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Benormalized Brueckner-Hartree-Fock and density dependent Hartree-Fock calculations
in the literature have been difficult to compare because they involve both different physical
approximations and also technical computational differences, Hence, results obtained in both
calculations for 40Ca are corrected for technical differences and compared in detail. It is
shown that comparable Brueckner-Hartree-Fock calculations using an osciHator basis and

using the local density approximation are in good numerical agreement, and that three mech-
anisms are of roughly equal importance in obtaining the proper interior density: occupation
probabilities, the potential arising from the variation of the Pauli operator, and the phe-
nomenological parametrization of higher order corrections to the effective nuclear interac-
tion. The renormalized oscillator basis calculations include only the effect of occupation
probability diagrams. The "bare" local density approximation results are an improvement
over the renormalized results since the former includes the effects of both occupation prob-
abilities and the variation of the Pauli operator. The adjusted local density approximation
calculations then give further improvement due to the phenomenological parametrization of
the force, simulating the effect of higher-order diagrams.

NUCLEAR STRUCTURE Renormalized Brueckner-Hartree-Fock and density
dependent Hartree-Fock theory. Application to 4 Ca.

I. INTRODUCTION

Renormalized Brueckner-Hartree-Fock (RBHF)
and density dependent Hartree-Fock (DDHF} calcu-
lations of the ground states of finite nuclei differ
both in the physical content of the theory and in
technical computational details. Hence, it is de-
sirable for the present authors who have been in-
volved in both types of calculations' ' to account
for the technical differences and to display the con-
tributions to ground state observables arising from
the different physical content of the theories. The
nucleus "Ca was selected for this comparison be-
cause the most complete computational results re-
quired for this comparison were already available
in the literature. Although no new computational
results are presented in this note, it is hoped that
the present comments will be of some pedagogical
value in clarifying the relationship of these two

types of calculations. .

RBHF is the most fundamental attempt to numer-

ically evaluate self-consistent wave functions in
the basis defined diagrammatically by graphs (a}
and (h} of Fig. 1, with a minimum of additional
simplifying approximations. " The wave functions
are expanded in an oscillator basis. In the reac-
tion matrix G, the main approximation is to re-
place the Pauli projection operator Q by the 'angle
averaged" Q for pure oscillator wave functions
with a predetermined value of fiQ. For "Ca, the
oscillator approximation of Q is reasonably accu-
rate and ATE=12.5 MeV corresponds to a density
distribution close to the calculated result, so that
this approximation is expected to be quite satis-
factory.

DDHF is based on G matrices with purely kinetic
intermediate states, as is the BHF with which we

compare. Nevertheless, DDHF differs from BHF
in three significant respects': (1) the local density
approximation (LDA} is used; (2} the single parti-
cle potential is defined variationally; and (3) the
effects of omitted diagrams and relativistic and
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and comparing the exact density matrix for neu-
trons or protons p(R+ r, R — r) in cm and rela-
tive coordinates, R and r, respectively, with the
nuclear matter density matrix p(B)[3j,(A&r)/her]
as in Ref. 4 where k~=[3n'2p(B)]'~'. The accuracy
of the LDA in "Ca will be verified below in Sec. II.

The variational definition of the single particle
potential has been a subject of considerable inter-
est. ' ' For our present purposes, we shall not at-
tempt to justify it, but rather show that the varia-
tion of an appropriate expression yields the dia-
grams (a) through (c) of Fig. 1. We define

(ff& =g(AI TI A} +-P (ABI G(e„+e,) IAB),
AB

FIG. 1. (a)-(c) Diagrams for the single-partieel po-
tential and (d)-(h) for the expansion of the one-body den-
sity operator. The wavy lines indicate 6 and the dashed
lines denote K

mesonic corrections are approximated phenomeno-
logically.

In the propagator Q[BO —W] 'Q of the reaction
matrix with H0=QTQ, the local density approxima-
tion replaces the exact global Pauli projector Q for
the finite nucleus by the nuclear matter Pauli pro-
jector Q ~„corresponding to the density at the cen-
ter of mass of the two interacting particles. Al-
though Q~„certainly does not approximate Q glob-
ally, the propaga, tor only contributes within the
range of the two body force, and locally at small
relative distances Q is well approximated by Q~M.
This may be seen simply in coordinate space by
writing

&xy I@ I
x'y'&

= [5(x —x' ) —p(x, x')] [5(y —y') —p(y, y')]

where (AB
I G(e„+as) I

AB) is assumed to be anti-
symmetrized and

e„=T„+Q (AB I G(e„+es) I AB) .
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I
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I d&

I
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I

d& —x*
I D&,
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requiring stationarity for any D and d, and collect-

Occupied and unoccupied states are denoted by
upper case and lower case roman letters, respec-
tively. Instead of performing an unrestricted vari-
ation using Lagrange multipliers, it is preferable
to define the self-consistent single pa.rticle state
by requiring stationarity with respect to an arbi-
trary infinitesimal unitary transformation between
the occupied and unoccupied state wave functions.
Writing:

ing the terms associated with A.
* yields

b(H) =&*{&dl T I »+Q &dB
I G(e, +e, ) I »&++ &» IG(e~+es) IDb&&db IB, , ld»&dblG(eg+ea) IAB}}

B AB 0 A B

——Q &AB I G(e„+e,) I
ab) (ab

I

1

~ I
ab} (ab

I G(e„+es) I
AB) (be„+«, ) .

2 AB
A 8 (B e )2

0

Variation of cA is similar, with the result
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No corresponding variation for the particle ener-
gies arises, since we have defined Hp to be QTQ.

Equation (4) is a set of linear equations which
may be solved exactly by matrix inversion. The
leading term is

ue„=~*&du
I G(e„+~,) I

DA&+

since according to Eq. (3}with the condition
5(H) =0, the first term in Eq. (4) is of higher or-
der in G. To obtain the lowest order diagrams de-
fining the potential U, it is sufficient to retain this
leading term, to substitute De„+ Sea in Eq. (3), to
note that 5&A and 5m B yield equal contributions, and
define (d I

U
I

D& by the relation 5&H& =X*(&d
I

T
I

D&

+(d
I

UI D& j which assures stationarity. Hence,

&dI Ul » = Q &d&l G(ea+ea} I»&+ g &»
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The three terms in Eq. (6}correspond to diagrams
(a), (c), and (b) in Fig. 1, respectively, where the
propagator in this figure are labeled appropriately.
Note that all G matrices are evaluated on energy
shell, corresponding to a sum of diagrams over
relative time orderings and that the minus sign
associated with diagram (b) is consistent with the
three hole lines and two closed loops. Also, it is
important to note that diagram (c) exactly repre-
sents the variation of the Pauli operator, whereas
the occupation probability diagram (b) represents
only the leading term of an infinite series solution
to Eq. (4).

Thus, we conclude that stationarity of Eq. (1) is
equivalent to the diagramatic definitions of the
particle-hole single particle potential specified by
graphs (a) through (c) of Figure 1. The DDHF sin-
gle-particle potential, while not rigorously identi-
cal, very closely approximates these graphs,
since it is defined by the stationarity of Eq. (1)
with Q replaced by Q~„, and this local density ap-
proximation has already been shown above to be
extremely accurate.

The final approximation in DDHF is to represent
the additional many-body, relativistic, and meson-
ic corrections by a zero range phenomenological
interaction in the triplet even states, where nu-
clear matter estimates indicate such corrections
to be largest. These effects roughly account for
the discrepancy of 5 MeV per particle between the
two-body cluster energy of 11 MeV per particle in
nuclear matter and the binding energy extrapolated
from the semiempirical mass formula, and are
thus necessary to reproduce the observed binding
energies and single-particle energies of finite nu-
clei. In addition to increasing the binding energy,
this phenomenological correction term is adjusted
to saturate nuclear matter at 4~=1.34 fm ' to ob-
tain the observed nuclear charge radii.

To avoid confusion in terminology, one should

note that Campi and Sprung' refer to this correc-
tion term as a renormalization, which is unrelated
to the renormalization in RBHF associated with the
inclusion of diagram (b) of Fig. 1 in the definition
of the single-particle potential.

II. COMPARISON OF DDHF AND RBHF

From the preceding discussion, it is evident that
DDHF and RBHF differ in several respects. RBHF
includes only diagrams (a) and (b) of Fig. 1 in the
definition of the single-particle potential. DDHF
also contains diagram (c) and in addition includes
the parametrization of higher order corrections
and utilizes the LDA, In this section, we shall at-
tempt to separate the effects of diagrams (a.}, (b),
and (c) of Fig, 1 and the parametrization of higher
order corrections in Ca using the published re-
sults of Refs. 1-3, and check the accuracy of the
LDA in technically comparable calculations.

It will be convenient to distinguish the following
five calculations of "Ca which are all based on re-
action matrices with purely kinetic energies in in-
termediate states: (1) BHF, the unrenormalized
Brueckner-Hartree-Fock calculation of Table IV of
Ref. 2 using QTQ as the single-particle Hamilto-
nian for intermediate states; (2) LDAHF, the Har-
tree-Fock calculation denoted HF-bare in Table
VII and graphed in Fig. 4 of Ref. 3, using the local
density approximation with the bare Reid potential
omitting all 5G/5p terms; (3}RBHF, the renor-
malized Brueckner-Hartree-Fock calculation of
Table IV and Fig. 3 of Ref. 2; (4) DDHF, the den-
sity dependent Hartree-Fock calculation with the
bare Reid potential of Table VII and Fig. 4 of Ref.
3 and; 5) adjusted DDHF, the density dependent
Hartree-Fock calculation including a phenomeno-
logical parametrization of higher order correc-
tions, of Table VII and Fig. 4 of Ref. 3.

In order to compare the local density approxima-
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tion results from Ref. 3 with the oscillator basis
results of Refs. 1 and 2, it is necessary to correct
for several technical differences in the calcula-
tions. For readers uninterested in technical con-
siderations, it is sufficient to regard BHF and
LDAHF as identical, assume that the results in
Fig. 2 result from technically comparable calcu-
lations, and go on to the next section. For those
interested in a detailed comparison of the two ap-
proaches, we show below how to approximately
correct for the technical differences directly from
the published results of Refs. 1, 2, and 3.

The validity of the local density approximation
may be verified by comparing the energies and
densities obtained in the BHF and LDAHF calcula-
tions. The LDAHF binding energy per particle of
3.0 MeV appears superficially to disagree signifi-
cantly from the BHF result of 3.9 MeV. However,
this difference of 0.9 MeV may be roughly ac-
counted for by three technical differences in the
two calculations, namely, (i) the different treat-
ment of the available energy for interacting pro-
tons, (ii) inclusion of different partial waves of the
nuclear force, and (iii) different treatment of the
exchange Coulomb contribution.

(i) Whereas in principle, the Coulomb contribu-
tion to the single particle energy should appear in
both occupied and unoccupied proton states, in
practice, the Coulomb potential is always omitted
from the unoccupied state spectrum. Hence, as
argued in Ref. 3, the most consistent approxima-
tion is to also explicitly subtract off the Coulomb
energy from the occupied state single-particle en-
ergies, which is correct to the extent to which ex-
cited and unexcited protons see the same Coulomb
potential. The BHF calculations do not remove the
Coulomb energy, so the occupied state spectrum
is shifted upward by an average Coulomb energy of
7.7 MeV. Evaluating the effect of this shift in per-
turbation theory, 'o h(B.E.)/„= &&7.7 MeV-0. 57
MeV, where & is the excitation probability out of
the unperturbed fermi sea and is roughly 0.15 for' Ca. This effect clearly gives extra attraction in
BHF, since the magnitude of the energy denomina-
tor is decreased.

(ii) A second difference is that partial waves
higher than j=2 are omitted from BHF but included
in LDAHF. The resulting change may be estimated
by using the shift obtained by adding the j=3 par-
tial waves with oscillator intermediate states given
in Table II of Ref. 2 and assuming that partial
waves above j=3 contribute negligibly. Here, the

j =3 partial waves contribute 0.21 MeV repulsion,
which is also in the right direction.

(iii) Finally, I DAHF included the Coulomb po-
tential by treating all nucleons as having effective
charge using Eq. (3.92) of Ref. 3 which yielded

and A. may be obtained from the change in rms ra-
dius R, by X = I+ AR/R. From Table II of Ref. 2,
an increase of binding energy of 1.91 decreases
the rms radius from 3.33 to 3.16 so that a change
of 0.9 MeV yields hR/R=0. 0254 or roughly a 7.5/&
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FIG. 2. Charge density distributions for Ca as ex-
plained in the text.

the proper direct Coulomb contribution but omitted
one-half of the exchange Coulomb contribution.
Adding one-half of the exchange energy which is
roughly 6.3 MeV" increases the binding energy
per particle by 0.08 MeV. Thus, the final result
is that, accounting for the se diff erene es, BHF
should be more bound by 0.86 MeV per particle
which is in excellent agreement with the actual dif-
ference of 0.9 MeV, This precise agreement is
partly fortuitous since quantitative corrections
have not been made for two additional differences
to be discussed subsequently. Nevertheless, it is
a strong check on the validity of the LDA, and, in
addition, on the accuracy of both calculations.

In order to compare density distributions from
Refs. 1 and 2 with those of Ref. 3, several correc-
tions must be applied. The technical differences
(i)-(iii) which make BHF 0.9 MeV more bound than
LDAHF also make the radius of BHF smaller rela-
tive to LDAHF and the interior density higher.
From Figs. 3 and 4 of Ref. 2, one observes that
small changes in the binding energy from shifting
the spectrum or including j=3 partial waves simply
scale the distributions: according to
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change in central density. Since Fig. 4 of Ref. 3

contains charge distributions rather than point
proton distributions, the densities of Refs. 1 and 2

must be folded with the proton charge distribution
and corrected for center of mass motion as in Ref.
3. Although no "Ca BHF density with QTQ is
plotted in Ref. 1 or 2, one observes that the QTQ
RBHF density of Fig. 3 of Ref. 2 is undistinguish-
able from the oscillator RBHF with a shifted spec-
trum of Fig. 4 of Ref. 1. Thus, assuming that the
difference between QTQ and the same shifted spec-
trum will also be negligible in the BHF case, we
have scaled the unrenormalized curve of Fig. 4 of
Ref. 1 by 2. 54%%uo, corrected for the proton size and

c.m. correction and plotted this as the BHF curve
a on our Fig. 2. This then should represent the
result of a, QTQ calculation corrected for the tech-
nical differences (i)-(iii) above.

Several comments concerning the discrepancy
between the BHF and LDAHF densities of Fig. 2

are relevant. The discrepancy is most severe
near the origin, where the &' phase space weigh-
ing is very small, and diminishes significantly be-
yond 1 fm. Also, the sign of the discrepancy may
be easily understood on the basis of the two addi-
tional differences in the calculation (iv) and (v) for
which we were unable to make explicit quantitative
corrections as above for (i)-(iii).

(iv) The Pauli operator used in the QTQ calcula-
tion was a pure oscillator Q corresponding to
Ei0= 12.5 MeV. The charge density corresponding
to SQ = 12.5 MeV is close to curve c of Fig. 2 and
thus although Q is roughly self-consistent with the
RBHF density, it is inconsistent with the BHF den-
sity. Clearly in the interior, this Q excludes too
little phase space, making the G slightly too at-
tractive, whereas in the surface, G becomes
slightly too repulsive. Both effects tend to make
the density too large in the interior and too small
in the surface.

(v) There is a second smail effect in the same
direction arising from the parametrization of the
LDA effective interaction below Eq. (2.26) of Ref.
3. The parametrization was designed to yield an
optimum fit for densities less than or equal to
k~= 1.4 fm ', which is slightly beyond nuclear
matter density and corresponds to a proton density
of 0.093 fm '. As the density increases from k~
=1.0 to 1.4 fm ', the 'S, attraction decreases ra-
pidly, due to the Pauli operator blocking second
order tensor correlations. Beyond k~=1.4 fm ',
this decrease becomes much less rapid, as seen
for example in Table I of Ref. 12 so that the pa-
rametrization optimized at lower densities be-
comes too repulsive at high densities. This addi-
tional repulsion tends to push curve b below curve
a in Fig. 2, since the interior has attained an un-

physically high density, but is, of course, irrele-
vant in physically sensible solutions which do not
exceed k~=1.4 fm '. Although these two effects
tend to reconcile the density difference in the two
calculations, they will make the agreement in
binding energies slightly worse. Corrections for
both effects will be in the di. rection of increasing
the LDAHF binding energy relative to the BHF en-
ergy, but since the 0.9 MeV discrepancy is already
roughly accounted for, the additional corrections
will likely make LDAHF slightly overbound rela-
tive to BHF.

It is desirable to eliminate the effect: of the dif-
ferences between the BHF and LDAHF distributions
on subsequent comparisons. The RBHF curve in
Fig. 2 is therefore not taken from Bef. 2, but has
been obtained by multiplying the LDAHF density by
the ratio of the renormalized RBHF and unrenor-
malized BHF densities in Fig. 4 of Ref. 1. This
procedure assumes that the fractional change due
to including occupation probabilities is the same
in the LDAHF calculation as in the BHF calcula. —

tion. It is intended to yield a BBHF density, curve
c, which is free from the original differences be-
tween BHF and LDAHF and is then readily com-
parable with curves b, d, and e of Fig. 2 taken di-
rectly from Fig. 4 of Bef. 3.

III. CONCLUSIONS

From the agreement of curves a and b of Fig. 2

and the binding energies of BHF and LDAHF, we

conclude that the technical differences in the cal-
culation have been adequately accounted for and
that the LDA is an excellent approximation as ex-
pected.

Having rendered the results of Refs. 1-3 com-
parable, Fig. 2 clearly displays the role of va. rious
mechanisms in producing saturation. Simply in-
cluding diagram (a) of Fig. 1 with the unadjusted G

matrix yields an interior density, curve b of Fig.
2, which is 45% too high compa, red with curve e
which fits elastic electron scattering data, "or
correspondingly an rms radius which is 15% too
small. Inclusion of diagram (b) of Fig. 1 decreases
the interior density, curve c of Fig. 2, by roughly
15%; diagram (c) of Fig. 1 decreases the density
further by another 15%, curve d of Fig. 2; and fi-
nally the phenomenological parametrization of
higher order corrections reduces the density by
yet another 15% and yields excellent agreement
with elastic electron scattering, "curve e of Fig.
2. Thus, each of the three terms is roughly com-
parable in its contribution to saturation.

Since the advent of DDHF calculations, a number
of microscopic calculations have been carried out
which include diagram (c) either explicitly"'" or
implicitly through the use of a variational princi-
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pie, ' 6* and all of these calculations indicate that
this Pauli diagram (c) significantly improves satu-
ration.

Witkin the framework of perturbation theory with
the Tabakin interaction, Strayer-' showed that dia-
grams (b) and {c)contribute roughly equally to the
charge density of "Ca, as well as "0 and "Ni.
The leading correction terms in the diagramatic
expansion for the one-body density operator are
shown in diagrams (d) through (g) of Fig. 1, using
the notation of Thouless. " Strayer showed that the
contributions of diagrams (f) and (g) were each of
the order of &p, wkere in this calculation a is the
second-order contribution to the wound integral,
8%%up for "Ca, and p is the HF density. Diagram {d)
is automatically summed by the self-consistent HF
choice of the single-particle potential in Ref. 14.

Although diagram (e) was not explicitly calcu-
lated, it may be shown to be of the order of xp,
and thus comparable to diagram (f}, by the follow-
ing argument: The single-particle HF potential is
reduced by a factor 1 —~ when it is renormalized
for occupation probabilities; that is, the contribu-
tion of the insertion in diagram (e) to the single-
particle potential is approximately given by the in-
sertion in diagram (h). The interior density will
be changed by roughly the same fractional amount
as the potential, as seen for example by a Thomas-
Fermi argument. Thus, diagrams (e) and (f) yield
density corrections of comparable magnitude, that
is, of order wp, and they correspond to the lowest
order terms included in the diagrams (b) and (c}.
Diagram (g), of course, corresponds to the second

order ladder included in our diagram (a.), and the
results of Ref. 14 are therefore consistent with our
findings.

In Ref. 15, diagrams (b) and (c), as well as their
hole-hole counterparts, were explicitly included in
a calculation of ' 0 using a second order approxi-
mation to the G matrix with plane wave interme-
diate states for the Sprung-de-Tourreil soft core
interaction. Diagram (b) decreases the interior
density by roughly 5/o which, by the preceding ar-
gument, is expected from the fact that ~ in this
calculation is 5%. Diagram (c) decreases the in-
terior density by approximately 10%%ug, and given
the crudeness of the G matrix and the extremely
soft core of the interaction, these results are con-
sistent with our conclusion that the contributions of
diagrams (b) and (c) are comparable. The fact that
the renormalization diagram (b) and the Pauli dia-
gram (c) yield comparable contributions to the
single-particle potential and the charge density
was not recognized in the early theoretical discus-
sions' and appears in the present context to be an
important aspect of nuclear saturation.

The final 15% correction arising from the phe-
nomenological parametrization of higher order
diagrams is certainly not presently understood
from fundamental principles. Nevertheless, we
believe that it is significant that it is responsible
for only about one-third of the difference in density
between lowest order BHF theory and experiment
and that two-thirds of the discrepancy may be ac-
counted for by the contributions of diagrams (b)
and (c) of Fig. 1.
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