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and the mean binding energy of nuclei '

Minoru Harada
Institute of Libera/ Arts, Otaru Unit. ersity of Commerce, Otaru, Rokkaido 047, Japan

(Received 8 July 1974)

On the basis of experimental knowledge, it is shown that separation energy thresholds cannot
be interpreted as experimental single-particle energies, and that the energy of the topmost
particle in conventional nuclear single-particle potentials is smaller in absolute magnitude
than the mean binding energy. Connections with Hugenholtz and Van Hove's theorem are
briefly discussed.

Usually, hole spectra exhibit a peak at separation
thresholds. ' The corresponding separation ener-
gies (with their signs reversed) are the energies
needed to remove a particle from a nucleus, leav-
ing the residual nucleus in its lowest state. De-
spite its intuitive appeal, the identification of sep-
aration energies and binding (or single-particle)
energies has been criticized by Meldner' as an un-
justified procedure. His argument, however, is
model-dependent. The purpose of this note is to
verify his assertion on the basis of experimental
knowledge, and thereby to derive an important in-
equality between the conventionally defined single-
particle energy of the last particle and the mean
binding energy of heavy nuclei.

The important empirical fact relevant to our ar-
gument is the systematic trend' observed in nuclei
that the conventionally defined single-particle po-
tential for individual nucleons becomes stronger as
the mass number A. increases. This is typically
reflected in the well-known empirical relation
A~= 40A ' ' MeV, where ~ is the harmonic oscil-
lator frequency. This trend indicates that when a
particle is removed the individual binding field
shifts uPsoaxds, This upward shift requires ener-
gy. Therefore, to remove a particle it is not suffi-
cient to supply an energy equal to the binding ener-
gy of this particle; we must supply an extra ener-
gy, which is needed to shift the remaining particles
upwards. This extra energy is what is called the
"rearrangement energy. "4 As a result, the total
energy required to remove a particle in the single-
particle statei, which energy is the separation
energy S(i), corresponds to the binding energy of
some other particle in a lower state:

-s(i) &E(i),

where -E(i) is the binding energy of the particle
ini. Hence, as claimed by Meldner, it is wrong
to interpret -S(j) as "experimental" single-par-
ticle energies for hole states.

It is also found' experimentally that for heavy
nuclei S(F), where F denotes the highest occupied
single-particle state, is systematically smaller
than the mean binding energy -F.„; for A&200,
S(F) is of the order of 5.5 to 6 MeV, whereas Fa.
is of the order of -7.5 MeV. "~" Combining this
fact with (I), we obtain

F. (F)& F,„ for heavy nuclei . (2)

It is noted that this inequality is expected to hold
even for infinite nuclear matter. For, as A-~,
-S(F) and F.„will become equal so as to satisfy
the saturation condition, -S(F) = (8+1)Ea, —AE,„.
The upward shift of each binding field also becomes
vanishingly small, as the above-mentioned trend'
indicates. However, the rearrangement energy is
governed by A&& (upward shift). Therefore, the re-
arrangement energy will remain finite as A- ~';
E(F) will not approach -S(F). It should be pointed
out that our result (2) does not contradict Hugen-
holtz and Van Hove's theorem. ' The energy of the
topmost particle in their argument is given by
(BE /BA)„, where E„and 0 are the total energy
and the volume of the system, respectively. By
definition, this quantity is essentially equal to
-S(F), Therefore, the theorem should be stated
as "-S(F)=E„," instead of E(F)=E,„as stated in
Ref. 8, which is just the saturation condition.
Note that the distinction between the conventionally
defined single-particle energy and the separation
energy is one of the points made in the present
paper. Recently, in the framework of modern
Brueckner theory, ' different definitions have been
introduced, equating real parts of (generally) com-
plex single-particle energies and separation
thresholds.

Since our inequality (2) is an empirical relation,
it can be used as a test on theoretical relationships
between the conventional single-particle energy
and the total binding energy of heavy nuclei; con-
trary to their intention in Ref. 8, Hugenholtz and
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Van Hove's theorem does not serve this purpose
because of their special way of defining the single-
particle energy, as discussed above. Particularly
noteworthy is that existing nuclear-matter calcula-

tions" with realistic nucleon-nucleon interactions
fail to satisfy (2). The case of heavy (but finite)
nuclei involves further complications. ' These
problems will be treated in a separate paper.
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