Excitation energy of the second excited state of ${}^{12}C^{\dagger}$

P. L. Jolivette, J. D. Goss, A. A. Rollefson, and C. P. Browne Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (Received 12 August 1974)

The excitation energy of the second excited state of ¹²C is measured to be 7655.2 ± 1.1 keV. The current best value, including the present work, for the 3α -¹²C (7.65 MeV) Q value is 380.1 ± 1.0 keV.

[NUCLEAR REACTIONS ${}^{12}C(p, p){}^{12}C$ measured E_x of ${}^{12}C(7.65 \text{ MeV})$.]

The rate for the two important steps in stellar helium burning, $\alpha + \alpha = {}^{3}\text{Be} + \alpha = {}^{12}\text{C}(7.65 \text{ MeV})$ $+ {}^{12}\text{C} + \gamma$, depends linearly on the radiation width of the 7.65-MeV state of ${}^{12}\text{C}$ and exponentially upon the *Q* value, $Q = M_{3\alpha} - M_{7.65}$.

There have been three recent accurate measurements¹⁻³ giving this Q value and Barnes and Nichols⁴ point out that the uncertainty in the overall reaction rate is now limited by the somewhat contradictory measurements of Γ_{γ} . Nevertheless, we have remeasured the ${}^{12}C(7.65 \text{ MeV})$ excitation energy for two reasons. First, one of the three recent accurate measurements¹ was made at this laboratory using the 50-cm spectrograph and at the same time the excitation energy of the first excited state of ¹²C was measured. That result for the first state is about 2 standard deviations above the current best average of 4439.43 ± 0.25 keV given in Ref. 5. Using our 100-cm spectrograph we measure⁶ 4439.5 ± 1.0 keV. If the high value for the first excited state in Ref. 1 were caused by a systematic error then the second excited state energy might also be in error, even though it agrees well with other measurements. Second, with the 100-cm spectrograph we can reduce our uncertainty to that found by averaging the current best three numbers¹⁻³ ($\simeq 1$ keV).

In the present experiment we used the ${}^{12}C(p,p){}^{12}C$ reaction and the techniques and error analysis follow those described in Ref. 6 except instead of determining the bombarding energy and angle from elastically scattered groups only, the ${}^{12}C(4.44$ MeV) state and well-known ($\Delta E_x < 0.2$ keV) states in ${}^{56}Fe$ and ${}^{60}Ni$ were also used. This reduces certain errors, especially systematic errors. Our result is 7655.2 ± 1.1 keV, and the average of all work is 7655.2 ± 0.8, Table I.

The measurement of the second excited state in

TABLE I. Summary of excitation energy measurements of the second excited state of ¹²C and Q values for ¹²C* $\rightarrow 3\alpha$.

Authors	$E_{\mathbf{x}}$ (keV)	Q (keV)
Austin, Trentleman,		
and Kashy (Ref. 2)	7656.2 ± 2.1	
Stocker, Rollefson,		
and Browne (Ref. 1)	7655.9 ± 2.5	
McCaslin, Mann, and		
Kavanagh (Ref. 3)	7654.2 ± 1.6	
Present work	7655.2 ± 1.1	
Average of excitation		
measurements	7655.2 ± 0.8	$380.3 \pm \textbf{1.1}$
Barnes and Nichols		
(R e f. 4)		$\textbf{379.6} \pm \textbf{2.0}$
Average		380.1 ± 1.0

Ref. 1 is seen to be consistent with all other results. We suggest that the deviation of 2σ from the current best average value for the first excited state energy is merely a statistical fluctuation. Other excitation energies measured at about the same time agree well with independent measurements. For example, the ercitation energy⁷ of the ¹¹B state at 4.44 MeV agrees with a recent measurement by Kashy, Benenson, and Nolen⁸ supporting the assumption of small systematic error in the 50-cm values.

With the addition of our measurement the uncertainty in the Q value for $3\alpha \rightarrow {}^{12}C(7.65 \text{ MeV})$ has equal contributions from the uncertainty in the 3α mass (0.75 keV) and the excitation energy (0.79 keV). The resultant uncertainty in the reaction rate is $\simeq 10\%$ and is well below that due to the radiation width.

- [†]Work supported by the National Science Foundation under Grant No. GP-27456.
- ¹H. Stocker, A. A. Rollefson, and C. P. Browne, Phys. Rev. C 4, 1028 (1971).
- ²S. M. Austin, G. F. Trentleman, and E. Kashy, Astrophys. J. 163, L79 (1971).
- ³S. J. McCaslin, F. M. Mann, and R. W. Kavanagh,
- Phys. Rev. C 7, 489 (1973).
- ⁴C. A. Barnes and D. B. Nichols, Nucl. Phys. <u>A217</u>, 125 (1973).
- ⁵J. A. Nolen, Jr., G. Hamilton, E. Kashy, and I. D.
- Proctor, Nucl. Instrum. Methods <u>115</u>, 189 (1974). ⁶P. L. Jolivette, J. D. Goss, G. L. Marolt, A. A. Rollefson, and C. P. Browne, Phys. Rev. C <u>10</u>, 2449
- (1974). ⁷C. P. Browne and H. Stocker, Phys. Rev. C <u>4</u>, 1481
- (1971). (1971).
- ⁸E. Kashy, W. Benenson, and J. A. Nolen, Jr., Phys. Rev. C <u>9</u>, 2102 (1974).