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Dipole electric transitions with hJC = +1 are studied theoretically for odd-mass nuclei in the
rare-earth region {i) in the frame work of an elaborated Nilsson model with rotation-particle coupling
and with isospin-dependent parameters, (ii) with the usual BCS wave function, and {iii) with sharp

particle-number-projected BCS wave functions. These projected wave functions are the limit of very

speedily converging sequences of functions. General formulas for the pairing reduction factors with strict
nucleon number conservation are established. The unphysical effects due to particle fluctuation in the
usual BCS wave functions are found to be very important in the theoretical BCS evaluation of
reduction factors and half-lives. In most of the analyzed E 1 transitions, the hindrance factors are

improved by the elimination of the unphysical effects due to particle fluctuation. The blocking effect is

systematically taken into account. The importance and validity of the physical and mathematical

approximations used is discussed.

IPACTIVITY 153,155Eu. 158&161yb. 175, 177Lu. 179&181ya. 155,1570d. 1610
'1 ~'77Yb 7 '1 7'179Hf El 4E= + 1 particle-number-projected pair-

ing reduction factor and Tiy2.

I. INTRODUCTION: MODEL SURVEY

If the theoretical study of the phenomena of elec-
tromagnetic transitions in atomic nuclei was at its
height some 15 years ago, very few new methods
or techniques have been proposed recently, and

the state of the theory has not progressed much
since the calculations of Weisskopf, ' Moszkowski, '
Bohr and Mottelson, ' and Nilsson. ' ' A lack of
precise experimental information concerning sin-
gle-particle energies or collective vibrations,
does not seem to be the only reason for the present
lack of interest in the field of L|3- and y-ray spec-
troscopy, because numerous experimental works
concerning more especially the nuclei of the rare-
earth region and the actinides have appeared re-
cently. 6

The different theoretical approaches may be sum-
marized without any claim to completeness as fol-
lows:

(i) The usual shell model" and its more or less
sophisticated" variants taking into account the dif-
ferent types of core polarization have not always
produced results commensurate with the effort in-
vested. They have only occasionally been used for
other than light nuclei, and can only be applied to
systematic multipolar transition analyses at the
cost of a considerable amount of numerical calcu-
lations. "

(ii) The influence of the interaction between
quasiparticles has been studied within the scope
of Migdal's finite-Fermi-system theory. " This
approach may explain"' "several single-particle

El transitions with
~ ~~ = 1; for example in Ref.

16 an improvement of the hindrance factor, as
compared with Nilsson's, was found in 75/~ of the
cases. These results can be modified by the Cori-
olis effect which was completely ignored, and,
moreover, the approximation is not free from
phenomenology.

(iii) Various multipole sum rules have often been
used in the studies of photonuclear reactions. ""
As it requires no knowledge of wave functions of
the excited states of the nuclei, this approach is a
redoubtable trial ground of two-body interactions
and seems particularly suitable for the study of
the nonlocality effect of realistic nuclear forces"
on the integrated photoabsorption cross sections.

Calculations"' "performed in the electric dipole
approximation and with a Fermi-gas nuclear model
indicate fair agreement with experimental data in
the heavy-nuclear region.

(iv) A Hartree-Fock (HF) calculation based on a
detailed knowledge of nuclear forces may be more
attractive than the method briefly indicated in the
preceding paragraph. However, and especially in
the case of nonlight nuclei, the excessively high
number of matrix elements of two-body interac-
tions to be calculated for the large number of par-
ticles involved, makes such a calculation imprac-
tical with computers presently available. The in-
teresting and powerful generalized HF approxima-
tion of Kerman and Klein elaborated and analyzed
by Klein and his co-workers~ has been success-
fully applied in some numerical calculations. "
However, the question of the strict conservation
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of the number of particles remains open. Recent-
ly, a self-consistent core-particle coupling method
derived from the generalized HF approximation
was applied to the nickel isotopes. " The relative-
ly wide discrepancies between the ensuing results
and experimental data on "Ni are attributed by the
author to the nonconservation of the number of par-
ticles. The problem of the nonstrict conservation
of the number of nucleons has been reviewed and
discussed recently, more particularly in relation
to the rotation energies, and it has been found that
nonstrict conservation of the nucleon number could
alter the energies and the wave functions appre-
ciably. " It is undeniable that in modifying, even
slightly, the wave functions, the considered effect
may, in consequence, influence phenomena which,
as in the case of electromagnetic transitions, are
sensitive to slight modifications of the wave func-
tions. A similar conclusion has been obtained re-
cently for several light nuclei by a Hartree-Bogo-
liubov calculation. ~

(v) The BCS wave functions seem particularly
suitable for a later projection in the occupation-
number space (see Refs. 23 and 25; the strict par-
ticle-number conservation method of these refer-
ences may be called the SBCS method). In the
place of a, HF potential which could only be known
numerically, we employ a phenomenological one-
body potential whose eigenfunctions are well known.
Our aim is then to procede to calculate different
transitions of the type El, ( ~~ = 1, with the BCS
and SBCS functions so as to judge the extent of the
nonphysical effects introduced by the fluctuation
of the number of particles.

The present renewed experimental interest in El
transitions in the rare-earth region justifies a
closer study of this question. In fact a comparison
between experimental and theoretical. results could
be falsified by spurious number-fluctuation effects. "
A theoretical study of E1 transitions could give vi-
tal information on nuclear structure, deformation
of nuclei in different excited states, the quality of
wave functions, P transitions, etc. A method of
getting information on, for example, the P decay
by studying E1 y transitions from the isobaric
analog state, was suggested by Fu)ita, ~ and ex-
tensively used in the study of the first-forbidden
P decay in neutron magic nuclei. ~ In all these
cases care must be taken that the results are not
over-affected by the nonphysical effect under con-
sideration.

As yet, very few particle-conserving calcula-
tions have been made. In Ref. 24 a few quadrupole
moments and 8(E2) values were calculated for
light nuclei with approximate particle-number-
projected wave functions. But the approximate
character of the number-projection operators

makes its use tricky and open to error for the non-
light nuclei which are our present concern.

Miranda and Preston" used the wel1. -known gen-
erating function of Bayman. " This method excludes
large fluctuations by using the saddle-point approx-
imation. However, in its simplest form this meth-
od is the usual BCS approximation. The calculated
P-decay and single-particle M4 transition reduc-
tion factors are unequally affected by the extrac-
tion of the unphysical components, but always in
the right direction.

To our knowledge the only attempt made to study
the influence on E1 transitions by number-project-
ed BCS wave functions is the calculation of Mon-
sonego and Piepenbring, "using once again, Bay-
man's generating function. As discussed in Ref.
23, this technique may not be the most powerful
and is certainly not the easiest to handle. On the
other hand, the general lack of agreement ob-
tained with the experiment might be partly ex-
plained by the rotation-particle coupling (RPC)
which was completely ignored in the calculation.
Moreover, a large number of new transitions have
since been brought to light experimentally, par-
ticularly in the rare-earth region, ' "'"'"thus
justifying a fresh study of this problem. Finally,
the description of the one-body central potential
has in the mean time been considerably improved" "
allowing, for example, an isospin dependence of
the neutron or proton Nilsson oscillator frequency.

It seems to us that for all these reasons a fresh
analysis of the problem has become indispensable.
%e propose to study in this work the influence of
the nonstrict conservation of the number of nu-
cleons in the usual BCS theory on the probabilities
of electromagnetic transitions, and we shall es-
tablish, in particular, on the basis of the project-
ed BCS functions, the strict particle-conserving
pairing reduction factor A»qs for any multipole
transition.

II. NUCLEAR FIELD

According to the foregoing, the BCS theory would
appear to be an appropriate starting point for es-
tablishing exact particle-number-conserving wave
functions, and the Hamiltonian of a distorted har-
monic oscillator with axial symmetry may advan-
tageously replace a more realistic nonlocal self-
consistent field. At first sight a Woods-Saxon po-
tential with constant surface diffuseness seems to
more in agreement with the experimental knowl-
edge possessed on the nuclear single-particle po-
tentia1. , but quite apart from the computational dif-
ficulties associated with a %oods-Saxon potential,
many numerical calculations have shown that as
long as one is not dealing with superheavy nuclei
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a deformed oscillator potential in the shape of a
spheroid will do as well as the Woods-Saxon po-
tential from the point of view of both the energy
levels and their angular momentum configuration. "
The use of a nonlocal phenomenological potential"
as, for example, the velocity-dependent I.emmer-
Green potential, "does not make any fundamental
difference.

Thus, the single-particle Hamiltonian will be
written (in a coordinate system fixed in the nu-
cleus):

The radial distance r is given in oscillator units
(8/m&u, )"' and v indicates the nature of the parti-
cle: neutron (s) or proton (p), all constants being
isospin-dependent. %e note the eigenkets of Eq.
(l) by (NQv) and the corresponding eigenvalues by:

E,""= (N+ ~) 8&so(5) +)t'l(u r",O", (2)

@4p~ =@No 1—

@v"=geo 1+
(3)

TABLE I. Values of the bvo isospin-dependent shell
parameters of the single-particle Hamiltonion H". They
are optimized {Ref. 33) to reproduce the experimental
level schemes for the rare-earth nuclei and the acti-
nides.

Neutrons Protons

0.0641 —0.0026
A

0.624 —1.234

0.0766 —0.0779 A

0.493 + 0.64S A

All energies within the same shell have been re-
normalized by X'g'APh;( f'),„,„[=~X"p "APRON(N+3) j
which takes into account the conservation of the
distance between centers of gravity of the success-
ive N shells. The parameters y' and p.

' depend
linearly on the atomic mass of the nuclei (see Tab-
le I).

If one admits for neutron and protons a common
value Rp5, (=41A '~' MeV) one obtains, in the
spherical case, a root-mean-square radius lower
for protons than for neutrons. " Thus, with Nil-
sson et al. ,

"we permit the one-body potential to
be isospin-dependent. The energy quantum h~;(5)
depends on the relative neutron excess (N-Z)/A
and, for a nucleus with A =N+g particles, we

have, for protons and neutrons, respectively:

where the plus sign holds for protons and the mi-
nus sign holds for neutrons. " The constants g,
and g, giving values of z close to the experimental
results for the rare-earth region are: g„=19.2
MeV and g, = 7.4 MeV.

For the whole of the nuclei studied, the values
of the parameter of deformation 6 employed are
those of Ref. 31 and the values of the parameter of
inertia h'/28 are taken from Ref. 34.

The particle-rotation coupling term H' ignored
in most theoretical studies of EI transitions (for
example in Refs. 16, 30, 31) is in fact rarely neg-
ligible" "'" "even for low-j values, and is es-
pecially large between deformed orbitals originat-
ing from the same spherical j level. The model
Hamiltonian of a particle moving in a deformed po-
tential coupled to a rotating core which has axial
symmetry about the z axis is

+Hint+H

where the unperturbed collective part H' describes
the rotation of a symmetric top

k2
Hc (I 2 1 2 2)

2g 3 3 (4)

As for the Coriolis interaction

H'=- —(I j +I j,),

it: may be treated as a perturbation. As usual I
and I, are the total angular momentum of the nu-
cleus and its projection along the z axis, j is the
angular momentum of the single particle, and 8
is the moment of inertia.

As our basic aim is the study of the influence of
the particle-number fluctuations in electric dipole
transitions, we ignore the ~~~ =2 mixing between
one-particle states. This effect may possibly be
noticeable for the heavy rare-earth nuclei as well
as for the actinide, 39'4' but cannot influence the
conclusions of our study. " The same is true for
octupole coupling. It is a mell-known fact that the
low-lying octupole vibrational band can influence
the transition probabilities of E1,~ =0 transitions
through mixing by particle-vibrational interac-
tion. " The F.l, ~~( = l transition probabilities
can, however, only be disturbed by the K = 0 + 1
octupole vibrational bands, which lie much higher
in energy and have smaller collective strength in
comparison with the K =0 octupole vibrational
band. It is therefore generally believed that the

%'e choose furthermore 5e, =412 '~' MeV for
simplicity. %e also suppose an isospin dependence
for the pairing constant:

N-Z
{jr A —go +gl + '
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E))N«E)) ««+[I(I 1) 2K2] (6b)

The ket jvK) is an intrinsic state ket and may

be, for example, an eigenket of H' [Eq. (1)] or
IBCS) or ISBCS).

If the Coriolis interaction is taken into account,
the kets of Eq. (6a) a.re no longer eigenkets of the
total Hamiltonian H. However, the complete nu-
clear-state ket IIM) may be expanded on this ba-
S1S:

I
IM ) = g I I, KM; v) (Kv I I&,

E1,
I ~I =1 transitions are not noticeably contam-

inated by octupole components. "
The eigenkets and eigenenergies of the unper-

turbed H'+0 'Hamiltonian are written, respec-
tively:

2r+ t
+««IvK&+ phaseD.' «lv -K»

(6a)
and

eigenkets of the total Hamiltonian take the form

IIK) =II, KM; v)+ 2 II, K'M; v)(K'vlI), (8)
If '=E'4 j

where

(I, K'M; vjH'I I, KM; v)
~l ) — ~f(ere ~~~r'

Iv )fv

The constant R depends on the precise choice of the
intrinsic state

I vK). For the eigenkets of the Nils-
son Hamiltonian 0" of Eq. (1), R equals 1, and for
I BCS) or

I SBCS) states, R is equal to R))cs and

R~acs, respectively. The energies F.,',"~ are in
each case the eigenvalues corresponding to the
chosen intrinsic states

I
vK).

The electric dipole transition probability

)'(E))= —
) ))(E)),

which implies that K, thegrojection of the total
angular momentum f = j + 8 (H being the collective
rotational angula, r momentum) on the nuclear
symmetry axis, is no longer a constant of the mo-
tion, even in the adiabatic limit. %e admit that K
remains approximately a good quantum number.

To the first order in perturbation theory, the

where

%") = e,'„rY", (9y }

and
Z

ff ~ e ff

is expressed as follows, if calculated with the kets

of Eqs. (6)-(8):

B(E1}=&I,K~M~, v I6(fP «&II, ,K(M), v, )+ Q &I~,KqMy, vyjJRP «Il(, KM(,' v;)(Kv)jl;&

+ +&K'vyj~y&(I~, K'My, 'vyl~f 'II;, KW&,'v&)+ +&K'v~l~y&&~y, K'Mg,'vyl8ff) II&, KM&,'v&)&KvglI(&,

where

&I', K'M' v'I8Rl II, KM; v) =(IK, 1K' -KII'K') &v'K'18}ff' 'lvK&+phase&I-K, 1K'+KII'K')

x &v'K'ling "
Iv -K&.

The E1 transition probability depends (as well as
the undefined phases) on the precise choice of the
one-particle state jvK). We propose to compare
the theoretical transitions obtained: {i) with the
pure usual Nilsson single-particle wave functions
with phase =—(-) '; (ii) with BCS wave functions;
(iii) with sharp number-projected BCS wave func-
tions (SBCS approximation). The elaboration of
these functions and the calculation of the corre-
sponding reduction factors are the subject of the
following section.

Ill, STRICT-PARTICLE-CONSERVING WA VE

FUNCTIONS; HINDRANCE FACTORS

One of the present tendencies of the theory of the
nuclear structures consists in polishing and refin-
ing the residual nuclear interaction. It is now well
established that the residual two-body interaction
must have, at low energies, a, pairing character
which is generally incorporated phenomenological-
ly via the BCS pairing interaction. This BCS pair-
ing effect causes strong configuration mixing in the
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ground-state wave function and produces the well-
known energy gap. But because of the nonstrict
conservation of the number of particles, nonphys-
ical effects may appear. One of the aims of this
study is to analyze its importance in the transitions
of electric dipole type.

The sharp number-projected ket (see Ref. 23)
is then

(s)& =C ge~q, ~at, II (u„+ q~u, a~a-, )+C.C. l0&

v jf ()

A. Odd-mass nuclei SBCS wave functions

The pairing-type Hamiltonian for a system of P
pairs of particles (neutrons or protons) has the
form:

H'"' = P E, (ata„+a„-a„-)—G Z a~, a-„,a;a„, (12)
ll VV'

where G designates the pairing-farce strength; a~

and a, are, respectively, a creation and an anni-
hilation operator of a particle of energy F.„ in a
quantum state lv&. The states lv& and lu& are con-
jugate by time reversal. In the traditional BCS
theory the trial ket describing an odd-mass nuclei
with the last single-particle in the state

l g,&
is

written

with

fl&ff/{yg+y) 1 if k =0 or n + 1
g =e~k if 0&k&n+I

n is a nonnegative integer and C is a normalization
constant. The only nonvanishing components in

Eq. (14) are those belonging to a number of pairs
of particles equal to P +2l(s+1) with I a nonnega-
tive integer. If the integer n is chosen so that
2@+1))Max(P, Q-P) (0 being the total pair de-
generacy of the nucleus), then the projection is ex-
actly performed and the ket of Eq. (14) describes
a state having exactly P pairs of particles, and a
single particle in the state ly.,&. In most of numer-
ical applications" the convergence is in fact ob-
tained for n-2 or 4. In this is found precisely one
of the essential interests of this method.

ly„& =at, II (u„+v„a~at)l0&. (13) B. Reduction factor

(The vacuum l0& is defined by a„l0& =0, vv. ) This
ket is not an eigenstate of the particle-number
operator

a~a„+a-„a~

only its mean value is equal to the real number of
particles. The Eq. (13) describes merely a super-
position of states of several neighboring nuclei,
of which the particle number differs by an even
number of particles.

For calculating the matrix elements of a one-
body particle-conserving operator 0 (like the elec-
tromagnetic moments) it may be advantageous to
go over to the quasiparticle representation defined
by the Bogoliubov-Valatin transformation: The
vacuum is the pure BCS state. Let us define the
following operator for quasiparticle pairs:

and A

where n, and n, are the quasiparticle creation
and annihilation operators.

Then we obtain the following expansion:

u„U~u& U&

( „' q„,'-)( „'+q v„')
V ~ j' "j' n

Still in the same representation, any one-body operator 0 takes the form

&e1 =0

with 0;& representing the sum of components of 0, having i creation operators and j annihilation operators
of quasiparticles. Further, 0 connects only components with an equal number of particles. Consequently,
we obtain
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or, in a more general manner

(11b)

fl+1
&q, (n) IOI4'„(n)) = ' 0",;"'— g e» R»(p, )[26,„,(p, ) co,sq'»(p, ,) sin'x„+ sin4'»( p„) sin(2x„}]

» =0

&q „(n)IOI ~„(n)& = 2(n+1)c&q „(n) I olq„&.
When operators 0 act on the ket Iy„,& only the components 0» and O„of Eq. (18) with, respectively, one
and two quasiparticle annihilation operators give a nonzero contribution.

From the sum of the preceding remarks, it results that, after elimination of the imaginary part:

„r..(p.)
Ptlo» (P )0

with the following notation (when the state I v& is blocked):

(18)

0'(v) = Q E'»R»(v) cos4'»(v)

A, m

y„(v) = 2u„(v)v„(v), 5„(v}= u„'(v) —v„'(v), x» =
2 n+1 It»(v) = II p'„"»',

p(&&)

p„"» = [I -y„'(v) sin'x»]"', 0'»(v} = g P„"» + (0- 2P) x», tang„'» = -I}„(v}tanx», lp»(v}l -—
p(~t )

In Eq. (18) the quantities 0",&~&" o and 0,,"""0are proportional to the matrix element ( v„lOI p,,& and depend in
addition on the properties of the operators 0 in respect to the time reversal.

In general, for all one-body operators 0, the matrix element of a transition from the state lv) to the
state

I p& satisfies either the property

&vlOI p&=& plOlv&

(this is the case of operators inducing an electric transition, for example) or the property

&vlOI p& = -& PIOI v&

(this is the case of operators inducing magnetic transitions, angular momentum, ~ ~ ~ ).

(19a}

(19b)

TABLE II. Convergence of the pairing-reduction factor for both electric (E) and magnetic (M) type transitions versus
the degree n of extraction of the unphysical components. Note that the term of order 0 of the sequence is always close
to the BCS reduction factor. The convergence is in all cases physically satisfactory for n =2 or 3.

Initial
Nucleus state

Final
state gEIN

0 g E/N g E/N
1 2 g E/kf gE/N

3 4 g E/N g E/kt
5 6

153
63Euso

161
65 ~96

175
71LU 104

17S
73 ~106

15764adsi

17170~101

175
72 Hf 103

177
72Hfio5

(411) p5 p5 f532)

-'-' «523)- -5-" «413)22 2 2

Z
-s (514)- &

-"(404)

(514) P 2
(404)

(642) &2 23 (521)

(512) P 2
(633)

(633) - — (512)2 2 2 2

-'-" (624) —7-' (514)

5.8x 10
0.889
0.022
0.795
0.324
O. 953
9 x104
0.890
0.515
0.926
0.233
0.384
0.088
0.300
0.847
0.996

6.06x 10 4

O. 915
0.023
0.838
0.326
0.961
1 x103
0.908
0.525
0.944
0.338
0.555
0.162
0.553
O.847
0.997

0.092
0.720
0.032
o.524
0.068
0.754
0.049
0.803
0.600
0.833
0.001
0.016
0,818
0.963
0.619
0.947

0.111
0.70S
0.044
0.502
0.040
0.717
0.066
0.796
0.606
0.827
O. 006
0.008
0.882
0, 999
0.623
0.949

0.114
0.705
0.046
0.497
0.039
0.715
0.067
0.795
0.608
0.827
0.008
0.006
O. 903
1
0.624
0.950

0.115
0.703
0.047
0.495
0.038
0.714
0.068
0.795
0.608
0.827
0.009
0.005
0.913
1
0.625
0.951

0.117
0.702
0.047
0.494
0.038
0.714
0.068
0.795
0.608
0.827
0.011
0.005
0.920
1
0.625
0.951

0.118
0.701
0.047
0.493
0.038
0.714
0.068
0.795
0.608
0.827
0.011
0.005
0.920
1
0.625
0.951

0.118
0.701
0.047
0.493
0.03S
0.714
0.068
0.795
0.608
0.827
0.011
0.005
0.920
1
0.625
0.951
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Nore precisely we write

0",," =[u„(p)u (v)+(-1) v, (W)v„(v)](vlOI u),

0.'" =- [v.(&)u, (v} —(-1}'u,(u) v, (v)1&v I ol } &,

(20a)

(20b)

where T =+1 if 0 satisfies Eq. (19a) and T = -1 if 0 satisfies Eq. (19b).
Finally, the presence of pairing forces without fluctuation of the particle number (SBCS approximation)

manifests itself in the transition probabilities by a multiplication factor R„given by

[u,o(uo)u„(vo) + (-1}v„,(go)v„(vo)]—
0

n+y
&& P e, R,(u„)[2cos4',(u„) sin'x, &, (p)+sin4', (y.,}sin(2x„)]

A=o
2

x "' ', [v„(go}u„,(v„) —(-1) u„,(p,„)v„(v„)] .

fjo k

(21)

where T =+1 according to whether transitions of
electric or magnetic type are considered.

IV. NUMERICAL RESULTS: DISCUSSION

The theory of the preceding section, together
with the single-particle field outlined in Sec. II,
has been applied to numerous dipole electric tran-
sitions in deformed odd-mass nuclei in the rare-
earth region 153 & A, & 180.

A numerical study of the convergence of the pair-
ing factor R„, given by Eq. (21), versus the degree
of extraction n of the nonphysical components,
brings to light the importance of the particle-num-
ber projection. Table II shows the evolution of 8„
(n = 0, 7) for four neutron transitions and four pro-
ton transitions, of- the electric type R„or of the
magnetic type R„". One can note that in the majori-
ty of cases given in this table, the two types of
pairing factors, and especially the R„of the elec-
tric type, differ considerably according to whether
they are calculated in the BCS or SBCS approxima-
tion. We also notice the rapidity of the conver-
gence of the sequence R„: for n close to 3 to 5 one
can estimate that the projection is realized. We
note also, in passing, that A„„is always close to
Racs (see Ref 22).

A numerical analysis of the evolution of the re-
duction factor of the electric type as a function of
the two parameters of the model, the pairing
strength G, and the nuclear deformation 5 shows
that the reduction factor can vary in considerable
proportions as a function of G and 6.

Figure 1 shows the great sensitivity of Aac~ and

&gyes in relation to G and ~ for a neutron transition
in the nucleus 7,'Yb» and a proton transition in the
nucleus ',",Tb». Figures 1(a) and l(b) denote an ex-
ponential behavior of Ag~s versus G as soon as GA
& 2.2 and Figs. 1(c) and l(d) show that the pairing

I

factor, traced versus the deformation parameter
6, is approximately Gaussianlike in the neighbor-
hood of the equilibrium deformation.

The half-lives, calculated with the wave func-
tions of Nilsson (T„), BCS (TBc&), and SBCS (T»c, )
with or without Coriolis interaction, are collected
in Table III and compared to the experimental val-
ues T», ." If one takes account of the pairing cor-
relations, the square of each Coriolis matrix ele-
ment is multiplied by Rscz or Rsacs (according to
whether or not the conservation of the number of
nucleons is imposed), the interaction H' [Eq.(5)]
satisfying the law of Eq. (19b) of time reversal.

In all the transitions considered, the reduction
factor R"c~ is of the order of the unit and entails
practically no modification of the Coriolis matrix
elements in the calculation of the half-lives T&c~.

On the other hand the A~&cs factor remains gener-
ally far below the unit and therefore renders the
half-lives T»cs more sensitive to the matrix ele-
ments of Coriolis when the strict conservation of
the number of nucleons is imposed. The lowest
values of Rz&cs met with in the calculations have
been obtained for the transitions: —,

'
-', '(411)

the values of R»c& are, respectively, 0.7, 0.49,
0.64, 0.34, and 0.067, while the corresponding
values of R~qs are 0.94, 0.90, 0.96, 0.90, and 0.74.
Table III shows that in the majority of cases the
SBCS theory constitutes a net improvement over the
the pure BCS theory. It is well known that the rela-
tively good agreement of T„with the experience of
transitions between intrinsic states tends to be
destroyed as a result of the inclusion of the pair-
ing force."'" According to Table III this seems
to be due partly to the nonphysical effects induced
by the fluctuation of the particle number.

The hindrance factors calculated relative to the
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theoretical Nilsson, BCS, and SBCS estimates,

T„,(exp) T„,(exp) T„,(exp)
Ã T ~ BCS I ~ SBCS

N BCS SBCS

are compared in Table IV for ten neutron transi-
tions and four proton transitions to the Nilsson
hindrance factors of L5bner and Maltnskog" (LM).
This table speaks for itself.

The transitions taking place from an intrinsic
initial state to different states of a rotational band

(I, =K„I~=K&+1 or K&+2) are less hindered and

the theoretical predictions are in better agreement
with the experience. The hindrance factors are
a&.l between 0.1 and 10 except for the transitions of
the intrinsic state -', -', (532} to the states -', —", (411}
and -', —", (411) in the ',",Tb~.

The evolution of the hindrance factor versus the
mass number of the nuclei is illustrated in Fig.
2. This figure shows as well that on the average
the SBCS approximation fits the experimental re-
sults better than BCS approximation, the most
noticeable exception being '7pYb.

6pA (4le'V )

20 22 2& 26 28 30 3Z, 34
6~A (Mev )

18 20 22 2I 26 28

CS

3

eCS

5 70—{@~g} —(633)
2 2

Q27

(a}

)S7

5—5&2) —(633)
2 2

K

Recs

R

R
2

R
3

I I I L r I

Q&6 Q8 Q20 Q22 Q2& Q26 Q28 Q30 Q32 (04 036 Q38 Q20 Q22 Q2& Q26 Q28 Q30 Q32

5 5

FIG. 1. Variation of the pairing-reduction factor versus the pairing-energy strength [(a) and (b)j and the nuclear
deformation parameter ~ f(c) and (d)).
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In summary the pairing-reduction factors, hin-
drance factors, and half-lives for F-1 transitions
with

~
LdC~ =1 are considerably modified and on an

average improved if one projects out that part of
the BCS wave function corresponding to the correct
number of particles.

The method used to do this leads to a sequence
of functions 4'„(n) [Eq. (14)] which converges with
a surprising rapidity towards the projected SBCS
wave function conserving strictly the number of
nucleons. The Coriolis interaction also modifies,
and not always in the right way, the whole of the
theoretical results.

The quality of the results obtained with the pure
Nilsson model seems to us worthy of notice. The
greatly improved model and parameters we use
(see Sec. II) give us probabilities of El transitions
in better agreement with the experience than those
obtained by the majority of other authors.

Possible improvements to the work presented
here can be obtained by lifting the restrictive hy-
potheses we have made, namely:
(i) We have only taken account of 0' [Eq. (5)] by a
first-order perturbation calculation, and this could
well not be valid in every case.
(ii) We have assumed that the pairing interaction
is negligible between unlike nucleons. But this
question remains still open.
(iii) The octupole vibration-particle coupling
strength is certainly weak for ~ = +1 transitions,
but perhaps not always negligible. "
(iv) We have admitted, for the lack of precise ex-
perimental information, that the deformation of
the nuclei does not change in the course of the
transition. But, evidently, the transition proba-
bility can depend on the difference of deformation
between the initial and final states. ' ' "
(v) We have admitted in Sec. II that the mean po-
tential had an axial symmetry. But the nonaxiality
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FIG. 2. Variation of the BCS and SBCS hindrance
factors versus the mass number of the nuclei.
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TABLE IV. Nilsson, BCS, and SBCS hindrance factors for a few E1 transitions. The last
column refers to a Nilsson estimate (vrithout Coriolis) given by Lobner and Malmskog (Ref.
31). This table showers the importance of the errors due to particle-number fluctuations.
Again a reduction of the Coriolis matrix elements would improve most of the hindrance fac-
tors.

Kith Coriolis
+BCS +SBCS

Without Coriolis
~~S +SBCS

(642) - 3 (521)
2 2 2 2

155
64Gd91

157
64Gd93

161
66Dy95

4.45

985

0.42

100.8

0.43

122.50

7.07

1.0

9.0

0.10

120

7.0

0.60

8.0

920

7 7+(633) 5 5 (g 12)
2 2 2 2

169
70Yb99

171
70Yb101

173
70Yb103

175
72Hf103

256

5.4

6.3 1.17

14 0.5

5.56

0.2 2.8

48.8

220

4.2

5, 0

11.4

0.8

8.7 163

3.9

36

180

880

2 2
-'-' (514)- -'-"(624)

2 2

17?
72Hfi05

177

'72Hf107

1067

2.62

806

2.58

2.16

1047 887 3000

9-' (514)- -'-' (404)

175

177
71Lui06

179
73Ta106

181
73Ta108

93,8

115

39.6

3.67

17.4

2.2

0.2

4.34

1.0
0.53

40.6

35.8

0.06

0.04

0.86

0

0.3

165

of which one can take account [for example in the
unified asymmetrical-rotational model of Chi,
Davidson, and Newton" ) can modify considerably
the energy levels and the whole of the electromag-
netic transition probabilities. "
(vi) The nonlocality of the single-particle potential
or of the nucleon-nucleon interaction (both neglect-
ed in this work) may play a nonnegligible role, for
electric dipole transitions, in the first case by re-
ducing configuration mixture, "and in the second

case because of the noncommutativity of the di-
pole operator with nonlocal potentials. " "
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