(>4.3 \times 10^2)$ ^c	0.0081
151 Ho high spin	4.517 ± 0.003	(2.74×10^2) ^a	0.038 ± 0.016
		$(1.98\times10^{2})^{h}$	0.052 ± 0.019
152 Ho low spin	4.387 ± 0.003	(0.83×10^{4}) ^b	0.0062 ± 0.0015
		(0.47×10^{4}) ^d	0.011 ± 0.004
		$(>0.2 \times 10^4)$ ^c	< 0.029
152 Ho high spin	4.453 ± 0.003	(0.82×10^3) ^b	0.030 ± 0.008
		$(1.31 \times 10^3)^d$	0.0174 ± 0.0053
153 Ho low spin	4.011 ± 0.005	$(4.65 \times 10^5)^a$	0.021 ± 0.010
		(3.10×10^{5}) ^h	0.031 ± 0.017
153 Ho high spin	3.910 ± 0.005	(3.53×10^5) ^a	0.125 ± 0.065
		$(2.36\times10^5)^{h}$	0.18 ± 0.09
154 Ho low spin	3.937 ± 0.005	(4.17×10^6) ^b	0.0067 ± 0.0020
		(2.53×10^6) ^d	0.0110 ± 0.0044
154 Ho high spin	3.721 ± 0.005	(9.7×10^6) ^b	0.08
		(21.95×10^{7}) ^d	0.04

TABLE VII. α -decay reduced widths (δ^2) .

' From x rays, decay energy from 1971 Mass Tables.

^b From x rays, decay energy corrected for direct feeding of excited states in dysprosium daughters.

From parent-daughter relationship.

^d From decay scheme.

lated with the above energies for 153, 154Ho and those of Ref. 21 for $151, 152$ Ho and by using α halflives derived from the various branching ratios given in Table VI. The calculations were for $l=0$ α waves so that hindrances could be noted. In Fig. 4 we have plotted these reduced widths and have indicated a band of values which, because they encompass δ^{2} 's for even-even rare earth α emitters,^{1,22} can be taken to represent unhindered α decay. The figure shows, as has been known from studies in the heavy elements, that for odd-A nuclei reduced widths range from those of even-even nuclei down to much smaller values. The introduction of an α wave other than zero

FIG. 4. α -decay reduced widths for the holmium isomers investigated in the present study. These isomers are identified by neutron number, e.g., ¹⁵¹Ho has 84 neutrons, and by the letters 1.s. (low-spin) and h.s. (high-spin). The cross-hatched band encompasses reduced widths for doubly even rare earth nuclei, values that can be considered to represent unhindered α decay. Closed and open points and crosses identify the method by which a given α decay branching ratio was determined. Details of these methods and of the reduced width calculations are presented in the text. The actual values of these reduced widths are listed in Table VII. For the isomers of 151 Ho(N = 84) and 153 Ho(N = 86) two sets of closed points are indicated. The lower values are calculated by using electron-capture decay energies from the 1971 Mass Tables⁸. The higher set of values are obtained by using decay energies that have been decreased to take into account direct feeding to excited states in their dysprosium daughters.

does raise the reduced width value but for the emission of α particles the centrifugal barrier plays only a subordinate role. It has been pointed out²³ that instead of changes in multipolarities, it may be the necessity of forming an α particle from unpaired nucleons that slows down the α decay rate of an odd-A nucleus; for cases where the odd-nucleon wave function remains unchanged α decay may proceed at an unhindered rate.

The 152, 154 Ho isomers, each with two unpaired nucleons, as might be expected, appear to have hindered α decays. Aside from the fact (see Refs. 24 and 25) that the two terbium daughters have high- and low-spin isomers as well, nothing is known about their level structures. Thus one can say little about the states involved in the α decays of the 152.154 Ho isomers.

The ¹⁵³ Ho isomers, presumably due to the 67th proton being in the $h_{11/2}$ and $d_{5/2}$ orbitals, have reduced widths in the unhindered range. This suggests that their α decays proceed to states in ¹⁴⁹Tb represented by the same proton orbitals. Macfarlane²⁶ indeed proposed that the α -decaying ¹⁴⁹Th isomers were due to $h_{11/2}$ and $d_{5/2}$ proton orbitals. He also had evidence to indicate that the $h_{11/2}$ state was the isomer and was located ~40 keV above the $d_{5/2}$ ground state. In Fig. 5 we show α decay schemes for the ¹⁵³Ho isomers that are consistent with unhindered α -decay rates.

When the ¹⁵¹ Ho isomers were discovered⁹ the proposal was that their α -decay schemes were as shown in Fig. 5 for the ¹⁵³ Ho pair. (At that time the $d_{5/2}$ and $h_{11/2}$ isomers in ¹⁴⁷Tb had not been observed, though their existence has now been established.²⁴) As in the case of 153 Ho the reduced width for the high-spin¹⁵¹Ho isomer is in the unhindered range and the indication here again is that the α decay involves states represented by the $h_{11/2}$ proton orbital. The α decay of the lowspin¹⁵¹Ho isomer, however, seems to be hindered, and thus raises the question as to whether the $d_{5/2}$ orbital is involved in both the initial and final states. In fact if an $l=3$ α wave (assuming that the decay proceeds to the $h_{11/2}$ state) is used, then the calculated reduced width is in the unhindered range. From a recent study²⁴ it appears that, as in the case of ¹⁴⁹Tb, the ground state of ¹⁴⁷Tb (96 min) is represented by the $d_{5/2}$ orbital while the $h_{11/2}$ state (1.9 min) is located at some unknown higher excitation energy. Thus the suggestion that the $d_{5/2}$ ¹⁵¹Ho state decays to the $h_{11/2}$ ¹⁴⁷Tb level despite an unfavorable spin change is made even more unlikely by the greater decay energy available for the transition to the $d_{5/2}$ ground state. It is therefore not clear why, in contrast to the case in 153 Ho, the 151 Ho low-spin isomer α decay should exhibit hindrance. Interestingly, however,

FIG. 5. Proposed α -decay schemes for the ¹⁵³Ho isomers. If the $h_{11/2}$ state in ¹⁴⁹Tb is ~40 keV above the $d_{5/2}$ ground state (see Ref. 26) then the indication is that in ¹⁵³Ho the situation is reversed with the $d_{5/2}$ state lying ~60 keV above the $h_{11/2}$ state.

the ratio of δ^2 for the high-spin to that of the lowspin isomer is \sim 5 for both ¹⁵¹Ho and ¹⁵³Ho.

Vl. CONCLUSION

It appears that the technique described in Ref. 1 and used in this study does provide one with a simple method of determining α -decay branching ratios. The largest error is introduced by having to rely on theoretical K capture/positron ratios and on predicted decay energies. The use of an on-line isotope separator would not only simplify the analysis of the x-ray spectra but would also make the information available from the annihilation radiation peak much more useful. Nevertheless, it is encouraging that ratios determined for 152,154 Ho from their decays to levels in 152,154 Dy

agree within error limits with those determined from $K\alpha_1$ x-ray intensities.

The present study represents the first attempt at determining experimental α -decay branching ratios for a series of isotopes of an odd- Z element in the rare earths. It was intended primarily to extend our knowledge of α -decay rates in this mass region. Our study shows that as in the heavy elements, α decay for odd-A nuclei can proceed at widely varying rates, with reduced widths differing by factors of up to ~ 25 .

We would like to thank D. F. Torgerson of the Texas A & M University Cyclotron Institute for kindly providing us with his computer program to calculate α -decay reduced widths.

- 3W-D. Schmidt-Ott, R. L. Mlekodaj, and C. R. Bingham, Nucl. Instrum. Methods 108, 13 (1973}.
- 4W. Bambynek, B. Crasemann, R. W. Fink, H. U. Freund, H. Mark, C. D. Swift, R. E. Price, and P. V. Rao, Rev. Mod. Phys. 44, 716 (1972).
- ${}^{5}R$. S. Hager and E. C. Seltzer, Nucl. Data $\underline{A1}$, 1 (1968).
- 6 M. J. Martin and P. H. Blichert-Toft, Nucl. Data A8, 156 (1970).
- 7 A. H. Wapstra and N. B. Gove, Nucl. Data $\underline{A9}$, 276 (1971)
- A. H. Wapstra, G. J. Nijgh, and R. Van Lieshout, Nuclear Spectroscopy Tables {North-Holland, Amsterdam, 1959), p. 65.
- 9 R. D. Macfarlane and R. D. Griffioen, Phys. Rev. 130 , 1491 (1963).
- 10 R. L. Hahn, K. S. Toth, and T. H. Handley, Phys. Rev. $163, 1291(1967)$.

[~]Research sponsored by U. S. Atomic Energy Commission under contract with Union Carbide Corporation.

On leave from the II. Physikalisches Institut der Universität Göttingen, Germany. Since June 1, 1972, Oak Ridge National Laboratory.

[~]UNISOR is a consortium of University of Alabama, Emory University, Furman University, Georgia Institute of Technology, University of Kentucky, Louisiana State University, University of Massachusetts, Oak Ridge National Laboratory, Oak Ridge Associated Universities, University of South Carolina, University of Tennessee, Tennessee Technological University, and Virginia Polytechnic Institute.

 1 C. R. Bingham, D. U. O'Kain, K. S. Toth, and R. L. Hahn, Phys. Rev. C 7, 2575 (1973).

²R. D. Macfarlane and R. D. Griffioen, Nucl. Instrum. Methods 24, 461 (1963).

- ${}^{11}K$. S. Toth and R. L. Hahn, Phys. Rev. C $3, 854$ (1971).
- $12D$. Ward and M. Neiman, Nucl. Phys. $A115$, 529 (1968). ¹³W. W. Bowman, D. R. Haenni, T. T. Sugihara, Progress in Research, Cyclotron Institute, Texas A & M University, 1972 (unpublished), p. 43; Progress in Research, Cyclotron Institute, Texas A k M University, 1973 (unpublished), p. 30.
- 14 N. A. Golovkov, S. K. Khvan, and V. G. Chumin, in Proceedings of the International Symposium on Nuclear Structure, Dubna, 1968 {International Atomic Energy Agency, Vienna, Austria, 1969), p. 27.
- 15 K. S. Toth, R. L. Hahn, M. A. Ijaz, and W. M. Sample, Phys. Rev. C 2, 1480 (1970).
- 16 C. Ekström, T. Noreland, M. Olsmats, and B. Wannberg, Nucl. Phys. A135, 289 (1969).
- 17M. Gonsior, I. I. Gromova, G. I. Iskhakov, V. V. Kuznetsov, M. Ya. Kuznetsova, M. Mikhailov, A. V. Potempa, and M. I. Fominikh, Acta Phys. Pol. B2, No. 2-3, 307 (1971).
- 18 K. S. Toth, R. L. Hahn, and M. A. Ijaz, Phys. Rev. C_4 , 2223 (1971).
- 19 Ts. Vylov, K. Ya. Gromov, I. I. Gromova, G. I.
- Iskhakov, V. V. Kuznetsov, M. Ya. Kuznetsova, N. A. Lebedev, and M. I. Fominikh, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 2124 (1972) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. 36, 1864 (1972)]; R. Arlt, G. Beyer, V. V. Kuznetsov, V. Neubert, A. V. Potempa, U. Hagemann, and E. Herrmann, Dubna Report No. P6-5681 (to be published).
- 20 J. O. Rasmussen, Phys. Rev. 113, 1593 (1959).
- 2'J. D. Bowman, E. K. Hyde, and R. E. Eppley, Lawrence Berkeley Laboratory Nuclear Chemistry Annual Report No. LBL-1666, 1972 (unpublished), p. 4.
- 22 R. D. Macfarlane, J. O. Rasmussen, and M. Rho, Phys. Rev. 134, B1196 (1964).
- 23 J O. Rasmussen, in Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by Kai Siegbahn {North-Holland, Amsterdam, 1965), p. 701.
- $24E$. Newman, K. S. Toth, D. C. Hensley, W-D. Schmidt-Ott, Phys. Rev. C 9, 674 (1974).
- ^{25}D . R. Haenni, T. T. Sugihara, and W. W. Bowman, Phys. Rev. C $\frac{5}{9}$, 1113 (1971).
- 26 R. D. Macfarlane, Phys. Rev. 126, 274 (1962).