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The isobar-doorway model, previously applied to the study of pion-nucleus elastic scatter-
ings, is generalized to the treatment of single and double charge exchange reactions. The
charge exchange amplitudes are calculated within the framework of distorted-wave Born ap-
proximation, where the resonant distortion of the elastic scattering wave functions in the
initial and final channels as well as the resonant part of the charge exchange interaction are
explicitly taken into account. In the isobar-doorway model, it is shown that the transition
amplitude depends upon quantities related to the elastic scattering and to a charge exchange
amplitude which contains nonresonant initial and final pion wave functions. The strong energy
dependence in various components of single and double charge exchange amplitudes is clearly
displayed in the model; this energy dependence due to the (3,3) isobar in the reaction mech-
anism (including initial- and final-state interactions) may also be separated out from the nu-
clear structure information as contained in the nuclear form factors. This separation is ob-
tained through the static and the closure approximations which are in the isobar-doorway
model.

[NUCLEAR REACTIONS Pion-nucleus charge exchange; (3,3) resonance; isobar—:l
doorway model.
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I. INTRODUCTION

During recent years, pion-nucleus scattering
has received a great deal of attention. A general
review of the subject can be found in the article by
Koltun.! In this paper, we shall concentrate only
on the charge exchange reactions, the single and
double charge exchange reactions being referred
to as SCX and DCX, respectively. We shall be
mainly interested in these reactions in the vicinity
of the (3, 3) resonance. In this energy region, we
expect the interaction mechanism to considerably
simplify due to the dominance of the A(1231) reso-
nance.

There have been several investigations of the
mechanism of the charge exchange reaction. A
general review may be found in Becker and
Batusov.? The simplest calculations of the charge
exchange process have been in terms of the pro-
duction and decay of the A particle. In SCX, the
pion absorbs a nucleon of the target to form a A
which decays by emitting a pion of different charge
and forming the analog nucleus, while in DCX, two
nucleons are converted into A particles which de-
cay into the “double analog” nucleus. The work of
Parsons, Trefil, and Drell,® Becker and Maré¢,*
Becker and Schmidt,® and Barshay and Brown® fall
under the above category. The effect of the A(1231)
resonance in the initial and final channels have,
however, not been considered in these impulse
approximation calculations.

The initial- and final-state interaction effects
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have been considered by various authors. Kauf-
man and Hower” used a simple absorption reduc-
tion factor. Lucci and Picchi,® and Bjgrnenak

et al.® have used the Glauber approximation. Re-
cently, Kaufmann, Jackson, and Gibbs!° have cal-
culated the SCX and DCX amplitudes using a mul-
tiple scattering theory. There are also optical
model calculations by Koren,'' and by Kerman and
Logan.'? There also exist distorted-wave Born-
approximation (DWBA) calculations due to Charl-
ton, Eisenberg, and Jones,'® and Rost and Ed-
wards.!* Recently, Miller and Spencer have done
a coupled-channel calculation for these reactions.'®
The initial and final distorted-wave functions uti-
lized in the above calculations are usually calcu-
lated from a first order approximation to the opti-
cal potential. These ensure the asymptotic form
of the elastic scattering wave functions, but a cal-
culation of the SCX and DCX amplitudes require
also the wave functions at small distances. The
study of various improvements on these theories
has received much attention.

In this work, we shall discuss the application of
the isobar-doorway model'® to the charge exchange
reactions. It is appropriate to recall the main
ideas of the model. One separates the pion-nu-
cleon interaction into a resonant and a nonreso-
nant part. One assumes that the resonant part of
the interaction creates an isobar compound state,
i.e., a nucleon hole and a A particle in the target.
One further assumes that the scattering and reac-
tion phenomena are largely determined by the de-
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tailed properties of the isobar compound system.
In an elastic scattering process, one assumes that
the isobar is formed in the elastic channel and then
decays into both elastic and inelastic channels.

The doorway state picture emerges if one further
assumes that the coupling between the elastic and
inelastic channels is solely through the isobar
compound state.

In this paper, we do not discuss coupled-channel
effects. We do believe that the coupled-channel ef-
fects should be taken into account. We shall dis-
cuss it in a later publication. We restrict our
present formulation within the framework of the
DWBA. We shall consider an extension of the iso-
bar-doorway model, wherein we shall replace the
elastic scattering by the elastic and charge ex-
change channels. In the extended isobar-doorway
model, we shall show that the transition amplitude
contains strong energy dependence due to the reso-
nance effects in the initial and final channel wave
functions as well as in the charge exchange inter-
action.

The formalism we present in the following sec-
tion will be applicable to elastic (leading to the
ground state of the final nucleus) as well as inelas-
tic charge exchange reactions, leading to quasi-
bound excited states of the final nucleus. Breakup
of the final nucleus is considered only through a
parametrization of the omitted channels. The for-
malism is within the spirit of the usual DWBA cal-
culations where the initial and the final states
wave functions are assumed to be determined from
the elastic scattering experiments in the respec-
tive channels. In our model, we obtain such elas-
tic scattering wave functions from the isobar-
doorway model.

II. ISOBAR-DOORWAY FORMALISM

We shall consider both the single charge ex-
change and double charge exchange reactions in
the isobar-doorway model. For simplicity, we
give detailed formulation for the SCX reactions,
since the extension to the DCX reactions is
straightforward and the results will be given only
at the end of this section.

For SCX reaction, we consider the following
process:

m+A =T, +A,, (1)

where 1 and 2 denote the initial and final charge
states of the pions. The incident channel has a

7, (" or 77) interacting with the target nucleus 4,;
the outgoing channel has a 7, (generally 7° for SCX
reactions) with the residual nucleus A,. The Ham-
iltonian of the system may be written as

H=H,+K +V, 2)

where H, (7,, ¥,***7, ) is the baryon Hamiltonian
with baryon coordinates 7,,**+7,. The baryon
Hamiltonian also describes the motion of the ex-
cited state of the nucleon (i.e., isobar). We allow
at most one isobar in the system. In Eq. (2), the
pion kinetic energy operator is K, and the m-nu-
cleus interaction is V. This 7-nucleus interaction
V describes the elastic scattering as well as the
charge exchange process, along with all other re-
actions. We may separate this interaction into
two parts:

V=Vy+ Vg, (3)

where the nonresonant interaction V, contains op-
erators of the following form

Vo=/fr Na:rayvalvaw (4)

with f y as the strength of the interaction (a;'r and
a}:, are creation operators of a pion and a nucleon,
respectively). The Coulomb interaction is in-

cluded in V,. The resonant interaction V; has the

following form
Ve =Gryaasahar +H.c., (5)

where G,y depends on the coupling strength and
the quantum numbers of 7, N, and A. For details
of the resonant interaction, we refer to the non-
relativistic form of Kerman and Kisslinger'” and a
field theory calculation of A exchange.'® However,
in the following discussion, we do not need the ex-
plicit form for the interaction. The nonresonant
interaction contains the m-nucleon s-wave and

T =3 p-wave interactions. The resonant interaction
is the T=3 p-wave interaction.

We may now define the various isobar-nucleus
states in terms of the eigenstates of the baryon
Hamiltonian H,: (1) The initial target state | @,)
and the final residual nuclear state | ®,) may be
defined as

Hy(ryr oo 7)) [ @;(ryn 2 7,)) =By | @500 2 7)),
(6)

where i=1 or 2. The coordinates (7,*+*7,) refer
to those of the nucleons of the nucleus; (2) the iso-
bar-doorway states | ®,,) may be defined as

Hb(,rl. .o VA ) I @na(/yl. .o rA-l’ Aa))

=(Epte) [ @m0 74, 8,)), (D)

-1 o

where (7,*+*7,_,) refers to the coordinates of the
(A - 1) nucleons with energy E,, and A, denotes
the coordinate of the isobar with a single-particle
energy €, in the nucleus. The isobar in the state

| @, (7,°** 74, A,)) is assumed to be a stable parti-
cle (the narrow resonance approximation); the
width of the resonance is restored latter by cou-
pling the doorway states | ®,,) to the inelastic and
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the open channels under our consideration.

To formulate our problem, it is useful to use
the projection-operator techniques of Feshbach.!®
We define the elastic pion scattering states as the
P space (the m-continuum space). We have two
charge states in the P space, so we separate the
P space into two parts: P, and P,. We define the
P, and P, operators as

Pi={@,(ry e v DG (re 00y | (8)
and

P2=l¢2(71"'TA)MCI’z(Tg"'TAH 9)

which project onto the P, and P, spaces, or the
initial and the final nuclear states, respectively.
We next define the @-space operator @ which pro-
jects onto the isobar-doorway states |$,,) as

Q= Z l cbrla(rl. StV alp Aa)><q>na(71' Vo Aa) [ .

(10)

We finally define the g-space operator ¢ which
projects onto the rest of the Hilbert space (the
compound inelastic states) defined by the system
Hamiltonian, i.e.;

¢=1-P-Q. 1)

It is easy to see that the operators P, @, and ¢
satisfy the projection operator and the orthogon-
ality conditions.

The m-nucleus interaction V, and Vz may now be
shown to satisfy the following conditions: (1) The
nonresonant interaction V, does not connect P and
@ spaces:

QV,P;=0, i=1,2 (12)
and

P,V,P,;#0, i,j=1,2; (13)
and similarly (2) the resonant part Vj satisfies

P,VgQ+#0, i=1,2 (14)
and

P,VeP;=QVgQ=0, i4,j=1,2, (15)

We have now properly specified our projection op-
erators. We may proceed to solve the scattering
problem.

The complete wave function of the system | ¥) is
described by the Schrdodinger equation

(E-H)|¥)=0, (16)

where E is the energy of the system. This equa-
tion may be rewritten as the following coupled
equations, by using the projection-operator tech-

niques'®;

(E-H,)P, |W=H,P,| ¥ +H Q| ¥, (17a)

(E-Hy,)P,|¥) =H, P, |¥) +H,,Q | ), (17b)

(E-Hgo)Q |¥) =Hg, P, | W) +Hy, P, | V) +Hy q|®,
(17c)

(E-Hy)g | W =H,Q| D, (17d)

where we have used the usual notations: Hj;
=P;HP;, H;q=P;HQ, and H,,=QHQ, etc. In Eq.
(17), we have already made the doorway-state
hypothesis: There is no coupling between P and
q spaces, or

P,Vog=P, Vgq=0, i=12. (18)

We have assumed that the elastic scattering states
in both the incident and final channels are not di-
rectly coupled to the compound inelastic states. It
is clear that the assumption on the reaction mech-
anisms in the preceding discussion is identical to
the one used in the elastic scattering.'®

To simplify Eq. (17), let us introduce an effective
@-space Hamiltonian by eliminating the ¢ space,
ie.,

Hoq=Hqq+Hg(E —H,)H,q. (19)

We obtain an effective Hamiltonian for the P space
as

H=H+HE - Hyo) ™ H, (20)

and write the coupled-channel equations for the
charge exchange reactions as

(E-3C,)P, | ¥ =3, P, | ¥, (21a)
(E -3C;,)P, | ¥ =30, P, | ), (21b)

where 3C;; =P;3CP;. Equation (21) may be solved
for the desired T matrix. These coupled equations
are, however, rather complicated. In order to ex-
hibit the important dynamical effects of the isobar
resonance, we choose to introduce a distorted-
wave Born-approximation (DWBA) for the 7 ma-
trix. The DWBA SCX amplitude is defined as

T=(x$7 136, | X§), (22)

where the distorted-wave functions | x{*)) are the
homogeneous solutions of Eq. (21), i.e., we have

(E-3¢,) |x{#) =0, i=1,2. (23)

Equations (22) and (23) are the basic starting point
of our discussions.

Formally our results so far are rather similar
to the (p, n) reactions. However, for the case of
pion-nucleus charge exchange reactions, both the
wave functions | x*)) and the interaction ¥,, have
strong energy dependence due to the (3, 3) reso-
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nance. The fact that the m7-nucleus interaction is
strong and resonating indicates important initial-
and final-state interactions. To show these effects
explicitly, we have to study the behavior of the
continuum wave functions (the distorted waves).
This may be done conveniently by using the isobar-
doorway model, where the resonant and the non-
resonant parts of the pion wave functions are
treated separately.

We write Eq. (23) explicitly as

(E = Hy +Ho(E - Hgg) ™ Hy) | x§) =0. (24)
The distorted wave | x{*’) may be formally ob-

tained in terms of the nonresonant and resonant
parts as

[XE) =180 +[oF*), (25)

where the nonresonant wave function | ¢{*)) is the
solution of the homogeneous equation,

(E-H)| o8 =0, (26)

J

is defined as

&) (k! )k
PR B E)= Y SO Vi 206X @y | Vi [ 917 ()

and the resonant wave function | ¢¥®)) is related
to the nonresonant part by

1

TGP . —
iqbi > E—HiiiinPiVRQ

1
E-Hgq+Hg(E - Hy;+in)-H;q

XQVgP;| o§) . (27)

In order to simplify Eq. (27), let us introduce the
isolated doorway approximation'® and represent
the inverse operators by the eigenstates of the op-
erator H,,, as defined in Eq. (10). We may write
Eq. (27) as

X

ofO ) = [ =14 (k7))
! E-E, xin' 7}
xT¢(k', K E), (28)

where we have denoted % as a continuum energy
variable in | ¢{)(k)), the resonant T matrix 7

n,o

where the continuum width I‘:,ai and shift A,’,ai to
the ith channel are defined as

ity : -
Ar'wti"'—zia_' :&q)nc(l VR(E‘HH'*'Zn) IVRI¢"¢X> .
(30)

The compound width I",*,a and shift A,‘,a are defined

as

+ irrta__ |<¢) IVthbna> IZ
Bra= 7 ‘Zq: E-c,+il,/3 ° 81)

where we have used an energy averaging procedure
by assigning a width parameter I', to each ¢ state.'®
In Eq. (31), €, and | ¢,) are the eigenenergies and
the eigenstates of the g space:

(€, -H) o2 =0, (32)

which may contain inelastic continuum states. The
resonant 7 matrix 7% as defined in Eq. (29) is
very close to the T matrix for the elastic scatter-
ing in channel .'® This fact may enable us to use
the results from the elastic scattering calculation
to estimate the matrix elements Ti*). We shall
later return to such approximation. The quantity
T (k’, k; E) will become one of the most impor-
tant factors in our model for charge exchange re-
actions.

Substituting Eq. (25) into the DWBA T matrix,
we obtain the results in terms of a nonresonant

E — (E +€4+Abg; + Aby) + 56(T4,

+I'4)

) (29)

< ¢2(~) lvol¢|R (+)> < csz(_)lVo l¢:?(+)>

FIG. 1. Nonresonant charge-exchange reactions. Dia-
gram (a) is the (NR-NR-NR) term, where both initial
and final pion states are nonresonant; diagrams (b) and
(c) are the (NR-NR-R) and (R-NR-NR) terms where one
of the pion state is resonating; diagram (d) is the (R-
NR-R) term with both pion states resonating. Here we
identify each term by (initial pion state—interaction—
final pion state). The nonresonant pion states are shown
as the dashed lines (----) and the resonating pion states
by wavy lines (nannn).
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SCX TH% and a resonant SCX amplitude T§cx as

Tsex = Toex + Tex» .
where the nonresonant SCX amplitude is given by
Toox =¢85 1 V31007 +Cof D [ Va1 o) +Co | VE [ o7 T) +(of @ | VE 1 of), (34)
where V32!'=P,V, P, is the charge-exchange part of the 7-nucleus interaction V,, and the resonant SCX
amplitude T8 is
Tex =( 087 [ Hyo(E = Ho) ™ Hoy | 87) +( 087 | HyolE = Hog) " He, | 9f7)
+{OFC) | Hyg(E — Hoo) " Hoy | ¢")) +C 05 | Hyo(E = Hog) " Hy | 677)) (35)

All these terms are represented in Figs. 1 and 2,
where, for simplicity, we have denoted the reso-
nant charge exchange operator as

X, =H;o(E —Hyg)'Hy, . (36)

Equations (34) and (35) give a complete DWBA de-
scription of the single charge exchange reactions.
The four terms in T§ey or T%.x are related. To
show this property, we now take the Born ampli-
tudes, i.e., the first terms in Eqs. (34) and (35),
which are close to the amplitudes in the plane-
wave Born approximation (PWBA). We define the
nonresonant Born amplitude as

UYNE R =0 (R) | VE | of” (k) (37)
then we may show that
UE, R =( o7 (R | v ol (k)
E% TO(4, k5 E)UTYNG, K,
(38)
UNR(KR, R)=( ¢ (k") | V2] R (k)

dq 7

E_E i L1 (4, & EYUYN(K', @),
qQ

(39)

(c)

L e,
\\ + 7
o
n P
—/

<¢’;—r |X21|¢IR(+1> < ¢:(~)|x2‘l¢f<+r>

FIG. 2. Resonant charge exchange through an isobar-
doorway state. The order of the diagrams follows Fig.
1. (a) the (NR-R-NR) term, (b) the (NR-R-R) term, (c)
the (R-R-NR) term, and (d) the (R-R-R) term.

U:‘R(E',E)=( (;bf(—)(E' )l V21 ] ¢R(+>(E)>

dqdq (-) -
ffE E,+in)E - E’+m) (q, k"5 E)

xTN(q & E)UYNG, @), (40)

where T {7 are also defined by Eq. (29). The non-
resonant SCX amplitude is then

Toey = ZU (k', k) - (41)

It is clear from Eqgs. (37) through (40) that once
the Born amplitude UN¥(&’, k) is known on and off
the energy shell, we may determine the complete
nonresonant amplitude in terms of the 7 matrix
T (K’ , k; E) defined by Eq. (29). We may follow
exactly the same argument for the resonant ex-
change interaction. Let us define the Born ampli-
tude:

UMK,k E)
(PR ) | Hyg(E —=Hog) He | ¢ (K)),  (42)

where we have the explicit energy dependence.
Then the other three terms in Eq. (35) are related
to Uf‘(l'z’ ,k: E) by exactly the same relations as
given by Eq. (38) through (40) with V2' changed to
X;;, and UG, q’) changed to UR(E,G“E); the
connection is also made by the use of the T matrix
T(‘*). The complete resonant SCX amplitude is
then given as
4
TSex = > U (K, K E). (43)
t=1

We have now shown that the complete DWBA am-
plitude for single charge exchange reactions is de-
termined by UYR(k’, &), UR(K',K; E), and
Tﬁ“(f(' ,k; E). The usefulness of the method may
be viewed as follows. The energy dependence due
to the resonance is completely explicit in these
basic quantities. The basic Born amplitudes may
be evaluated with minimum uncertainty in the pion
wave functions, since they are expressed only in
terms of the nonresonant parts of the wave func-
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tions, which may be reliably evaluated from a
first-order optical model calculation. Near the
resonance where the nonresonant distortion may
be neglected, we may be able to use plane waves
for | ¢7).

Before we make approximations on these basic
quantities, we would first like to extend the same
formalism to DCX reactions in a second-order
distorted-wave approximation. For simplicity,
we shall discuss only the resonant charge exchange
interaction. We first extend Egs. (23) through (29)
to include the doubly-charge-exchanged channel,
hereafter denoted as ¢ =3 channel in these equa-
tions. The resonant DCX reactions proceed
through two successive interactions of X;;. The
simplest term with nonresonant infernal and ex-
ternal pion wave functions is shown in Fig. 3. We
shall call this simplest term the nonresonant Born
term and denote it as W,(k’, k; E); it may be re-
lated to UR(K’, k; E) of Eq. (41) by
oo, _ dﬁ
W, (k' ,k; E) = —E———Ea+—m
x UMK, q; EYUR(G, Kk E). (44)

There are three other terms with nonresonant ex-
ternal pion wave functions. We may write these
terms as (see Fig. 4)

. . dg
W(k, kE)= | ——?—
K K E) E—E +in
x UK, §; EYURG, K E), (45)
ooy [ 44
WK, k; E) = E—-E +in

x UMK, EYUR(G, K E), (46)
43
E-E +in
xUS(K', & E)UN(G, K E). (47)

w, (&', Kk E)=

It is readily shown that the Born term with non-

T .
o 4/
N ot AN
N + -
AN A ////
7 ————
W, term

FIG. 3. Double charge exchange (DCX) interaction
through two successive isobar formations. In this dia-
gram, all the pion states are nonresonant. For DCX
interaction diagrams (Figs. 3 and 4), we denote the dia-
gram by (initial pion state—intermediate pion state—final
pion state); Fig. 3 is therefore (NR-NR-NK).

resonant external pion wave functions is given as
WB(k', K E)
1

={ &)k - = ) (%
=R | X | gy | X |90 (R)

=Y WK KE). (48)

In Eqs. (45) through (47), we have also used
UR(k’,k; E) and UR(k’,%; E), as defined in Egs.
(38) and (39), for simplification in notations. The
diagrams corresponding to W,(z=2, 3, 4) are shown
in Fig. 4. It is important to note that the Born
term W?(E'. k; E) is also completely determined
by the basic quantities in the theory: UN(K’,k; E)
and the T matrix 7{)(K’,k; E). We do not need
any extra parameters.

After we have obtained the Born term, it is
straightforward to generalize our consideration to
the cases with resonan! external pion states. The
results are given similar to Egs. (38), (39), and

W, term
(b)
mos
o
N + A Ve
\*77' + °
N A m
n p n P
W3 term
(c)
m s
[o]
N+ AN 4
\\I + 7o
N AN A
n ; \p N P
7 [ E——
W term

4

FIG. 4. Double-resonance DCX diagrams with non-
resonant external pion states. Diagrams (a) and (b) are
(NR-(NR, R) = NR) and {NR — (R, NR) — NR), respectively,
where the intermediate states contain one resonant com-
ponent of the pion wave function, their values being given
by Egs. (45) and (46). Diagram (c) is the (NR —R — NR)
term given by Eq. (47).
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(40), with the following replacements

U (R R ~WE(R LK E), i=1,2,3,4

and

>

TR, K E) - TH (K, K E)
[with i=3 in Eq. (29)], where we have defined
wB(k', Kk E)
=( RO (K| X4p(E =30 + i) 71X, | 0 (K)),
(49)
wi(k', %; E)
=( (R | Xop(E =3¢, +i0) 7 X, | 9RO (K)),
(50)
and
Wik, k; E)
=(PFN(K') | X pp(E = 3oy +10) ' Xy, | 0F(K)) .
(51)

The DCX amplitude in second-order distorted-
wave approximation is therefore given as

->

4
Tix= D WiK K E). (52)
i=1

We have now completed our formulation of the
SCX and DCX reactions in the isobar-doorway
model. Both SCX and DCX amplitudes are shown
to depend on two basic quantities: 7% (K, k; E) of
Eq. (29) and UR(K’,k; E) of Eq. (42), if we neglect
the small nonresonant contributions from
UY(k’, k; E) (which also appears in the nonreso-
nant DCX amplitudes which have not been discussed
here). These two quantities have clear dynamical
meanings in the theory. In the next section, we
shall use a phenomenological model for these
quantities, where they are related to the basic
m-nucleon interactions.

III. SIMPLE MODEL

In this section we shall show a model calculation
of our basic quantities T8 (%', k; E) and
UR(%’,k; E) with the same approximations used

nucleus. The form factors are defined

A

F;’(E)= Z(@n(yl. . .;J__l;ﬁl. T ot ket | @, (F," -

i=1

:fd—f eik'?pn'i(F) .

in Ref. 16. We first rewrite Egs. (29) and (42) as
T¢(k' K E)

i} }:ws*’(ﬁ'n AL IIC MR ARSI
ne E - Enai +%ii“nm'

(53)

=Z<¢§'><E')l Ve l®ne) (Bne | Vol 0{" (k)
E-E,+3iT}, ’
(54)

no

where we have introduced the following definitions:
(1) The resonance energy

Enai:En+€u+A:|ai+A:a; (55)

(2) the modified isobar resonance energy
En=E,+€,+A; (56)

(3) the quasitotal width

r_.=r!

noti

nai +Fr‘|a . (57)
In the static model for the interaction Vg,'” we
may write (ignoring a phase factor)

COPR) | V| Gpod (@ | Vi | 9 (K))

~ o A alt V2o R GR . .

[rWN(k )rnﬂ(k)J San K Fr_:(k/ )F?(k)
2m 4

(58)

where | 9 (k)) is related to | ¢{*)(k)) by a phase,
K's refer to unit vectors of the pion momenta in
the 7-nucleon c.m. system. For the static model,
we may use K=k. To simplify our discussions,
we assume plane wave solutions for | {*)(Kk)) so
that we may drop the designation of (+) in our no-
tations.?® The factor ¢;; depends on the isospin
states of the transition i -j. We have also defined
the width

reyky=2m|(k| Vgl a,) |2, (59)

where |T<> is a state of the pion nuclear system,
and | A,) is the single particle state of A in the

(60)
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pn(T) is a product of a single particle wave func-

tion and a spectroscopic factor which depends upon

the parentage of the state of the A nucleon system
in terms of the state ¢, of the (A —1) nucleon sys-
tem. If we assume that the scattering is not far
off shell, i.e., |k| = |k’|, we may approximate

Loy )=T 3 y(k), (61)
since I'§ (k) is not as critically energy-dependent

as the energy denominator in Eqs. (53) and (54).
We may rewrite Eqs. (53) and (54) as

£)-Tu o DEaBR - RFUEDRYE)
T ‘ra E-E;+3iD

T,(k,
nai
(62)
and
rey(kK’ - RFNK FI(K)
E-E,, +3iT},

>, = N
UR(K', K E)=32
27 s

(63)

We now introduce the closure property of the iso-
bar-doorway states and sum over na. We obtain'®

A LT rWN(E)k,'I%F{i(E/sE)
T (K, K E) = 21 E - M(1236) - 6E +3i(T%, +Ty)
(64)
and
Rz ooy Ray  Can(E)K'-RF, (K, K)
Ui (K, K £) 21 E-M(1236) - 6EV+3iTy,’
(65)

where we have approximated the average width
(T%y) by the free A(1231) decay width T'; 4(E), and
the average resonance energy  E,.;) by

(E,u)~M(1231) +6E, (66)

where OF is the total energy shift of the isobar en-
ergy in the nuclear medium.!® We have also de-
noted the averaged quasitotal width for the ith
channel as

<inai>=ril+r‘m ’ (67)
where
L=(r!,) and T =(T'}). (68)

The form factors are defined as
Fyy(R,B) = 37 FI(ROFHR). (69)
n

We note that the difference between the total width
T'i, and the quasitotal width is the decay width to
charge-exchange channel.?’ Since the charge-ex-
change width is very small compared to the total
width, we may take

Ty+Tn =T - (70)

In Eq. (65) we also have an average energy shift
6E' =(at ). (1)

Since the energy shifts are probably small, the two
energy shifts 6E and oE! may be taken to be equal.
We have now reduced these basic quantities to
their simplest forms. It is interesting to make the

connection of charge exchange-reactions to the
elastic scattering in the isobar-doorway model.
Compared to the results we have in Ref. 16, the
T,(k’, k; E) is nothing but the off-shell extension

of the elastic T matrix in the isobar-doorway mod-
el [with Eq. (70)]. We also find that UXKk’, k; E) is
closely related to the modified 7-nucleon { ma-
trix, ¢

1
T T T oy ;T y(E)
@(E) toa(K', K, E)= o) —oE v TiT,

(72)

by the off-diagonal form factor F,,(k’,k) as

UR(E' K E) =22 o(E) (K, K B)F,, (R, B) .

2T
(73)
In analogy to UY( k', Kk E), we may write
TR, & B)=JL T4 (R, & BIF, (R, B), (74)
where
=, 3T w(E) 5, -
i ’ . = 2> TN !,
TR\ 6 B) =g —rmosgy ceB+ m i) £ K-
(75)

As we have shown in Ref. 16, the total width (i.e.,
=T § +T', may be determined by a fit to the total
cross section as a function of energy.?? By the
same procedure, we may also estimate the inelas-
tic width T';, by the ratio of the total reaction cross
section 0,(E) to the total elastic cross section
gea(E). Therefore, all the necessary parameters
in the model may be checked with the measure-
ments of the total cross sections alone. The angu-
lar distributions of the SCX and DCX reaction
cross section and of the elastic scattering may
then be predicted within the same approximations.

The model is therefore shown to be capable of
making direct and simple connections between the
SCX and DCX reactions and the elastic scattering.
Furthermore, the model is particularly useful in
its separation of the resonant factors from the non-
resonant parts. As examples, we shall explicitly
show this property in the DWBA amplitudes. We
first consider the nonresonant terms.

Since the treatment of the completely nonresonant
interaction UNR(k’,Kk) of Eq. (37) is not in the mod-
el, we shall assume that it is known from an ap-
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propriate optical-model calculation.?® This term
should have smooth energy dependence. The reso-
nant terms of Egs. (38) and (39) may be combined
to the following form

OIE B+ N, D= (ol B F5,(6)]
+b(K",B) | TH(B) (],

(76)
where we have defined
T (K, K E)=| Ti,(E) | K’ K, (77)
a(k’, &) =91, fda(E - E, +in)" MR §)
XFo (K, Q) UYNG, K, (78)
b(k, ®) =9, fda(E —E,+in)"(§ k)
x UMK, Q)F,,(§',K). (79)

We note that the energy dependence of Eq. (76) ap-
pears mainly in the factor | i, |, since a(k’,Kk)
and b(k’,Kk) are smooth functions of energy. The
most resonating term in the nonresonant charge
exchange reaction is then

UNR(E E)ﬁ%f’—gﬂ

x| T%(E) | c(k', )| TL(E)],
(80)
where the smoothly energy-dependent factor
c(k’, k) is given as
C(E',E)=f fdﬁdﬁ' (E-E, +in)™
X(E - E, +in) (k' <" (k)
XF,, (K", a4 UNG, QF,, (4, k) .
(81)

We next consider the resonant terms. The basic
term is given in Eq. (73) with main energy depen-
dence in | ,,(E)| defined by

(BN (k' K E)=|I4 (E)|K' K. (82)
We may write

UMK,k E)+ UMK K E)

=%§ lzaa(E)l[d(E', E) liga(E)l*'e(E,, E)|T§3(E)l ];

(83)
where
_— dq(k +3)g- k)
AR, R) =, [ 2242
22 E-E +iy
XF (k' , QIF, (G, k) (84)

and

aq(k -§)@- )
E—E, +in

XF,, (K", QF,(4,K) . (85)

e(k,K) =, f

Finally, we have
Uk, K E)

BL = = A
Ty | 12,(E) | T3,B) AR, B) | @)1,

(86)

where

o e ( (434 R 3G DGR
f(k ,k)-j f (E_Eq+i'r,)(E—E;+i7])
XFzz(E,,a’ )le(a’ya)Fu(a'E)'
(87)

As noted before, the factors d(k’, k), e(k’, k), and
f(k’, k) have relatively smooth energy dependence,
so that the strong energy dependence in all the
resonant terms is completely separated out in our
final expressions. Furthermore, the energy de-
pendence is in turn directly related to the energy
dependence in the elastic scattering. We finally
note that the main nuclear structure effects are
contained in the form factors which are separated
out from the main effects of the resonance energy
dependence.

The same discussion may be extended to the DCX
reactions, where the main energy dependence will
also be contained in | £,,(E)| and | T},(E)| factors.
The extension is straightforward and will not be
discussed here.

IV. CONCLUDING REMARKS

We have extended the isobar-doorway model for
pion-nucleus scattering to the charge-exchange re-
actions. We have shown that energy dependence of
the SCX and DCX reaction amplitude in DWBA may
be conveniently separated from the parts which
contain nuclear structure information. The energy
dependence depends on the pion optical potential,
or the self-energy effects in the nuclear medium;
it is therefore shown to be closely related to the
elastic scattering amplitude.

Within the model, the SCX and DCX reactions
may be treated on the same footing as the elastic
scattering with common factors depending only
on the energy and therefore may be consistently
described by a simple parametrization from the
energy dependence of the total cross sections.
These factors may eventually be evaluated by a
more detailed interaction model, such as a micro-
scopic theory where the motion of the isobar is ex-
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plicitly taken into account. The model we present
here is general enough to allow variations in the
detailed assumptions of the pion-nucleon interac-
tion in the medium.

The same procedure as described in this work
may also be applied to separate the resonant and
nonresonant components in an optical-model calcu-
lation. This separation of the optical potential, of
course, is an extension of the usual DWBA calcu-
lation; for the case of pion-nucleus scattering,
this approach may be useful in order to gain more
insight into the roles of the (3, 3) resonance in the
optical potential. However, this type of optical-
model approach will be formally equivalent to our
formulation if the optical-model wave functions
used are obtained from formally exact optical po-
tentials, since our wave functions formally con-
tain all orders of multiple scattering.

Finally, we would like to point out that our mod-

el has the distinctive feature of displaying explicit-
ly the roles of the (3, 3) resonance in the reaction
dynamics, including the initial and final state in-
teractions. The effect of the nonresonant back-
ground interactions is also properly retained in
the formalism. The validity of the model can only
be tested by experimental data. We propose to ap-
ply the model near the (3, 3) resonance region (i.e.,
150 MeV = T, < 300 MeV, T, =pion laboratory ki-
netic energy). From Egs. (70) through (87), a
rough observation suggests that the SCX and DCX
reaction cross sections be resonating across the
(3, 3) region, following the energy dependence of
the elastic scattering modulated by smoothly ener-
gy-dependent factors. This resonant behavior in
the total elastic charge-exchange cross sections
indicates a quite different result as from the first-
order optical model calculations and the multiplet-
scattering theory.!®!%1®

*Work performed under the auspices of the U.S. Atomic
Energy Commission.
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