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Nuclear charge form factor with intrinsic hyperspherical-coordinate wave functions
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A simple expression for the intrinsic form factor of magic nuclei in the lowest order approximation of
the hyperspherical-coordinate method is derived, discussed, and applied to "0 and 'He. A good
agreement with experimental values for q' ~ 8 fm ' and the appearance of a dip in the form factor of
'He are noticed.

NUCLEAR STRUCTURE ~He, '60; calculated intrinsic charge form factor.
Lowest order hyperspherical-coordinate wave functions; comparison with

experiment.

Palumbo has recently suggested a procedure for
calculating the nuclear charge form factor, if both
an intrinsic operator

F,„„=—g exp[i q(r—,R) J

then reduced to much simpler evaluation of the
matrix element of the one-body operator E)., (, in
the basis of the harmonic oscillator. For doubly
magic nuclei, this quantity is concisely expressed
in the Filippov representation'

and intrinsic hyperspherical- coordinate (HSC)
wave functions are used. ' He has also derived an
expression for the form factor in the lowest order
K =K„„„approximation of the HSC method. This
expression is rather complicated and it is the aim
of this work to bring the expression into a simpler
and physically more lucid form and to apply it to
'He and "O.

If the HSC wave function is 4//n„(p, 0) =)) (p)U(&),
the form factor is given by

~ (q) = x*{p)&(e,p)x(p)4.

Palumbo's result for F in this case (the last equa-
tion of Ref. 1) can be rewritten as follows:

P(q, p) =, „.', , ds exp sp'+r(z .—,')
27T1p 4sA

xs +3/2 (q~ lg' lQ~~ )

where

F,.„, = exp(iqR)E„„„.
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where L~ is the Laguerre polynomial and X
=2n'+ l', where n' and I' are quantum numbers
of the last filled oscillator shell. Insertion of Eq.
(2) into (2) and the use of an integral representa-
tion of the Bessel function J, '

leads finally to

4 (-) (N+ 2)! q'p'
&(q, p) =-

g„,, ) ~ 3)'(n „., ))„,r ( g

(5)

In order to make Eq. (5) short, the Bessel func-
tion has been replaced by the generalized hyper-
geornetric series':

In Eq. (2), 2 is a hypermomentum,

g =K„„„+"-(2 —2) = Q (2n+ I)+ ~(A —2),

r{~+1)
ok 1 y +1/

4 ( /2)y Jy x)

For magic nuclei with A == 16, we obtain then

(6}

iz, l are quantum numbers of harmonic oscillator
single-particle states of which the Slater deter-
minant

l 4)))'/)) is composed with the spring constant
o. =vs. Contour of the integration C is the same
as in Ref. 2 (see Fig. 1).

Evaluation of the matrix element of the many-
body operator I „„„between HSC wave functions is

A —1 g p
(Qq P}=OE~ 4 + z&

—
A 4

A —1qp'
4,

Equation (7) has been derived for 'He {4=3) and
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By simply dropping the factor (A —1)/A we pro-
ceed from the exact form factors to approximate
ones. However, it is seen that the introduction of
an effective momentum q,,„=[(A —1)/A] "'q in order
to correct 0' for neglected terms of order 1/A
(which is sufficient for 'He) does not suffice in the
case of "0 due to the coefficient q'p'/4 in the sec-
ond term on the right hand side of Eq. (7).

In order to illustrate the above formulas, we have
calculated the HSC form factors for 'He and "Q.

for "O (2 =33) only. Nevertheless it holds also
for C (Z =23) provided its ground state is de-
scribed by the HSC wave function with K =K„„„,
corresponding to the oscillator configuration
(Osy/p)'(OP3/2)'. However, the derivation of Eq. (7)
for "C is more complicated, because simple Eq.
(3) cannot be applied and the matrix element of

E,.„, has to be expressed as the sum of the single-
particle contributions of Osy/2 and OP», nucleons.

In Ref. 5, an expression for the HSC density dis-
tribution n(r) of doubly magic nuclei in the approx-
imation K =K„„„is derived, taking into account only
terms up to order 1/A. We can thus obtain an ap-
proximate form factor by applying a Fourier trans-
form to n{r} of Ref. 5, which yields:

The HSC wave function g(p) has been calculated'
with the two-Gaussian interaction 81 of Brink and
Boeker. ' This interaction yields, for 'He and "O,
reasonable HSC binding energies (29.3 and 106.6
MeV) and rms radii (1.50 and 2.60 fm). ' In Fig. 2,
the HSC form factors E of 'He, given by Eqs. {7)
and (8) and corrected for the proton finite size,
are compared with each other and also with ex-
perimental values. ' The comparison with experi-
mental values should not be regarded as a quanti-
tative test of the potential used, because the mod-
el with K =K„„„is primarily designed for heavier
nuclei and for 'He it may not work well enough.
Such a comparison provides only a qualitative in-
formation on characteristic featues of the form
factor which should be reproduced by any reason-
able model. The use of the intrinsic form factor
Eq. {7) changes considerably the behavior at sma11
values of q, thus bringing the rms radius closer
to the experimental value. It is remarkable that
the simple HSC method, with its new degree of
freedom in the hyperradius p, is rich enough to
predict a dip. As compared with experiment, the
position of the dip is shifted to higher values of q,
which is likely due to an absence of shorter-range
two-body correlations in this HSC method with

K =K„„„only. The intrinsic Slater determinant with
harmonic oscillator single-particle wave functions,
which is a very good approximation to the HSC
wave function of heavier nuclei, ' gives the form

I IG. 1. Contours C and C' of the integration in Eqs.
(2) and (4), respectively. The cut of the integrand is
marked by a heavy line.
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FIG. 2. HSC form factors of He yielded by the exact
formula {7) {solid line) and by the formula (9) corrected
up to order 1/A {dashed-dotted line). The intrinsic
form factor of the simple harmonic oscillator is
marked by the dotted line. All values are corrected for
the proton finite size. Experimental values are plotted
by heavy dots with error bars (if possible).
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FIG. 3. HSC form factors of '60. For notation see
Fig, 2.

factor

A 4 2 q A 1F"o(q) = 1 — —,exp—

and for He no dip occurs (dotted line in Fig. 2).
In Eq. (9), the o giving the highest binding is cho-

sen (o. =0.711 fm ' for 'He).
In Fig. 3, the HSC form factors of "9, given by

Eqs. (7) and (8) and corrected for the proton finite
size, are compared with each other and also with
experimental values. ' Again, the use of the intrin-
sic form factor [Eq. (7)] improves the agreement
with experimental values; this is most noticeable
in the region of the second maximum. The simple
HSC method is not able to predict the second dip
and this could likely be improved by including cor-
relations of shorter range, too. For "9, the os-
cillator model mentioned above approximates the
HSC form factor F, based on Eq. (7), to a high
degree of precision up to q'- 15 fm '.

In this comment, we have derived a simple ex-
pression for the intrinsic form factor of doubly
magic nuclei, using an intrinsic operator and in-
trinsic hyper spherical-coordinate wave functions
in the lowest order approximation K =K„„„. We
have shown that the use of an effective momentum
in order to correct for neglected terms of order
1, 'A may not be sufficient for nuclei heavier than
'He. Finally, we have applied the formulas derived
to 'He and "O. We have found that the use of the
intrinsic operator is important in the region of q'
~ 8 fm ', improving the agreement with experi-
mental values, as compared to a treatment where
terms of order I/A are neglected. Moreover, the
HSC method in the approximation K =K„„„is itself
able to produce a dip in the form factor of 'He.
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