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Distorted-wave theory of multistep processes
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Robson's criticism of the distorted-wave's Green's function, used for intermediate
states in higher-order calculations, is examined and shown to be unfounded. Possible
difficulties of his suggested alternative method for higher-order calculations are con-
sidered.

In a paper with the above title' Robson discusses
difficulties that may appear if the distorted-waves
formulation of reaction theory is carried to sec-
ond-order Born approximation. Standard calcula-
tions that use the Green's function for a complex
potential (method A of Ref. 1}are felt to suffer
from spurious creation of flux in intermediate
states. A new approach (method B}is therefore
proposed, based on the multichannel expansion
of the exact many-body Green's function. We show
here that the usual method A Green's function does
not encounter difficulty due to creation of flux in
intermediate states; this weakens the motivation
for complicated new approaches such as method
B. We show further that method B is subject to
criticism for double counting of intermediate
states.

This is not to say that usual higher-order dis-
torted-wave Born approximation (DWBA) has no

problems at all. Various formulations of the Born
series are known to diverge, particularly if rear-
rangement boundary conditions are allowed to play
a role; this might be relevant if many terms in
the series could be computed. Moreover, we
recognize' that direct reaction theories in princi-
ple use effective operators (such as optical poten-
tials) defined in a very restricted portion of Hil-
bert space. Great care is required to include ef-

fectiveve

operators consistently in higher -order
analyses. Fortunately, neither of these questions
is at issue in the present discussion.

Robson's article' discusses the "multiple" DWBA
amplitude

T';.'=(x' Il'8G" &.Ix".}, (1)

in which X „' and X z
' are distorted waves defined

in channels n and P, V and Va are residual inter-
actions defined with respect to those channels,
and

G~'~ = (E+ie -H } '

is the exact Green's function for the many-body
scattering system. At issue is the choice of ap-
proximations to G'. Two methods are contrasted:

(A) G ' is expanded in a distorted-waves Born
series, through a chain of essentially arbitrary
intermediate arrangements. The series is trun-
cated at second order, giving an approximation,
G = GA, defined with respect to one particular
intermediate arrangement. (B) Gt ' is expanded
in an exact bilinear series of eigenfunctions of H,
and heuristically motivated distorted-waves approx-
imations of the intermediate eigenfunctions are in-
serted in this series. Thus method A discusses
G

'
in terms of a particular intermediate arrange-

ment, whereas method 8 sums over all possible
intermediate arrangements. Method B is suggested
because of supposed difficulties of method A.

In either method, bilinear expansions of G' al-
low Eq. (1) to be put in the form of a sum of pro-
ducts of off shell T-matrix amplitudes, ' provided
suitable transformations with the S matrix are in-
troduced. We do not emphasize these transforma-
tions, because they are not central to the problem
of approximating the multiple amplitude. We main-
ly treat the questions of how to reduce Eq. (1) for
practical calculation, what are the properties of
Eq. (1) in the presence of strong absorption, how

the alternative reductions of Eq. (1) compare.
Method A is most clearly discussed for a single

intermediate channel &, which may have an ar-
rangement different from that of either channel n
or channel P. The eigenfunctions defined in the
intermediate channel are

4~(&)x"(k, r),
in which P&(g) is the internal wave function that de-
fines channel r, and Xt'(k, r) are distorted waves
for the scattering of the fragments in channel y,
with k the asymptotic relative momentum of the
fragments and r their displacement from each
other. Use of these eigenfunctions to construct
a bilinear expression for the Green's function re-
quires integration over all values of k.

The wave functions Xi"(k, r) are governed by a
non-Hermitian optical potential Uz(r); as a result
distorted waves for different (ki values are not
orthogonal. This nonorthogonality must be dealt
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with when the Green's function is constructed. The
usual procedure is to extend the set }( '(k, r) into
a biorthogonal set by introducing wave functions
dual to the distorted waves.

The properties of the dual set of wave functions
and the structure of the distorted-waves Green's
function are most easily seen' in partial-wave ex-
pansion. Let us discuss only the s-wave term of
X"(k, r),

i,) f(k, r)
(k, r)-

in which f (k, r) is the radial wave function that re-
duces outside the potential U„(r) to the expression

if the optical potential is strongly absorbing we
can have

( 0(k)~ « 1 .

Robson suggests that small q can cause a "creativ-
ity problem", resulting in undesirable enhance-
ment of the multistep amplitude.

Equation (7) certainly indicates the need for
great care in the application of Eq. (6) in practical
calculations. However, the actual somewhat sec-
ondary role of the factor )I(k} is at once indicated
by going over to the well-known, exact closed
form of the outgoing-wave Green's function

(8)
j(k, r)„„„.,„„=-[e '" ' —q(k)e' "

J (5)

with incoming flux of standard magnitude. Then
the f(k, r) are found to be self-dual, provided
comPlex conjugation is not used in scalar products.
The scalar product of f(k, r) with itself is found to
be proportional to the reflection coefficient q(k).
Use of these properties immediately gives the
l = 0 radial distorted-waves Green's function'

f(k, rY(k, r')
)I(k)(Eq +i~ k2k'-/2i(. )

(6)

We note again the omission of complex conjuga-
tion. [In principle a few bound state terms may
have to be added in Eq. (6). These do not affect
qualitative discussions. J The normalization fac-
tor )I(k) in the denominator is intriguing, because

where r„r, indicate the lesser and greater of
r, r' and k(k, r} is the irregular optical-model
radial wave function that reduces outside the po-
tential Uz(r) to the normalized exponential

k(k, r),„,r,~,, = e' " (g)

The closed form Green's function of Eq. (8) is
manifestly well behaved in the limit q(k) —0.
Therefore the apparent "creativity pxoblem" in
Fq. (6) is an artifact of the bilinem expansion.

Although Eqs. (6) and (8) are by construction
identical solutions of the same differential equa-
tion, it is instructive to insert explicit wave func-
tions in Eq. (6) and discuss the integrations to
see qualitatively, how the apparent creativity prob-
lem of the bilinear expansion is overcome when the
closed form is recovered. If we work in the re-
gion r, r' external to the potential Uz(r), we may

substitute Eq. (5) into Eq. (6}, to get
fk(r-r ) ik(r'-r), eik(r+r') -l. -ik(r+r )

(10)

Equation (10} is easy to discuss as a contour inte-
gral if g(k) is treated as constant. The first three
terms giv e pole contributions, which precisely yield
Eq. (8) for the external region. The third term
also gives an integral along the imaginary k axis,
and the fourth term, the problematic term propor-
tional to q ', gives only an integral of this type.
Because (r+r')& 0, the imaginary integrals tend
to be small. They vanish in the limit that & or &'

becomes asymptotically large. This effect is al-
ready visible in Eq. (10}, where the )I

' term is
seen to contain a rapidly oscillatory phase factor,
which reduces its contribution when the 4' integra-
tion is performed, as in previous discussions of
phase averaging. ' 4 To complete the analysis of
Eq. (10) it would be necessary to take the k depen-
dence of )I(k) into account, at least to the extent of

specifying its analytic properties. However these
further steps are of no present interest, because
the exact answer is already in hand.

The limited role of absorptivity is most easily
realized by considering G„(r, r') at r =r'. The
Green's function is a solution of a differential equa-
tion that contains a localized source; near this
source the properties of the solution are domin-
ated by the source, not by absorptivity in the
propagator. Therefore G„(r', r') cannot have any
over-all dependence on g. For r &r' the smaller
argument in Eq. (8), the one that lies deeper in
the optical potential, always appears in the regu-
lar function f(k, r, ), the function that is reduced
by absorption. No matter to what extent creativity
might cause k(k, r, ) to grow, this irregular func-
tion is multiplied by f (k, r, ), and the product is
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not greater than at & =&'. In other words, the net
effect of propagation in intermediate states from
&' to r is loss of probabi1. ity amplitude, not crea-
tion. The intermediate Green's function must be
seen as a whole, not factor by factor.

Since small q does not cause G& to be unusually
large, it does not matter with what other factors
G„ is associated in Eq. (1), contrary to remarks
at the end of Sec. II of Ref. 1. Therefore there is
no reason to fear that other details of this ampli-
tude might enhance the role of "creativity".

To develop method 8 we construct an exact bi-
linear expansion of d ' in Eq. (1), using multi-
channel scattering eigenfunctions 4& of the com-
plete H,

H4(g) ——E)4()+, )

Different eigenfunctions 4'(q' are distinguished by
their total energy Eq, and by the arrangement &

and channel p in, which they have ingoing waves.
Hence (&'i= LEq, r,-p). Eigenfunctions that differ
in any of these indices are orthogonal. ' The ex-
act Green's function takes the form

Gl» ~ ~

+"&(+k'I
E+ie —E (12)

Again, completeness may require adding a few
bound-state terms to this expression.

Robson now seeks approximations to Eq. (12),
not by truncating the sum, but by devising dis-
torted-waves replacements for the state vectors.
Because insertion of Eq. (12) in Eq. (1) does not
give an expression, composed of T-matrix elements,
he doesn't simply substitute distorted waves in Eq.
(12) as it stands. The bra vectors are instead re-
placed with corresponding time-reversed eigen-
vectors, by use of the scattering matrix, so that

+(.& ~& &+(-)
G(+) dEI ~ I s'rD) rD t1'( s'tT I (13)E+ie -E'

r p
t 7'

The eigenvectors and the S matrix in Eq. (13) are
all computed at the same energy E', which we
have made explicit.

Method B consists' in introducing optical approx-
imations in Eq. (13). The optical S matrix is as-
sumed identical to the exact S matrix, under the
restriction t =r. The ket is replaced by the gen-
eralized distorted wave X~ „~ that is ingoing in
channel p and can scatter inelastically to other

channels in r, p' wp. The bra is replaced by the
corresponding dual vector X+'„,. The approximate
Green's function then isHAPP

~ XE'ru& Sr o r o" (Xs'z o" I

E+ iE, —E' (14)

We are grateful to Don Robson for a lengthy cor-
respondence that clarified our initial confusions
about method B.

This result seems more symmetrical than if cor-
responding optical approximations had been used
directly in Eq. (12). Insertion of Eq. (14) in Eq.
(1) gives an expression composed of products of
DWBA amplitudes (or coupled-channel Born ap-
proximation, to be precise) summed over a large
array of intermediate energies, arrangements,
and channels.

The significance of method 8 must be judged in
the light of our previous demonstration that meth-
od A leads to perfectly finite results for the mu1. ti-
step amplitude, even for the strong absorption
limit p- 0. It is not necessary to devise new ap-
proaches to overcome a divergence of method A.
Therefore method 8 is not so much a possible so-
lution of a key problem of multistep calculations,
but rather is one of several alternative definitions
of the multistep DWBA amplitude. On the other
hand, method 8 uses a lengthy expansion in a po-
tentially dangerous set of intermediate states:
although the exact multichannel wave functions in
Eq. (12) are orthogonal and can meaningfully be
summed over arrangements, this orthogonality is
destroyed when optical approximations are intro-
duced. The summation in Eq. (14) thus involves
considerab1. e overcounting, as a result of the
overlaps between different arrangements in the
nuclear interior. No such overcounting occurs in
method A, which is based on a single intermediate
arrangement and expands only in the (orthogonal)
states of excitation of the nuclei in that arrange-
ment. The more extensive sum in G„' is there-
fore very likely to outweigh any tendency for the
individual terms in G~' to be smaller than those
in G&'. Comparison with experiment certainly
cannot decide which of these mathematical approx-
imations should be preferred. Perhaps, then,
ambitious applications of method 8 should be de-
ferred until a more complete analysis is available.
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