α -decay branching ratios for ¹⁵¹Tb, ¹⁵⁰⁻¹⁵³Dy, and ¹⁵²⁻¹⁵⁵Er[†]

K. S. Toth

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

C. R. Bingham

University of Tennessee, Knoxville, Tennessee 37916

W.-D. Schmidt-Ott* UNISOR,[‡] Oak Ridge, Tennessee 37830 (Received 8 July 1974)

The isotopes ¹⁵²⁻¹⁵⁵Er and ¹⁵¹Tb, ¹⁵⁰⁻¹⁵³Dy were produced by bombarding ¹⁴⁷Sm and ¹⁴⁴Nd, respectively, with ¹²C ions accelerated in the Oak Ridge isochronous cyclotron. With the use of a gas-jet-capillary transport system α -particle, x-ray, and γ -ray spectra were measured simultaneously and a-decay branching ratios deduced for the above mentioned nuclides. The ratios were determined primarily by measuring the number of Ka_1 x rays emitted and then applying appropriate correction factors to obtain the total number of electron capture and positron decays. In addition, for ^{150, 152, 153}Dy it was possible to deduce alternate, and thus independent, α -decay branching ratios from γ -ray spectral measurements. Within error limits the two sets of values were found to be in agreement. Because of the essentially equal half-lives of 151 Tb and 152 Tb the α branch for ¹⁵¹Tb could not be determined from the $K\alpha_1$ ray intensity; instead it was deduced solely on the basis of its known decay to levels in ¹⁵¹Gd. Branches for ¹⁴⁹Tb, ¹⁴⁹Tb^m, and 150 Tb, as well as for the fine structure α decays observed in the case of 153 Dy and ^{149,151}Tb, were taken from a survey of published values. These data were combined with our own results and α -decay reduced widths were calculated using the formalism developed by Rasmussen. As is customary, reduced widths for ground-state transitions between even-even nuclei were assumed to represent unhindered decay and then compared with values for the remaining α decays. As we had found earlier for the neighboring odd-Z holmium nuclides these latter reduced widths ranged from values close to those of eveneven nuclei down to much smaller ones. This result is examined from the standpoint of what is known about spin assignments for states connected by specific α -decay transitions.

RADIOAC TIVITY ¹⁵¹Tb, ^{150, 151, 152, 153}Dy, ^{152, 153}, ^{154, 155}Er; I_{α} , $I(K\alpha_1 \ge ray)$, I_{γ} , E_{γ} ; measured α -decay branching ratios; deduced α -decay rates. ^{150, 152}Tb deduced levels, J, π .

I. INTRODUCTION

In earlier publications^{1,2} α -decay branching ratios were reported for various rare earth nuclei. These measurements utilized a helium gas-jet system and a high-resolution Ge(Li) x-ray detector. This combination does away with the necessity of chemical separations and is thus applicable to isotopes with half-lives in the seconds range if a capillary is used to transport the gas jet to a shielded area; α -particle, x-ray, and γ -ray counting can then be made simultaneously.

The technique was tested¹ by measuring ratios for ¹⁴⁹Tb^m and ^{150,151}Dy, nuclides for which other determinations³ were available. Our ¹⁴⁹Tb^m and ¹⁵¹Dy ratios agreed with those of Ref. 3. For ¹⁵⁰Dy, however, our value of 0.32 was substantially greater than that of 0.18 reported in Ref. 3. Consequences of this discrepancy were discussed with respect to cross sections determined⁴ with the lower branching ratio.

The technique was then applied to the high- and low-spin isomers of ¹⁵¹⁻¹⁵⁴Ho. This represented the first systematic investigation² of α -decay rates for a series of isotopes of an odd-Z rare earth element. The study showed, that as in the heavy elements, α decay of odd-A nuclei in the rare earths can proceed at widely varying rates, with reduced widths differing by factors of up to ~25.

In the present paper we report similar measurements for the nearby even-Z nuclides, ¹⁵⁰⁻¹⁵³Dy and ¹²²⁻¹⁵⁵Er. These data are intended to complement the information obtained for the holmium isotopes and to extend, even further, our knowledge of α -decay rates in this mass region. For ^{152,153}Dy only one other set of experimental values has been published,³ while for the erbium nuclides only estimates are available.^{5,6} (Because of the

2550

aforementioned discrepancy between Refs. 1 and 3 it was felt than another measurement of the ¹⁵⁰Dy ratio was warranted.) As a by-product, the α -decay branching ratio of ¹⁵¹Tb was also determined and combined with values, taken from a literature survey, for ¹⁴⁹Tb, ¹⁴⁹Tb^m and ¹⁵⁰Tb. This then provided us with another series of odd- $Z \alpha$ emitters whose α -decay rates could be compared with those of the even-Z dysprosium and erbium isotopes.

II. EXPERIMENTAL METHOD

Two experimental arrangements, both of them based on the well-known helium gas-jet technique,⁷ were used in the present investigation. The basic gas-jet assembly, described in Ref. 8, was utilized for the longer-lived dysprosium isotopes whose half-lives range from 7 min to 6 h. Here the radioactivities were collected by placing an aluminum foil directly behind an orifice through which the helium gas and recoil products were pumped out of the gas-jet reaction chamber. After a suitable bombardment time, dependent on the half-life of interest, the catcher was removed for counting while the irradiation and collection cycle was repeated with a new collector foil. To investigate the shorter-lived erbium nuclides, with half-lives ranging from 10 sec to 5 min, a 10-m teflon capillary (i.d. 1.3 mm) was inserted into the orifice. The other end of the capillary tube, situated outside the experimental room, was pumped on to extract the product nuclei into a shielded area. The recoils were actually collected on a catcher foil located in a 500-cm³ collector chamber (described in Ref. 2). After bombardment, the collector foil could be rotated to a position that allowed α -particle, x-ray, and γ -ray counting to be made at the

same time. We should add that the dysprosium measurements were made in the same collection chamber so that counting geometries, wall thicknesses, etc. were the same in both sets of experiments. The absolute efficiencies of the three detectors were determined by calibrating with standard sources of known strengths.

2551

Counting procedures for the determination of half-lives have been described in the earlier paper.² Suffice it to say that spectra were accumulated in multichannel analyzers that were interfaced to an in-house computer and each x- and γ -ray spectrum covered the energy ranges 0–120 and 100–1300 keV, respectively.

The dysprosium and erbium activities were produced by bombarding ¹⁴²Nd and ¹⁴⁷Sm, respectively, with ¹²C ions accelerated in the Oak Ridge isochronous cyclotron. The targets were electrodeposited as rare earth oxide layers (with thicknesses of ~300 μ g/cm²) onto beryllium backing foils. The isotopic enrichments were 97.7% for 142 Nd and 97.9% for ¹⁴⁷Sm. The primary energy of the carbon beam, 118 MeV, was reduced as needed by the use of additional degrading beryllium foils. For the dysprosium nuclides the excitation-function data of Alexander and Simonoff⁴ were used to select the optimum bombarding energy necessary to emphasize the yield of a given radioactive species. Similar information is not available for the 147 Sm + 12 C system. The α -decay characteristics, however, for the erbium activities are well known^{5,8}; α -particle spectra were therefore measured at about 4-MeV intervals and then used to select optimum incident beam energies.

The total number of electron-capture $(I_{\rm EC})$ and positron $(I_{\beta+})$ decays were obtained primarily by determining the number of $K\alpha_1$ x rays emitted and

FIG. 1. (a) Proposed electron-capture decay scheme of 150 Dy. (b) Proposed electron-capture decay scheme of 152 Dy. Levels indicated by dashed lines are populated (Ref. 16) in the decay of the 4.2-min 152 Tb high-spin isomer located at an excitation energy of 501.8 keV.

then applying appropriate correction factors. This procedure has been described thoroughly in Refs. 1 and 2. For ¹⁵¹Tb and ^{150,152,153}Dy information is available concerning their decays to ¹⁵¹Gd and ^{150,152,153}Tb. Thus from the γ -ray data it was possible in those instances to obtain the sum $(I_{\rm EC} + I_{\beta+})$ in an independent manner.

III. RESULTS

A. Dysprosium nuclides

 $I.^{150}Dy$

From the $K\alpha_1$ x-ray intensity the α -decay branch for ¹⁵⁰Dy was deduced to be 0.31 ± 0.03 , in good agreement with the value of 0.32 ± 0.05 published in Ref. 1. A careful analysis of the γ -ray spectrum revealed only one intense transition which could be assigned to ¹⁵⁰Dy decay. Its energy is 397.2 ± 0.3 keV. Similar situations, i.e., only one strong γ ray, are now known to exist in the decays of ¹⁵²Dy (see below) and of the new isotope, ¹⁴⁸Dy (see Ref. 9), to levels in their terbium daughters. By assuming that the 397.2-keV transition represents 100% of all ¹⁵⁰Dy decay to ¹⁵⁰Tb we arrive at an α -decay branch of 0.36 ± 0.03 , a value that agrees with the ones derived from $K\alpha_1$ x-ray intensities.

In Fig. 1(a) we show our proposed scheme for the decay of ¹⁵⁰Dy to levels in ¹⁵⁰Tb. It is based on the following evidence. Two isomers are known to exist in ¹⁵⁰Tb, a 5.8-min high-spin state, probably 9^+ (Ref. 10), and a 3.1-h low-spin state, probably 2^- (Ref. 11). Because no other strong transitions were observed it is essentially a certainty that the 397.2-keV γ -ray cannot be part of a cascade proceeding from a low-spin state (fed in the direct decay of the 0^{+ 150}Dy ground state) to the 9⁺ isomer. A similar argument applies to the 2⁻ isomer, although in this instance it is conceivable that a low-energy transition could be masked by the intense K x-ray peaks. In the ¹⁴⁸Dy decay scheme study,⁹ however, the one intense transition (620.2 keV) was found to be coincident only with x rays and annihilation radiation, suggesting that it proceeds directly to one of the isomeric states in ¹⁴⁸Tb. Because the high-spin state is once again thought¹² to be 9⁺ it has to be excluded and it must be the low-spin isomer that is fed by this transition. We propose a similar set of circumstances for ¹⁵⁰Dy, namely an intermediate state in ¹⁵⁰Tb at 397.2 keV which deexcites directly to the low-spin isomer. Note that in Fig. 1(a) the excitation energy of this state is indicated by a question mark because it is not known which of the two isomers represents the ground state in ¹⁵⁰Tb. If the spin of this state is indeed 2 then one can safely assume that the intermediate level at 397.2

keV receives all of the direct decay from ¹⁵⁰Dy. The log ft value calculated on this basis is ~4.0. Then according to the rules recently proposed by Raman and Gove¹³ the spin assignment for the 397.2-keV level must be 1⁺ because a 0⁺ to 0⁺ transition is isospin forbidden and would have a log ft value >6.5.

2. ^{151}Dy

Table I summarizes the energies and photon intensities for transitions that we assign to the decay of ¹⁵¹Dy to levels in ¹⁵¹Tb. Since no γ - γ coincidence measurements were made we have not attempted to construct a decay scheme. The information in Table I, however, does represent the most complete γ -ray data available up to now for ¹⁵¹Dy.

By using an electron-capture decay energy¹⁴ of 3.00 MeV and the $K\alpha_1$ x-ray intensity one arrives at an α -decay branching ratio of 0.052. If the decay energy is lowered by ~0.5 MeV to take into account ¹⁵¹Dy decay to excited states in ¹⁵¹Tb then the branching ratio increases to 0.060. (The increase comes about because decreasing the decay energy lowers the calculated β^+ intensity.) Certainly, the large number of γ rays listed in Table I indicates that the ¹⁵¹Dy decay scheme is complex. The value of 0.5 MeV was taken as an estimate by considering the decay¹⁵ of its isotone ¹⁴⁹Gd to levels in ¹⁴⁹Tb. By taking the average of the two values given above we arrive at an adopted α -decay branch of 0.056 ± 0.004 for ¹⁵¹Dy. This is in agreement with the ratios given in Ref. 1, 0.055 ± 0.008 , and in Ref. 3, 0.059 ± 0.006 .

TABLE I. γ rays assigned to ^{151}Dy electron-capture decay.

E_{γ} (keV)	I_{γ} (% of decay) ^a
22.95 ± 0.05 ^h	2.3 ± 0.2
176.1 ± 0.2	8.7 ± 1.0
386.3 ± 0.3	10.8 ± 1.0
432.9 ± 0.4	2.1 ± 0.5
464.0 ± 0.4	1.6 ± 0.5
477.1 ± 0.3	5.0 ± 1.0
547.1 ± 0.3	9.5 ± 1.0
984.9 ± 0.5	1.0 ± 0.5
1010.8 ± 0.5	1.5 ± 0.5
1096.5 ± 0.5	1.1 ± 0.5
1115.1 ± 0.5	1.9 ± 0.5
1130.9 ± 0.5	1.5 ± 0.5
1143.1 ± 0.5	1.6 ± 0.5

^a Total number of electron-capture decays determined from $K\alpha_1$ x-ray intensity.

^b Multipolarity of the transition must be either E1 or M1. Conversion-electron intensities for other multipolarities sum to more than 100% of all decays.

3. ^{152}Dy

Once again as in the case of ¹⁵⁰Dy only one strong transition, 256.5 ± 0.3 keV, could be assigned to the decay of ¹⁵²Dy. Its electron-capture decay scheme, shown in Fig. 1(b), is proposed on the same set of arguments presented for ¹⁵⁰Dy: These will, therefore, not be repeated. Here, however, it is known¹⁶ that the low-spin isomer is the ground state in ¹⁵²Tb and its spin has been measured¹⁷ to be 2. Thus one is on a firm base to assume that the intermediate state at 256.5 keV receives essentially all of the direct electron-capture decay from ¹⁵²Dy. The resultant $\log f t$ value is ~4.2 so that the spin assignment for this level must be 1⁺. Levels indicated by dashed lines in Fig. 1(b) at excitation energies of 342.2, 106.7, 65.1, and 58.9 keV are populated¹⁶ in the decay of the 4.2-min isomer located at 501.8 keV.

The α -decay branching ratio deduced from the $K\alpha_1$ intensity is $(0.94 \pm 0.09) \times 10^{-3}$. This is in agreement with the ratio of $(1.08 \pm 0.11) \times 10^{-3}$ derived by assuming that the 256.5-keV transition represents 100% of all ¹⁵²Dy electron-capture decays. Both numbers are, however, about twice the ratio reported in Ref. 3, i.e., $(5 \pm 1) \times 10^{-4}$.

$4.^{153}Dy$

The electron-capture decay scheme of ¹⁵³Dy is rather well known¹⁸ and in addition, absolute photon intensities are available¹⁹ for several of its transitions. We utilized these absolute intensities for three γ rays observed in our spectra, namely, 80.75, 99.65, and 274.7 keV, to calculate the α -decay ratio for ¹⁵³Dy. The three values averaged out to $(1.13 \pm 0.17) \times 10^{-4}$. This ratio agrees with that of $(0.83 \pm 0.13) \times 10^{-4}$ which was deduced from the $K \alpha_1$ x-ray intensity. The decay scheme of Harmatz and Handley¹⁸ was used to correct the electroncapture decay energy¹⁴ for population of excited states in ¹⁵³Tb; their conversion-electron data were also used to determine the contribution to the Kx-ray intensity that results from the conversion process. Both ratios are about 3 times larger than the value reported in Ref. 3, i.e., $(3.0 \pm 0.3) \times 10^{-5}$.

B. Erbium nuclides

For several reasons the information from γ -ray spectra obtained during measurements involving the erbium nuclides did not prove useful in determining branching ratios. First, no intense peaks were observed with the half-lives of ^{152,153}Er. As will be seen below this result is consistent with the fact that their α branches appear to be large. Second, the half-lives of ¹⁵⁴Er and ¹⁵⁵Er are very similar. Third, the (¹²C, 3n) product in our investigation is the so far unreported isotope ¹⁵⁶Er. A great amount

of time would have been needed to sort through carefully the available spectra, as well as obtaining additional ones at other bombarding energies. Because γ -ray spectroscopy was not the primary object of the present study, it was decided to rely solely on x-ray measurements for the determination of the ¹⁵²⁻¹⁵⁵Er α -decay branches.

$I. {}^{152}Er$

No $K\alpha_1$ x-rays could be observed with the 10.3sec half-life of ¹⁵²Er. If, however, all of the shortlived (~30 sec) component seen in the $K\alpha$, x-ray decay curve is assigned to ¹⁵²Er then a lower limit of 0.53 can be deduced for the nuclide's α -decay branching ratio. Thus the two limits of 1.00 and 0.53 are consistent with the estimate of $(0.90^{+0.05}_{-0.20})$ reported by Macfarlane and Griffioen.⁵ It should be noted that our lower limit was determined with an electron-capture decay energy of 3.24 MeV.¹⁴ The decay, if it occurs, must involve excited states in ¹⁵²Ho because the two isomers in that nucleus have probable spins of 3 and 9 (see Ref. 2). Any lowering in the decay energy will of course decrease the calculated β^+ contribution and therefore increase the α -decay branching ratio. This point coupled with the fact that 36-sec ¹⁵³Er was known to be present from the α spectrum leads us to believe that the ¹⁵²Er α -decay branch is closer to the upper rather than the lower limit.

2. ¹⁵³Er

At the bombarding energy emphasizing the production of ¹⁵³Er the counting intervals used were 30 sec each. Only the first three points of the decay curve for the $K \alpha_1$ x rays could not be accounted for by the presence of ¹⁵⁴Er (see below). By extrapolating these three excess counts to the end of bombardment with the 36-sec half-life of ¹⁵³Er the α -decay branch for this nuclide was found to be $(0.38^{+0.19}_{-0.07})$. Once again the total electron-capture decay energy of 4.58 MeV¹⁴ was used. The upper limit of 0.57, however, adequately encompasses any reasonable corrections to the decay energy.

Our branch for ¹⁵³Er is about 2 times lower than the estimate of Macfarlane and Griffioen,⁵ i.e., $(0.95^{+0.05}_{-0.20})$. There is evidence from yield-curve data⁸ which indicates that the ¹⁵²Er α -decay branch must be larger than that of ¹⁵³Er, rather than being equal to it as estimated in Ref. 5. In that study⁸ the two nuclides were produced in the following reactions: ¹⁵⁶Dy(³He, 6n)¹⁵³Er and ¹⁵⁶Dy(³He, 7n)-¹⁵²Er. The experimental counting rates were corrected for differences in beam intensity, bombardment time, and half-lives; in addition the estimated α -decay branches of Ref. 5 were used. The maximum yield for the (³He, 7n) reaction leading to ¹⁵²Er was found to be ~1.25 greater than that for the (³He, 6*n*) reaction. This is contrary to what is known for the production of neutron-deficient isotopes which are located far from the line of β stability. Indeed, following the evaporation of four or five neutrons from the compound system, the reaction cross section is expected to decrease substantially for each additional emitted neutron. If the ¹⁵²Er α -decay branch were ~2 times greater than that of ¹⁵³Er, as our data indicate, then the measured⁸ yields would be more in line with these expectations.

3. ¹⁵⁴Er

The α -branching ratio of ¹⁵⁴Er was measured from the $K \alpha_1 x$ -ray intensity to be $(4.7 \pm 1.3) \times 10^{-3}$. No correction was made for possible decay to excited states in ¹⁵⁴Ho. In this instance, however, the electron-capture decay energy¹⁴ is only 2.20 MeV, so that the positron contribution is relatively unimportant. Our ratio is substantially greater than the estimated⁶ value of $(1.7 \pm 1.0) \times 10^{-3}$.

4. ¹⁵⁵Er

To resolve the ¹⁵⁵Er α group, E_{α} =4.012 MeV, from the one due to 151 Dy, $E_{\alpha} = 4.067$ MeV, it was necessary to utilize a 12 C beam with a rather low energy, i.e., ~70 MeV. [The ¹⁵¹Dy α branch is much larger than that of ¹⁵⁵Er (see below); thus, even at incident energies where the $({}^{12}C, 4n)$ and $({}^{12}C, \alpha 4n)$ reaction cross sections are comparable. the ¹⁵¹Dy α peak dominates the nearby ¹⁵⁵Er group.] This meant that the $({}^{12}C, 3n)$ product, the so far unreported isotope, ¹⁵⁶Er, was undoubtedly produced but its contribution to the $K \alpha_1$ x-ray intensity could not be taken into account. Indeed, the half-life of the $K \alpha_1$ x-ray peak was found to be ~6 min, a value which is somewhat larger than the one determined for ¹⁵⁵Er from α spectroscopy, namely, 5.3 ± 0.3 min.⁸ Nevertheless, while bearing this caveat in mind, we used the total 6-min contribution to the x-ray intensity and deduced a branching ratio of $(2.2 \pm 0.7) \times 10^{-4}$. We did not attempt to correct for possible decay to excited states in ¹⁵⁵Ho, although in this instance the electron-capture decay energy is 3.81 MeV^{14} and the calculated positron intensity is about the same as the total *K* x-ray intensity. Coupling the two problems associated with the present measurement it is fair to say that the ratio given above is almost certainly too small.

C. ¹⁵¹Tb

Many measurements of the ¹⁵¹Tb α -decay branch have been made. The results fall into two groups, the first being in the neighborhood of ~5×10⁻⁶ (refs. 3, 20, and 21), while the second set of values is closer to ~1×10⁻⁴ (Refs. 22 and 23). Radioactivity due to ¹⁵¹Tb was observed in our measurements dealing with ¹⁵¹Dy. It was therefore possible to deduce the ¹⁵¹Tb α -decay branch once all of the ¹⁵¹Dy had decayed. This was done with the idea of deciding which of the previous values were correct.

In the electron-capture decay of ¹⁵¹Tb 3 intense transitions are well characterized, i.e., 108.1 (seen in our x-ray spectra), 251.9 and 287.2 keV (observed in our γ -ray spectra). The conversionelectron data of Ref. 23 were used to supplement our photon information so as to obtain total relative transition intensities. There were in turn converted to intensities per 100 decays by using the decay schemes proposed by Gonsior et al.²³ and by Wilski et al.²⁴ The amount of direct decay to the ¹⁵¹Gd ground state is uncertain; it is estimated to be <15% by Wilski *et al.*²⁴ and <9% by Gonsior *et al.*²³ By assuming 7.5% direct decay (average of the two extremes, 0 and 15%), we arrive at the following values for the transition intensities: 108.1 keV, $70 \pm 10\%$; 251.8 keV, $30 \pm 5\%$; and 287.2 keV, 26 $\pm 5\%$. The α -decay branching ratio, as determined by averaging the three intensities, was found to be $(9.5 \pm 1.5) \times 10^{-5}$. This value agrees with those reported in Ref. 22 $(8.3 \pm 2.5) \times 10^{-5}$, and in Ref. 23 $(10 \pm 5) \times 10^{-5}$.

TABLE II. Summary of decay data for dysprosium α emitters.

			lpha branches (present work) obtained from		
Nuclide		E_{α} (MeV)	$K\alpha$ x-ray intensities	Decay schemes	
¹⁵⁰ Dy	7.17 ± 0.05 min ^a	4.232 ± 0.003 ^b	0.31 ± 0.03	0.36 ± 0.03	
¹⁵¹ Dy	$16.9 \pm 0.05 \text{ min}^{a}$	4.067 ± 0.003 ^b	0.056 ± 0.004		
¹⁵² Dy	$2.3 \pm 0.1 h^{c}$	3.630 ± 0.005 ^d	$(0.94 \pm 0.09) \times 10^{-3}$	$(1.08 \pm 0.11) \times 10^{-3}$	
153 Dy	$6.4 \pm 0.2 h^{c}$	3.464 ± 0.005 ^d	$(0.83 \pm 0.13) \times 10^{-4}$	$(1.13 \pm 0.17) \times 10^{-4}$	
·		3.305 ± 0.005 ^d	$(1.66 \pm 0.83) \times 10^{-8}$	$(2.26 \pm 1.13) \times 10^{-8}$	
154 Dy	$(1.0 \pm 0.4) \times 10^7$ yr ^d	2.872 ± 0.005 ^d			
¹⁵⁴ Dy	$(1.0^{+2.0}_{-0.67}) \times 10^6 \text{ yr}^{e}$	2.85 ± 0.05^{e}			

^a Reference 1.

^b Reference 25.

^c Reference 3.

^dReference 26.

^e Reference 27.

Nuclide	<i>T</i> _{1/2}	E_{α} (MeV)	α/K x ray (this work)	α branch (this work)
¹⁵² Er ¹⁵³ Er ¹⁵⁴ Er ¹⁵⁵ Er	10.3 ±0.5 sec ^{a, h} 36 ±1 sec ^{a, h} 3.75±0.50 min ^d 5.3 ±0.3 min ^h	$\begin{array}{c} 4.799 \pm 0.003 \ ^{\rm c} \\ 4.671 \pm 0.003 \ ^{\rm c} \\ 4.166 \pm 0.005 \ ^{\rm e} \\ 4.012 \pm 0.005 \ ^{\rm d} \end{array}$	>1.91 1.69 $^{+2.01}_{-0.48}$ (5.9 ± 1.6) × 10 ⁻³ (4.9 ± 1.6) × 10 ⁻⁴	$\begin{array}{c} (0.53-1.00) \\ 0.38\substack{+0.19\\-0.07} \\ (4.7\pm1.3)\times10^{-3} \\ (2.2\pm0.7)\times10^{-4} \end{array}$

^d Present investigation.

^eReference 6.

TABLE III. Summary of decay data for erbium α emitters.

^a Reference 5.

^b Reference 8.

^c Reference 25.

IV. SUMMARY OF DATA FOR DYSPROSIUM, ERBIUM, AND TERBIUM α EMITTERS

In Tables II – IV we have listed for all known dysprosium, erbium, and terbium α emitters, respectively, selected data necessary for consideration of their α -decay rates.

Table II summarizes the information for dysprosium nuclides. For ¹⁵⁰⁻¹⁵³Dy, half-lives were taken from Refs. 1 and 3, α energies from Bowman, Hyde, and $Eppley^{25}$ and from Golovkov *et al.*²⁶ Branching ratios listed in Table II are the result of the present investigation. Note that fine structure has been reported²⁶ in the α -decay of ¹⁵³Dy, with the intensity of the subsidiary peak being (2 $\pm 1) \times 10^{-4}$ times that of the main α group. The α branches given for the less intense group are the result of multiplying that number by the branching ratios determined in this study for the principal ¹⁵³Dy α peak. We have also included data for longlived ¹⁵⁴Dy, first reported by Macfarlane.²⁷ It is presumed to be a pure α emitter and its estimated half-lives^{26,27} differ by a factor of 10.

Table III summarizes the data for 152 - 155 Er. The α -decay branches are the result of the present investigation, half-lives are from this study and Refs. 5 and 8, and α energies for 152 - 154 Er are from Refs. 6 and 25. With the use of these three energies we reexamined α spectra from the investigation reported in Ref. 8 and determined the 155 Er α -decay energy to be 4.012 ±0.005 MeV. This value

is more precise than the previously published⁸ number of 4.01 ± 0.01 MeV.

A literature survey was made for known terbium α -emitting nuclides and what were considered the most accurate available data are listed in Table IV. Half-lives are from Refs. 1 and 28; α energies, with the exception of 149 Tb^{*m*}, are those published by Golovkov et al.²⁶ Their ¹⁴⁹Tb energy was used in a reexamination of spectra available from the work of Bingham et $al.^{1}$ and a value of 3.999 ± 0.007 MeV was determined for ¹⁴⁹Tb^m. The only previously published³ number is much less precise, i.e., 3.99 ± 0.03 MeV. Fine structue has been observed²⁶ in the α decays of ^{149,151}Tb. The α -decay branches for the main groups are from Ref. 29 (149 Tb) and the present investigation (¹⁵¹Tb). As before the branches for the subsidiary peaks were obtained by using their intensities²⁶ relative to the principal groups. The ¹⁴⁹Tb^m branching ratio is an average of two values,^{1,3} while that of ¹⁵⁰Tb is an estimate reported by Golovkov et al.²⁶

V. DISCUSSION

From the information given in Tables II–IV, α decay half-lives can be determined and then considered within a theoretical framework so that relative decay probabilities can be obtained after the energy dependence is removed. As in Ref. 2 we have chosen the convenient α -decay formalism developed by Rasmussen.³⁰ In it an α -decay reduced

TABLE IV. Summary of decay data for terbium α emitters.

Nuclide	<i>T</i> _{1/2}	E_{α} (MeV)	α decay branch
¹⁴⁹ Tb	4.10 ± 0.05 h ^a	3.967 ± 0.005 ^h	0.226 ± 0.023 °
		3.644 ± 0.005 ^h	$(6.8 \pm 2.3) \times 10^{-5}$ h, c
¹⁴⁹ Tb ^m	$4.16 \pm 0.04 \text{ min}^{-2}$	3.999 ± 0.007 ^e	$(2.25 \pm 0.25) \times 10^{-4}$ d, f
¹⁵⁰ Tb	$3.1 \pm 0.2 h^{a}$	3.492 ± 0.005 ^h	$(1.96^{+3.93}_{-1.22}) \times 10^{-6}$ h
$^{151}\mathrm{Tb}$	$17.5 \pm 0.7 h^{a}$	3.409 ± 0.005 ^b	$(9.5 \pm 1.5) \times 10^{-5} e$
		3.183 ± 0.005 ^b	$(9.5 \pm 1.5) \times 10^{-8}$ h, e

^a Reference 28.

^b Reference 26.

^c Reference 29.

^dReference 1.

^e Present investigation.

^f Reference 3.

Nuclide	Partial α half-life (sec)	Reduced width (MeV)
¹⁵⁰ Dy	$(1.39 \times 10^3)^{a}$	0.084 ± 0.012
$^{150}\mathrm{Dy}$	(1.20×10^3) b	0.098 ± 0.012
$^{151}\mathrm{Dy}$	$(1.80 \times 10^4)^{a}$	0.062 ± 0.010
$^{152}\mathrm{Dy}$	$(8.81 \times 10^6)^{a}$	0.116 ± 0.026
$^{152}\mathrm{Dy}$	(7.67×10^6) ^b	0.133 ± 0.035
$^{153}\mathrm{Dy}$	$(2.78 \times 10^8)^{a}$	0.068 ± 0.018
$^{153}\mathrm{Dy}$	$(2.04 \times 10^8)^{b}$	0.093 ± 0.025
$^{153}\mathrm{Dy}$ c	(1.39×10^{12}) a	$(0.00035^{+0.00026}_{-0.00019})$
$^{153}\mathrm{Dy}~^{\mathrm{c}}$	(1.04×10^{12}) b	$(0.00047^{+0.00035}_{-0.00026})$
$^{154}\mathrm{Dy}$	(3.16×10^{14}) d	0.016 ± 0.006
¹⁵⁴ Dy	$(3.16 \times 10^{13})^{e}$	$(0.16^{+0.380}_{-0.112})$
¹⁵² Er	$(10.3 - 19.4)^{a}$	(0.062-0.116)
¹⁵³ Er	$(94.7^{+24}_{-33})^{6}$	$(0.055_{-0.013}^{+0.032})$
¹⁵⁴ Er	$(4.79 \times 10^4)^{a}$	0.077 ± 0.015
¹⁵⁵ Er	$(1.45 imes10^6)$ a	0.027 ± 0.009

TABLE V. α -decay reduced widths (δ^2) for dysprosium and erbium nuclei.

^a Based on α branch deduced from $K\alpha$ x-ray intensity. ^b Based on α branch deduced from electron-capture decay scheme.

^c Fine structure decay.

^d Estimate from Ref. 26.

^e Estimate from Ref. 27.

width δ^2 is defined by the equation

$$\lambda = \delta^2 P / h , \qquad (1)$$

where λ is the decay constant, *h* is Planck's constant, and *P* is the penetrability factor calculated

FIG. 2. α -decay reduced widths for ¹⁵⁰⁻¹⁵⁴Dy and ¹⁵²⁻¹⁵⁵Er, calculated with $l = 0 \alpha$ waves. Except for ¹⁵⁴Dy and the fine structure decay of ¹⁵³Dy, the reduced widths are based on α -decay branching ratios measured in this investigation. Closed points indicate branches deter-mined from $K\alpha_1$ x-ray intensities, while the open points for ^{150, 152, 153}Dy indicate branches deduced from their respective electron-capture decay schemes. Values for ¹⁵⁴Dy are based on estimated half-lives reported in Refs. 26 and 27. The branch for the fine structure ¹⁵³Dy α decay was determined from its intensity (relative to the main ¹⁵³Dy α group) reported in Ref. 26.

for a barrier that includes an optical-model potential derived by Igo^{31} from the analysis of α -particle scattering data. A centrifugal barrier is also included so that an *l* dependence can be taken into account.

For more convenient discussion and display we will first consider the dysprosium and erbium α emitters, separate from the terbium nuclides. The

FIG. 3. α -decay schemes for ¹⁵¹,¹⁵³Dy. The sequence of low-lying levels in their daughters are taken from Ref. 12 (¹⁴⁷Gd) and Refs. 35 and 36 (¹⁴⁹Gd).

calculated reduced widths for the even-Z nuclei are listed in Table V and are plotted in Fig. 2. Calculations were made in these cases with $l = 0 \alpha$ waves so that hindrances could be noted. It is customary³² to assume that α -decay rates for ground to ground-state transitions between even-even nuclei can be taken to represent unhindered α decay. Forgetting for the moment ¹⁵⁴Dy and the fine structure ¹⁵³Dy α group one sees in Fig. 2 that, with the exception of ¹⁵⁵Er, all of the other reduced widths are relatively constant. The indication then is that the α -decay rates of the odd-A isotopes, ¹⁵¹Dy, ¹⁵³Dy, and ¹⁵³Er, are unhindered, as is possible for instances³² where the odd-nucleon wave function is the same in the parent and daughter nuclei.

Indeed, the ^{151,153}Dy (Ref. 33) and ^{147,149}Gd (Ref. 34) ground-state spins have all been measured to be $\frac{7}{2}$. The likelihood is that these states are represented by the $f_{7/2}$ odd-neutron orbital, the first one available beyond the N=82 closed shell. In Fig. 3 we show the α -decay schemes of ¹⁵¹Dy and ¹⁵³Dy together with known low-lying excited states in ^{147}Gd (Ref. 12) and ^{149}Gd (Ref. 35 and 36). Because the first excited state in ¹⁴⁷Gd is located at 997.6 keV it is clear why no fine structure was observed²⁶ in the α decay of ¹⁵¹Dy. Keeping in mind that a fair amount of final-state configuration mixing undoubtedly exists, it is still reasonable to describe the first three levels in 147 Gd (N=83) by the singleneutron orbitals, $f_{7/2}$, $h_{9/2}$, and $p_{3/2}$. In ¹⁴⁹Gd, how-ever, two additional states, $\frac{5}{2}^-$ and $\frac{3}{2}^-$, are observed at excitation energies below the $\frac{9}{2}$ level. They are interpreted³⁵ as members of a band $(\frac{3}{2}$ to $\frac{11}{2}$) resulting from the coupling of the single-neutron $f_{7/2}$ state to a quadrupole phonon excitation in the even-even core. The fine structure ¹⁵³Dy α de-

TABLE VI. α -decay reduced widths (δ^2) for terbium nuclei.

Nuclide	Partial a half-life (sec)	Reduced widtl (MeV)	1
¹⁴⁹ Tb	(6.53×10^4) a	(0.020 ± 0.004)	l = 0
¹⁴⁹ Tb (fine structure			
decay)	$(2.17 \times 10^8)^{a}$	(0.0019 ± 0.0008)	l = 2
¹⁴⁹ Tb ^m	$(1.11 \times 10^6)^{\text{h}}$	(0.0028 ± 0.0006)	<i>l</i> = 3
¹⁵⁰ Tb	(5.69×10^9) ^c	$(0.000 \ 48^{+0.001}_{-0.00036})$	l = 0
¹⁵¹ Tb	$(6.67 \times 10^8)^{\text{d}}$	(0.018 ± 0.006)	l = 0
¹⁵¹ Tb (fine structure			
decay)	(6.67×10 ¹¹) d	(0.0029 ± 0.0010)	<i>l</i> = 2

^a Based on α branch reported in Ref. 29.

^b Based on an average of α branches reported in Refs. 1 and 3.

^c Estimate reported in Ref. 26.

^d Based on α branch measured in the present investigation.

cay, presumed²⁶ to proceed to the $\frac{5}{2}$ first excited state in ¹⁴⁹Gd, has a decay rate which is hindered by a factor of ~200. The introduction of l = 1 and 2 α waves raises the δ^2 value by factors of only 1.25 and 2.0, respectively, a result which reinforces the well-known³² fact that for α -particle emission the centrifugal barrier plays a subordinate role. Rather it is α -particle formation that seems to be important and this point will be looked into further when we discuss the terbium reduced widths.

While the ^{153,155}Er spins have not been measured, ^{157,159,161}Er are reported³⁷ to have spins of $\frac{3}{2}$, the same as for ^{155,157}Dy.³³ These ground states are interpreted³⁸ as being due to the Nilsson-model [521 $\frac{3}{2}$] configuration, since it is generally agreed that the onset of permanent deformation takes place beyond N=88. One might assume then, that as their dysprosium (Ref. 33) and gadolinium (Ref. 34) isotones, ^{153,155}Er also have ground states of $\frac{7}{2}$. If such is indeed the case, the slight hindrance, ~3.0, exhibited by the ¹⁵⁵Er α decay is probably due to the fact that its measured α branch is too low for reasons discussed in Sec. III.

FIG. 4. α -decay reduced widths for ¹⁴⁹ Tb, ¹⁴⁹ Tb^m, ¹⁵⁰ Tb, and ¹⁵¹ Tb, calculated with *l* values as indicated. α -decay branches used in the calculations were obtained as follows: ¹⁴⁹ Tb (Ref. 29), ¹⁴⁹ Tb^m (Refs. 1 and 3), ¹⁵⁰ Tb (Ref. 26), and ¹⁵¹ Tb (present investigation). Intensities for the fine structure α groups for ¹⁴⁹ Tb and ¹⁵¹ Tb were taken from Ref. 26.

Before leaving the even-Z nuclei it should be noted that of the two estimated ¹⁵⁴Dy half-lives the one reported by Golovkov *et al.*²⁶ is much too long because it leads to a reduced width which is inconsistent with unhindered α decay (see Fig. 2). Within error limits the half-life reported by Macfarlane²⁷ spans the unhindered range. It appears, however, that a half-life slightly greater than 10⁶ y, rather than lower, is closer to the true value because the resultant reduced width would be more in line with values for the other even-even nuclei.

The terbium reduced widths are listed in Table VI and plotted in Fig. 4. Calculations were made with l values chosen on the basis of available, probable spin assignments, as discussed in the following paragraphs.

Figure 5(a) shows the proposed α -decay schemes for ¹⁴⁹Tb and ¹⁴⁹Tb^m. Low-lying levels in the N =82 nucleus ¹⁴⁵Eu have been interpreted³⁹ in terms of single-proton orbitals and we have indicated in Fig. 5(a) the shell-model configurations of the first three states. We should add that the assignment for the ¹⁴⁵Eu ground state agrees with the measured³⁴ spin of $\frac{5}{2}$. The presence of isomerism in ¹⁴⁹Tb has been suggested by Macfarlane⁴⁰ to be the result of the 65th proton being in either the $h_{11/2}$ or $d_{5/2}$ orbitals; he also presented evidence to indicate that the high-spin state is the isomer. (The fact that at Z = 65 the $h_{11/2}$ level has dropped below the $g_{7/2}$ state has now been established¹² through the discovery of a 1.9-min high-spin isomer in 147 Tb, the N = 82 odd-Z nucleus next above ^{145}Eu). We show the $^{149}Tb^m$ isomer to be located ~32 keV above ground on the assumption that it decays to the ¹⁴⁵Eu ground state. From a consideration of E3 lifetimes it turns out that if, e.g., the

 α decay proceeded to the 330.1-keV level then the half-life of the isomeric transition would be ~0.1 sec, i.e., much less than the total half-life of 4.2 min. (A detailed argument has been presented in Ref. 1.) Based on the schemes shown in Fig. 5(a), reduced widths were calculated with l = 0 and 2 for the ¹⁴⁹Tb α transitions and l = 3 for the ¹⁴⁹Tb^m α decay.

The proposed ¹⁵¹Tb decay scheme is shown in Fig. 5(b) with spin assignments for the low-lying ¹⁴⁷Eu levels taken from Ref. 41. Here once again, the measured³⁴ spin for ¹⁴⁷Eu is $\frac{5}{2}$, in agreement with the decay scheme assignment.41 The ground state spin of ¹⁵¹Tb has been measured¹⁷ to be $\frac{1}{2}$; however, studies^{23,24} of its electron-capture decay are consistent with spin values of $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$ as indicated in Fig. 5(b). In addition, the ¹⁴⁹Tb spin seems to be $\frac{5}{2}$ and the measured values for ¹⁵³Tb (Ref. 17) as well as for ¹⁴⁹Eu (Ref. 34), the isotone of ¹⁵¹Tb, are also $\frac{5}{2}$. We have, therefore, somewhat arbitrarily, assumed a spin in $\frac{5}{2}$ for ¹⁵¹Tb and used l = 0 and 2 to calculate reduced widths for the α transitions to the ¹⁴⁷Eu ground and first excited states, respectively. The similarity of the $^{149}\mathrm{Tb}$ and ¹⁵¹Tb δ^2 values is perhaps evidence in support of the ¹⁵¹Tb spin being $\frac{5}{2}$.

The spin and parity of 3.1-h ¹⁵⁰Tb is probably 2⁻ (Ref. 11) as indicated earlier in our discussion the ¹⁵⁰Dy electron-capture decay scheme. The ¹⁴⁶Eu spin has been measured³⁴ to be 4, a value which is consistent with spin assignments proposed⁴² for ¹⁴⁶Eu levels populated in ¹⁴⁶Gd decay, i.e., 4⁻, 3⁻, 2⁻, and 1⁻ for states at 0, 115.5, 230.2, and 384.9 keV. Rare earth α -decay systematics show that the measured^{26 150}Tb decay energy is anomalously low, prompting the suggestion⁸ that the α

FIG. 5. (a) α -decay schemes for ¹⁴⁹Tb and ¹⁴⁹Tb^m. Spin assignments for the low-lying levels in ¹⁴⁵Eu are taken from Ref. 39. (b) α -decay scheme of ¹⁵¹Tb; spin assignments for levels in ¹⁴⁷Eu are from Ref. 41

2558

transition actually proceeds to an excited state in ¹⁴⁶Eu. Indeed, if the 2⁻ level at 230.2 keV is assumed to be the final state then the ¹⁵⁰Tb Q_{α} fits in well with neighboring α -decay energies. For want of other evidence the ¹⁵⁰Tb reduced width was calculated with an $l = 0 \alpha$ wave.

It had been previously^{3,20,21} thought that ¹⁵¹Tb α decay was hindered by a factor of \geq 100. Our measurement (as well as those of Refs. 22 and 23) indicates the hindrance factor to be only about 3 or 4. In fact, its reduced width, 0.018 ± 0.006 , is essentially equal to that of 149 Tb, 0.020 ± 0.004 , and similar to those of the low-spin (presumably also $d_{5/2}$ states) isomers in ¹⁵¹Ho, 0.0096 ± 0.0053, and 153 Ho, 0.031 ± 0.017 (see Ref. 2). If the $d_{5/2}$ proton orbital is involved in all four α transitions, one might wonder why their reduced widths are smaller than those of the odd-A dysprosium and erbium α emitters. There, as we saw above, the initial and final states were represented by the $f_{7/2}$ neutron orbital and the δ^2 values were comparable to those of doubly-even nuclei. Similarly, for the high-spin $^{151,153}\mathrm{Ho}$ isomers where the α transitions involve $h_{11/2}$ proton states, the reduced widths² are close to even-even values: (1) 0.052 ± 0.019 , ¹⁵¹Ho; and (2) $0.18\pm0.09,\ ^{153}Ho.$ The lower decay rates of ¹⁴⁹,¹⁵¹Tb and of the low-spin ^{151,153}Ho isomers may be due to the fact that the $d_{5/2}$ orbital is filled at Z = 64. This could make α -particle formation from nucleons in this subshell more difficult vis-a-vis nucleons in the unfilled $f_{7/2}$ and $h_{11/2}$ orbitals.

By taking into account, as we have done, the effect of orbital angular momentum, one is in a position to obtain a "reduced" hindrance factor for the fine structure α transitions of ^{149,151}Tb and the ¹⁴⁹Tb^m α decay. As seen in Table VI and Fig. 4, the three reduced widths are similar in value, between 0.002 and 0.003. The increase in hindrance factors, to about 30 or 40, can be understood in terms of the fact that these α transitions connect states represented by different proton orbitals. The fine structure α decay of ¹⁵³Dy which also has

a low reduced width can be explained in a similar fashion (its δ^2 value can be raised to 0.00092 if an $l = 2 \alpha$ wave is assumed). In this instance, as we noted above, the final state is interpreted³⁵ as coupling of the $f_{7/2}$ neutron orbital to a phonon excitation. The small reduced width for ¹⁵⁰Tb is not surprising since one would expect α -particle formation involving two odd nucleons to be difficult. One should remember, however, that its α -decay half-life is only an estimate.²⁶

VI. CONCLUSION

The present investigation together with the results of our earlier study² have substantially increased the number of reliably measured α -decay rates in the rare earth region. Since those nuclei are in the neighborhood of the N = 82 closed shell, they should be amenable to interpretation in terms of the more sophisticated single-particle α -decay theories. These models (see the review article of Mang⁴³) have been successful in describing, for nuclei around the N = 126 closed shell, the relative behavior of α widths as a function of N and Z and in accounting for observed hindrance factors. The calculations, however, result in absolute decay probabilities which are much smaller than experimental ones. The same is true⁴³ for calculated α widths in the case of deformed α emitters; these nuclei are, of course, treated in terms of the strong coupling model. Nevertheless, recent attempts of Kadmenskii, Kalechits, and Martynov⁴⁴ are promising because they indicate that α -decay probabilities can be greatly increased if allowance is made for superfluid correlations.

We would like to thank E. Newman of the Oak Ridge National Laboratory for his assistance during some of the data-taking phases of this investigation. D. F. Torgerson of the Texas A & M University Cyclotron Institute kindly provided us with his computer program to calculate α -decay reduced widths.

[†]Research sponsored by the U. S. Atomic Energy Commission under contract with Union Carbide Corporation. Vanderbilt University, and Virginia Polytechnic Institute. It is supported by these institutions and by the U. S. Atomic Energy Commission.

- ¹C. R. Bingham, D. U. O'Kain, K. S. Toth, and R. L. Hahn, Phys. Rev. C 7, 2575 (1973).
- ²W.-D. Schmidt-Ott, K. S. Toth, E. Newman, and C. R. Bingham, Phys. Rev. C <u>10</u>, 296 (1974).
- ³R. D. Macfarlane and D. W. Seegmiller, Nucl. Phys. 53, 449 (1964).
- ⁴J. M. Alexander and G. N. Simonoff, Phys. Rev. <u>133</u>, B93 (1964).
- ⁵R. D. Macfarlane and R. D. Griffioen, Phys. Rev. <u>131</u>, 2176 (1963).

^{*}On leave from the II. Physikalisches Institut der Universität Göttingen, Germany; since June 1, 1972, at Oak Ridge National Laboratory.

[‡]UNISOR is a consortium of University of Alabama, Emory University, Furman University, Georgia Institute of Technology, University of Kentucky, Louisiana State University, University of Massachusetts, Oak Ridge National Laboratory, Oak Ridge Associated Universities, University of South Carolina, University of Tennessee, Tennessee Technological University,

- ⁶N. A. Golovkov, S. K. Khvan, and V. G. Chumin, in Proceedings of the International Symposium on Nuclear Structure, Dubna, 1968 (International Atomic Energy Agency, Vienna, Austria, 1969), p. 27.
- ⁷R. D. Macfarlane and R. D. Griffioen, Nucl. Instrum. Methods 24, 461 (1963).
- ⁸K. S. Toth, R. L. Hahn, M. A. Ijaz, and W. M. Sample, Phys. Rev. C 2, 1480 (1970).
- ⁹K. S. Toth, E. Newman, W.-D. Schmidt-Ott, and C. R. Bingham, Bull. Am. Phys. Soc. Ser. II, 19, No. 4, 500 (1974).
- ¹⁰D. R. Haenni, T. T. Sugihara, and W. W. Bowman, Phys. Rev. C 5, 1113 (1971).
- ¹¹Ts. Vylov, K. Ya. Gromov, I. I. Gromova, G. I. Iskhakov, V. V. Kuznetsov, M. Ya. Kuznetsova, A. V. Potempa, and M. I. Fominykh, Dubna Report No. P6-6512 (unpublished).
- ¹²E. Newman, K. S. Toth, D. C. Hensley, W.-D. Schmidt-Ott, Phys. Rev. C 9, 674 (1974).
- ¹³S. Raman and N. B. Gove, Phys. Rev. C 7, 1995 (1973). ¹⁴A. H. Wapstra and N. B. Gove, Nucl. Data <u>A9</u>, 276 (1971).
- ¹⁵I. Adam, K. S. Toth, and R. A. Meyer, Nucl. Phys. A106, 275 (1968).
- ¹⁶W. W. Bowman, T. T. Sugihara, and F. R. Hamiter, Phys. Rev. C 3, 1275 (1971).
- ¹⁷K. E. Aedelroth, H. Nyquist, and A. Rosen, Phys. Scr. 2, 96 (1970).
- ¹⁸B. Harmatz and T. H. Handley, Nucl. Phys. A191, 497 (1972).
- ¹⁹Y. Y. Chu, E. M. Franz, and G. Friedlander, Phys. Rev. C 1, 1826 (1970).
- ²⁰K. S. Toth, Lawrence Berkeley Laboratory Report No. UCRL-8192, 1958 (unpublished).
- ²¹J. Kormicki, H. Niewodniczanski, Z. Stachura, K. Zuber, and A. Budziak, Nucl. Phys. A100, 297 (1967).
- ²²K. S. Toth, Nucl. Phys. <u>A133</u>, 222 (1969).
- ²³M. Gonsior, I. I. Gromova, G. I. Iskhakov, V. V. Kuznetsov, M. Ya. Kuznetsova, M. Mikhailov, A. V. Potempa, and M. I. Fominikh, Acta Phys. Pol. B2, No. 2-3, 307 (1971).
- ²⁴K. Wilski, V. V. Kuznetsov, O. B. Nielsen, O. Skilbreid, and V. A. Khalkin, Yad. Fiz. 6, 672 (1967) [transl.: Sov. J. Nucl. Phys. 6, 488 (1968)].
- ²⁵J. D. Bowman, E. K. Hyde, and R. E. Eppley, Lawrence Berkeley Laboratory, Nuclear Chemistry Annual

Report No. LBL-1666, 1972 (unpublished), p. 4.

²⁶N. A. Golovkov, K. Ya. Gromov, N. A. Lebedev, B. Makhmudov, A. S. Rudnev, and V. G. Chumin, Izv. Akad. Nauk SSSR Ser. Fiz. 31, 1618 (1967) [transl.: Bull. Acad. Sci. USSR Phys. Ser. 31, 1657 (1967)].

10

- ²⁷R. D. Macfarlane, J. Inorg. Nucl. Chem. <u>19</u>, 9 (1961).
- ²⁸K. S. Toth, S. Bjørnholm, M. H. Jørgensen, and O. B. Nielsen, J. Inorg. Nucl. Chem. 14, 1 (1960).
- ²⁹Y. Y. Chu, E. M. Franz, and G. Friedlander, Phys. Rev. 175, 1523 (1968).
- ³⁰J. O. Rasmussen, Phys. Rev. <u>113</u>, 1593 (1959).
- ³¹G. Igo, Phys. Rev. Lett. 1, 72 (1958).
- ³²J. O. Rasmussen, in Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North-Holland, Amsterdam, 1965), p. 701.
- ³³A. Rosen, C. Ekstroem, H. Nyquist, and K. E. Aedelroth, Nucl. Phys. A154, 283 (1970).
- ³⁴C. Ekstroem, S. Ingelman, M. Olsmats, and B. Wannberg, Phys. Scr. 6, No. 4, 181 (1972).
- ³⁵Ts. Vylov, K. Ya. Gromov, I. I. Gromova, G. I. Iskhakov, V. V. Kuznetsov, M. Ya. Kuznetsova, N. A. Lebedev, and M. I. Fominikh, Izv. Akad. Nauk SSSR Ser. Fiz. 36, 2124 (1972) [transl.: Bull. Acad. Sci. USSR Phys. Sci. 36, 1864 (1972)].
- ³⁶R. Arlt, G. Beyer, V. V. Kuznetsov, V. Neubert, A. V. Potempa, U. Hagemann, and E. Herrmann, Dubna Report No. P6-5681, 1971 (unpublished).
- ³⁷C. Ekstroem, T. Noreland, M. Olsmats, and B. Wannberg, Nucl. Phys. A135, 289 (1969).
- ³⁸C. Ekstroem and I. L. Lamm, Phys. Scr. 7, No. 1-2, 31 (1974).
- ³⁹E. Newman, K. S. Toth, R. L. Auble, R. M. Gaedke, M. F. Roche, and B. H. Wildenthal, Phys. Rev. C 1, 1118 (1970).
- ⁴⁰R. D. Macfarlane, Phys. Rev. <u>126</u>, 274 (1962).
- ⁴¹E. P. Grigoriev, A. V. Zolotavin, V. O. Sergeev, and N. A. Tikhonov, Izv. Akad. Nauk SSSR Ser. Fiz. 36, 76 (1972) [transl.: Bull. Acad. Sci. USSR Phys. Ser. 36, 75 (1972)].
- ⁴²M. P. Avotina, E. P. Grigoriev, A. V. Zolotavin, and V. O. Sergeev, Izv. Akad. Nauk SSSR Ser. Fiz. 30, 1204 (1966) [transl.: Bull, Acad. Sci. USSR Phys. Ser. 30, 1255 (1966)].
- ⁴³H. J. Mang, Annu. Rev. Nucl. Sci. <u>14</u>, 1 (1964).
- ⁴⁴S. G. Kadmenskii, V. E. Kalechits, and A. A. Martynov, Yad. Fiz. 16, 717 (1972) [transl.: Sov. J. Nucl. Phys. 16, 400 (1973)].