Study of the 84 Kr(3 He, d) 85 Rb reaction*

L. R. Medsker, J. N. Bishop, S. C. Headley, and H. T. Fortune Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19174 (Received 22 August 1974)

The ⁸⁴Kr (³He, d)⁸⁵Rb reaction has been studied at a bombarding energy of 18 MeV. The isotopically enriched ⁸⁴Kr target was contained in a gas cell with no entrance window. Excitation energies and angular distributions were obtained for 58 levels below $E_x = 6.2$ MeV in ⁸⁵Rb. A distorted-wave analysis was used to determine l values and spectroscopic strengths. The results are compared with previous data from transfer reactions and radioactive decay.

 $\left[\begin{array}{c} \text{NUCLEAR REACTIONS} \quad ^{84}\text{Kr}(^{3}\text{He}, d), \ E = 18 \text{ MeV}; \text{ enriched target; measured} \\ \sigma(E_{d}, \theta); \text{ deduced } ^{85}\text{Rb levels}, \ l, \ j, \ G_{lj}.\end{array}\right]$

I. INTRODUCTION

Nuclei with a closed neutron shell at N = 50 have been studied^{1, 2} with transfer reactions and are reasonably well described by the simple shell model. The low-lying proton states³ are characterized by $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, and $1g_{9/2}$ orbitals, and nuclei in this region are to some extent doubly magic at Z = 38 and 40. Holes in the N = 50 core, however, create a more complex situation.

The ⁸⁵Rb nucleus is interesting because it is in a region of transition away from the N = 50 closed shell. Spherical shell-model calculations⁴ have had some qualitative success in this region; however, there are indications that nuclei in the $N \leq 50$, $Z \leq 40$ region are deformed and that Nilsson model calculations are needed.⁵

The present work is the beginning of a study of the systematics of proton states around Z = 36. A comparison with data from other experiments^{1-3, 6-8} on ⁸⁵Rb should be helpful in testing the various models.

II. EXPERIMENTAL PROCEDURE

The experiment was performed with the 18-MeV ³He beam from the University of Pennsylvania tandem accelerator. The outgoing deuterons were momentum analyzed with a multiangle spectrograph. Spectra (see Fig. 1) were recorded on Ilford K2 emulsion plates in 7.5° steps starting at 7.5°. The target was enriched ⁸⁴Kr gas (90.2%) and was recirculated through a gas cell with no entrance window.⁹ The pressure in the gas cell was maintained at 20 Torr, which corresponds to an effective target thickness of 80 μ g/cm². The energy resolution was 22 keV full width at half-maximum (FWHM). The gas reservoir contained a titanium absorber which minimized contamination by carbon, nitrogen, and oxygen. Contamination due to 40 Ar (from the atmosphere) was 2% and a separate run using ⁴⁰Ar gas was made in order to identify peaks due to the 40 Ar(3 He, d) 41 K reaction. The other contaminants were 86 Kr (4.6%), 83 Kr (4.9%), and $^{\rm 82}{\rm Kr}$ (0.3%), and the states from reactions on these isotopes were identified or were negligibly small. The data were analyzed with the program AUTOFIT¹⁰ in order to obtain excitation energies and cross sections. The measured angular distributions were compared with the results of distorted-wave Born-approximation (DWBA) calculations, using the code DWUCK.¹¹ The optical model parameters¹ are listed in Table I. The spectroscopic strengths $G_{1j} = [(2J_f + 1)/$ $(2J_i + 1)] C^2 S_{ij}$ were derived from the differential cross sections by use of the expression

$$\frac{d\sigma}{d\Omega} = 4.42 \ G_{ij} \sigma_{\rm DWUCK} / (2j+1)$$

where J_i , J_f , and j are the total angular momenta of the target nucleus, residual nucleus, and the transferred proton, respectively.

III. RESULTS

In the present experiment, 58 levels in ⁸⁵Rb were identified up to an excitation energy of 6185 keV. By comparison of calculated DWBA curves and experimental angular distributions, the l_p values could be determined for most of the states. Figure 2 shows the angular distribution for the ground state (which is the only state observed here to be reached by $l_p = 3$) and those for four states reached by $l_p = 4$ transfer. Nine states were assigned $l_p = 1$ (Fig.3) and 30 states were reached by $l_p = 2$ transfer (Figs. 4 and 5). Eleven states

FIG. 1. Typical deuteron spectrum of the 84 Kr (3 He, d) 85 Rb reaction.

had angular distributions characteristic of $l_p = 0$ (Fig. 6). Listed in Table II are the energies of the states, along with l_p values, spins, and spectroscopic strengths.

The spins of the first four states are well established.^{2, 3, 8} The present measurements are consistent with previous data, as shown in Table III. The $\frac{5}{2}^{-}$ ground state and $\frac{3}{2}^{-}$ 151-keV state are reached by $l_p = 3$ and 1 transfers, respectively, in (³He, d). The $\frac{1}{2}^{-}$ and $\frac{9}{2}^{+}$ states at 281 and 514 keV are both weak in pickup reactions^{2, 6} and are reached by strong $l_p = 1$ and $l_p = 4$ transfers in the present stripping experiment. A state at 731.9 keV was assigned $\frac{3}{2}^{-}$ from Coulomb excitation.⁸ A state at about this energy has been observed in pickup and stripping reactions and the $l_p = 1$

TABLE I. Optical-model parameters used in distorted-wave Born-approximation calculations of $^{84}\rm Kr- (^3He, d)^{85}\rm Rb.$

	³ He	d	Bound-state proton
V (MeV)	170	98	
r_0 (fm)	1.14	1.10	1.20
a (fm)	0.75	0.85	0.65
W (MeV)	20	• • •	
W' (MeV)	•••	72	
r'_0 (fm)	1.60	1.40	
a' (fm)	0.80	0.70	
\boldsymbol{r}_{c} (fm)	1.40	1.30	1.20
V_{so} (MeV)	•••	6.0	$\lambda = 25$

FIG. 2. Angular distributions of the deuterons leading to states in ⁸⁵Rb from the ⁸⁴Kr(³He, *d*) reaction. The solid lines are the distorted-wave Born-approximation calculations for $l_p = 3$ and $l_p = 4$ transfers.

FIG. 3. Angular distributions for levels excited by $l_p = 1$ transfers in the ⁸⁴Kr(³He, d)⁸⁵Rb reaction. The solid lines are the distorted-wave Born-approximation calculations.

assignment from $(d, {}^{3}\text{He})$ and $({}^{3}\text{He}, d)$ is consistent with $J^{\pi} = \frac{3}{2}^{-}$. A tentative assignment of $l_{p} = (3, 4)$ from (t, α) is in disagreement; however, in that experiment the l_{p} assignment is not firm.

A more serious ambiguity in ⁸⁵Rb concerns the levels at 868.05 and 880 keV. Vatai $et \ al.^{12}$ have given evidence that the level at 868.5 keV has J^{π} $=(\frac{5}{2},\frac{7}{2},\frac{9}{2})^{-}$, consistent with a $J^{\pi}=\frac{7}{2}^{-}$ assignment to a level at 868.05 keV from Coulomb excitation.⁸ Vatai et al. show that the state at 880 keV that was assigned from earlier ⁸⁵Sr decay measurements was probably due to contaminating activity. However, recent Coulomb excitation, (t, α) , $(d, {}^{3}\text{He})$, and the present $({}^{3}\text{He}, d)$ measurements all show evidence for a state with an energy of about 880 keV and $J^{\pi} = (\frac{1}{2}, \frac{3}{2})^{-}$. Therefore, even though the 880-keV state was probably not populated in ⁸⁵Sr decay, two states appear to exist here—one with $E_x = 868.05$ keV and $J^{\pi} = \frac{7}{2}$, and another with $E_x = 878.2$ keV and $J^{\pi} = \frac{1}{2}$ or $\frac{3}{2}$. The J^{π} restrictions for the remaining states in ⁸⁵Rb with $E_x > 900$ keV come from (t, α) , $(d, {}^{3}\text{He})$, and the present (³He, d) results. A state at E_x = 919 keV was observed² in $(d, {}^{3}\text{He})$ with $l_{p} = 3$. This agrees in energy with a state reported in

FIG. 4. Angular distributions for levels $(E_x \leq 5074 \text{ keV})$ excited by $l_p = 2$ transfers in the ⁸⁴Kr (³He, d)⁸⁵Rb reaction. The solid lines are the distorted-wave Born-approximation calculations.

E, a				E_{r}^{a}			
(keV)	l p	J [#]	$(2J+1)C^2S$	(keV)	lp	J^{π}	$(2J + 1)C^2S$
0	3	$\frac{5}{2}$ b	1.78	3981	0	$\frac{1}{2}^{+}$	0.046
151	1	$\frac{3}{2}^{-}$ h	0.82	4039	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.16
281	1	$\frac{1}{2}$ c	1.53	4117	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.15
514	4	9+ b	6.84	4154	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.059
735	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.087	4220	(0)	$(\frac{1}{2}^{+})$	0.019
883	(1)	$(\frac{1}{2}^{-}, \frac{3}{2}^{-})$	0.14	4343	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.064
950	2	$(\frac{3}{2}, \frac{5}{2})^+$	0,35	4484	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.029
1175	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.26	4575	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.082
1294	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.18	4631	0	$\frac{1}{2}^{+}$	0.011
1789	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.046	4729	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.082
1954	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.027	4756	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.089
2050	4	$(\frac{7}{2}, \frac{9}{2})^+$	1.05	4861	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.096
2375	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.039	4913	0	$\frac{1}{2}^{+}$	0.052
2514	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.46	5013	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.058
2602	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.019	5074	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.050
2730	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.038	5127	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.042
2801	0	$\frac{1}{2}^{+}$	0.0072	5186	0	$\frac{1}{2}^{+}$	0.012
2948	0	$\frac{1}{2}^{+}$	0.015	5245	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.065
3024	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.13	5367	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.063
3148	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.16	5444	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.039
3200	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.18	5516	0	$\frac{1}{2}^{+}$	0.034
3310	(1)	$(\frac{1}{2}^{-}, \frac{3}{2}^{-})$	0.023	5563	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.039
3398	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.027	5643	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.029
3541	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.089	5668	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.029
3598	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.14	5719	(1)	$(\frac{1}{2}^{-}, \frac{3}{2}^{-})$	0.048
3656 ^d) o	$\frac{1}{2}^{+}$	0.048	5815	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.039
	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.039	5996	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.067
3698	0	$\frac{1}{2}^{+}$	0.10	6065	0	$\frac{1}{2}^{+}$	0.034
3886	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.047	6185	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.036

TABLE II. Present results for the 84 Kr(3 He, d) 85 Rb reaction.

^a Uncertainties are ±5 for $E_x \leq 2730$ and ±10 for $E_x > 2730$.

^b See Ref. 3.

^c See Ref. 8.

^d Doublet.

Coulomb excitation and in (t, α) ; however, in the latter, an $l_p = 1$ assignment was made. The 919-keV state was not populated in (³He, *d*). We observe strong $l_p = 2$ transfer to a state at 950 keV, consistent in energy with states observed in Coulomb excitation and pickup reactions. The latter, however, report^{2, 6} l_p values of 1 and (3, 4). This indicates the existence near 950 keV of a second state that is not populated in (³He, *d*).

Definite $l_p = 4$ and $l_p = 1$ transfers are observed in the (³He, *d*) reaction to states at 1175 and 1294 keV, respectively. The l_p assignments from pickup reactions for states with similar energies are sufficiently ambiguous that consideration of the existence of more than these two states is not warranted on the basis of available data.

Above $E_x = 1300 \text{ keV}$, little correlation exists between states observed in pickup and those of the present (³He, d) experiment. States at 1384, 1504, and 1639 keV are strong in pickup and might be expected to be weak in (³He, d). Many new levels in ⁸⁵Rb are proposed above $E_x = 1300$ keV on the basis of the present (³He, d) data. Table II contains their energies, l_p values, possible J^{π} assignments, and spectroscopic strengths.

The summed spectroscopic strengths for the various l_p values are shown in Table IV. The total for $l_p = 1$, 3, and 4 is 13.46. The value expected from the sum rule is 13.85:

$$\sum G_{Ij}(T_{<}) = [\text{No. proton holes in } N = 50] - \sum G_{Ij}(T_{>})$$
$$= 14 - 2/13 = 13.85$$

This agreement is excellent, since uncertainties in target thickness and in the DWBA formalism are certainly more than 20%.

One might expect from the simple shell model that $2p_{3/2}$, $2p_{1/2}$, and $1g_{9/2}$ would be the active lowlying proton orbitals above Z = 36 and therefore $\sum G_{1j}$ would be nearly 4 for $l_p = 1$ and 10 for $l_p = 4$. For example, in the ⁸⁸Sr(³He, d) reaction most of the low-lying strength goes to the $\frac{1}{2}$ and $\frac{9}{2}$ states, as depicted in Fig. 7. The ⁸⁶Sr(³He, d) results, with N = 48, show the effects of the two neutron holes—lower excitation energies, greater density of states, and increase in $l_p = 3$ strength. The present ⁸⁴Kr(³He, d) results show similar effects including strong $l_p = 3$ strength ($\sum G_{lj} \approx 2$). Most of the remaining strength below 2600 keV is fractionated among $l_p = 1$ and $l_p = 4$ transfers. The wave function for ⁸⁴Kr is thus relatively complicated and contains more vacancies than expected in the $1f_{5/2}$ and $2p_{3/2}$ orbitals.

The strength above $E_x = 2600$ keV is almost entirely $l_p = 0$ and $l_p = 2$. It is fragmented among over 40 states with no single state having G_{lj} > 0.2. The sums of $l_p = 0$ and $l_p = 2$ strengths observed below 6.2-MeV excitation energy in the present experiment are each about 25% of the strengths expected from the shell model. In Table IV is also shown a comparison of the present spectroscopic strengths with those measured^{1, 13} in (³He, d) reactions on ⁸⁶Sr and ⁸⁸Sr. The sums of $l_p = 4$ strengths are quite comparable for all three targets, indicating that the $1g_{9/2}$ components of the wave functions are about the same. The summed $l_p = 3$ strengths for $\frac{34}{36}$ Kr₄₈ and $\frac{86}{38}$ Sr₄₈ are

FIG. 5. Angular distributions for levels $(E_x \ge 5127)$ excited by $l_p = 2$ transfers in the ⁸⁴Kr (³He, d)⁸⁵Rb reaction. The solid lines are the distorted-wave Bornapproximation calculations.

FIG. 6. Angular distributions for levels excited by $l_p = 0$ transfers in the ⁸⁴Kr(³He, d)⁸⁵Rb reaction. The solid lines are the distorted-wave Born-approximation calculations.

NDS, (n,n and Coul.	$(\gamma),$ ex.	86 Sr(t	$(\alpha)^{85}$ B	b	⁸⁶ Sr(a	<i>ι</i> .³Η	e) ⁸⁵ Rb		⁸⁴ F	۲(³ He. <i>d</i>) ⁸⁵ Rb
$E_{\mathbf{x}}^{\mathbf{a}}$	J^{π}	$E_{\mathbf{x}}^{\mathbf{a}}$	lp	C^2S	E_x^{b}	ı,	C^2S	$E_{\mathbf{x}}$	lp	J^{π}	$(2J+1)C^2S$
0	$\frac{5}{2}^{-}$	0	3	3.7	0	3	3.1	0	3	$\frac{5}{2}^{-}$	1.78
151.18	$\frac{3}{2}$	151.5 (0.2)	1	2.1	151	1	2.3	151	1	$\frac{3}{2}^{-}$	0.82
281.04	$\frac{1}{2}^{-}$	281 (2)	1	0.5	281	1	0.51	281	1	$\frac{1}{2}^{-}$	1.53
513,998	$\frac{9}{2}^{+}$	514 (3)	4	0.7	514	4	0.91	514	4	$\frac{9}{2}^{+}$	6.84
731.9	$\frac{3}{2}$	732 (6)	(3, 4)	0.1	732	1	0,023	735	1	$(\frac{3}{2})^{-}$	0.087
868.05	$\frac{7}{2}^{-}$										
878.2		880 (7)	1	0.2	868	1	0.088	883	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.14
919 (1)		925 (10)	1	0.1	919	3	0.28				
951 (1)					951	1	0.062	950	2	$(\frac{5}{2}^+)$	0.35
		960 (10)	(3, 4)	0.2							
1175 (1)		1172 (5)	(3, 4)	0.2	1175	(3)	0.14	1175	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.26
1294 (1)		1291 (7)	1	0.1	1294	3	0.71	1294	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.18
1383 (1)		1375 (8)	(3, 4)		1384	3	0.45				
1445 (1)											
		1492 (8)	1	0.2	1504	1	0.19				
		1627 (4)	3	0,9	1639	3	0.98				
		1792 (15)	(3,4)	0.08				1789	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.046
		1891 (15)	(3,4)	(0.10)							
		1940 (10)		(0.07)				1954	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.027
		2006 (10)		(0.10)							
		2056 (5)		(0.20)				2050	4	$(\frac{7}{2}, \frac{9}{2})^+$	1.05
		2191 (10)	(1)	0.12	2212	1	0.14				
		2304 (12)		(0.13)							
								2375	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.039
								2514	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.46
								2602	1	$(\frac{1}{2}, \frac{3}{2})^{-1}$	0.019
								2732	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.038
		4195 (10)	(3)	0.10							

TABLE III. Energy levels, l_p , J^{π} , and spectroscopic strengths for states in ⁸⁵Rb from previous experiments compared with the results of the present ⁸⁴Kr(³He, d) study.

^a Uncertainties are indicated in keV.

^b Energy resolution was about 50 keV.

nearly the same though slightly larger for ⁸⁴Kr. Most of the difference is for $l_p = 1$. The larger 1f strength in ⁸⁴Kr compared to that for ⁸⁸Sr shows the effect of removing two neutrons.

A comparison of $l_p = 0$ and $l_p = 2$ strengths is difficult because of the different ranges of excitation energies covered in the three experiments. The measured $l_p = 2$ strength does appear to be less for ⁸⁴Kr than for ⁸⁸Sr, perhaps due to greater fragmentation in the former. On the other hand, virtually no $l_{p} = 0$ strength is reported for (³He, d) on ⁸⁶Sr and ⁸⁸Sr, whereas the present measurements reveal about $\frac{1}{4}$ of the sum rule strength for l = 0.

The distributions of strength for the various l_p values are shown in Fig. 8. The $l_p = 0$ and $l_p = 1$ strengths show normal fragmentation concentrated around excitation energies of 4.340 and 0.685 MeV, respectively. For the $l_p = 2$ strengths, however, the presence of the additional relatively

		(1/2,3/2) (0.08,0.07) 3490
	(5/2)+ 0.09 3406	
	(5/2)+ 0.16 3353	
	(5/2)+ 0.04 3195	
	(5 (2) ± 0.35 3000	
	$(5/2)^+ \frac{(5/2)^+ 0.25}{} 3043$	
	$(5/2)^+$ $(5/2$	
	0.120	
(3/2,5/2)+ 0.038 2730	(5/2) 0.16 2730	
(1/2,3/2) 0.019 2602		
(7/2,9/2)+ 0.46 2514		
	(5/2)+ 0.03 2407	
1/2,3/2) 0.039 2375	(3/2) 0.03 2401	
	$\frac{(5/2)^{-}}{(2/2)^{+}}$ 0.14 2278	
	(9/2)+ 0.79 2203	
7/2,9/2)+ 1.05 2050	(1/2,3/2) (0.10,0.09) 2085	
1/2,3/2) 0.027 1954		
	(1/2,3/2) 0.07 1848	
1/2,3/2) 0.046 1789		(5/2) 0.55 1735
	(0/2)+ 0.57 (005	
	(9/2) 0.55 1605	
		(1/2,3/2) (0.54,0.44) 490
1/2 7/2) 0 18 1804		
0.18 1294		
7/2,9/2)+ 0.26 1175	(5/2)+ 0.32 1155	
(5/2)+ 0.35 950	(1/2,3/2) (0.60,0.54) 982	
(1/2)- 0.14 883		9/2+ 8.8 896
3/2 0.087 735	(5/2) 1.15 /93	
9/2+ 6.84 514		
5/2 0.04 514		
	9/2+ 7.19 380	
1/2 1.53 281		
3/2 0.82 151		
E/2 179 0		1/2- 1.9 0
5/2 1.78 0	1/2 1.15 0	1/2 1.8 0
84Kr (340 d) 85ph	$86_{Cr}(^{3}_{Ho}d)$	88 Cr (3He d) 89V
36 ^{Nr} (He,u) 37 ^{KD} 48	38 ⁵ (He, 0) 39 ¹ 48	3851 (118,07 39 50

FIG. 7. Comparison of energy levels, J^{π} , and spectroscopic strengths for the (³He, d) reactions on ⁸⁴Kr (present) ⁸⁶Sr (Ref. 1), and ⁸⁸Sr (Ref. 13).

FIG. 8. Distributions of spectroscopic strengths for $l_p = 0$, 1, 2, and 4 transfers to levels in ⁸⁵Rb with the ⁸⁴Kr(³He, d) reaction.

strong low-lying $l_p = 2$ state at 950 keV is a notable exception. The high-lying $l_p = 4$ states at 2050 and 2514 keV are also candidates for anomalous behavior. An interesting possibility is that these three states are $\frac{5^+}{2}$, $\frac{7^+}{2}$, and $\frac{9^+}{2}$ members of a coreexcited high-spin multiplet. No calculations of levels in ⁸⁵Rb are available for comparison with the present results; however, Fig. 9 shows a comparison (for even-parity states only) of theoretical and experimental work on ⁸³Rb. The de-

TABLE IV. Sums of spectroscopic strength for various l_p transfers in the $({}^{3}\text{He}, d)$ reactions on ${}^{84}\text{Kr}$, ${}^{86}\text{Sr}$, and ${}^{88}\text{Sr}$. The region of excitation energy E_x over which data are available is indicated in the last line.

l p	${}^{84}_{36}$ Kr ₄₈ (Present work)	$^{86}_{38}$ Sr ₄₈ (Ref. 1)	⁸⁸ ₃₈ Sr ₅₀ (Ref. 13)
3	1.78	1.45	0.55
1	3.07	1.86	2,32
4	8.61	8.51	8.80
2	2.45	1.39	4.3
0	0.38	0.04	•••
E_x (MeV)	<6.2	<3.5	<5.3

FIG. 9. Comparison of theoretical and experimental work on even-parity states in 83 Rb with those from the present measurements on 85 Rb.

formed-nucleus calculations of Scholz and Malik⁵ take into account the pairing interaction and rotation-particle coupling. The calculations of Paradellis and Hontzeas⁴ treat ⁸³Rb as an eveneven vibrating core (⁸²Kr) and an extracore proton quasiparticle and include dipole and quadrupole terms in the quasiparticle-core interaction.

Although the comparison of theory and experiment shows some encouraging signs, the quantitative agreement is not adequate to establish the best model in this region. Detailed calculations for the other rubidium isotopes and more extensive experimental data will be helpful. In particular, calculations of the type performed by

- *Work supported by the National Science Foundation.
- ¹J. V. Maher, J. R. Comfort, and G. C. Morrison, Phys. Rev. C 3, 1162 (1971).
- ²J. R. Comfort, J. R. Duray, and W. J. Braithwaite, Phys. Rev. C 8, 1354 (1973).
- ³D. J. Horen, Nucl. Data <u>B5</u>, 131 (1971).
- ⁴T. Paradellis and S. Hontzeas, Can. J. Phys. <u>49</u>, 1750 (1971).
- ⁵W. Scholz and F. B. Malik, Phys. Rev. <u>176</u>, 1355 (1968).
- ⁶R. C. Ragaini, J. D. Knight, and W. T. Leland, Phys. Rev. C <u>8</u>, 988 (1973).
- ⁷R. P. Torti, V. M. Cottles, V. R. Dave, J. A. Nelson, and R. M. Wilenzick, Phys. Rev. C 6, 1686 (1972).
- ⁸P. D. Bond and G. J. Kumbartzki, Nucl. Phys. A205,

Paar,¹⁵ who considers the coupling of a few-particle cluster to quadrupole vibrations, might be useful. It seems clear that ⁸⁴Kr and ⁸⁵Rb are already far enough from a closed shell to exhibit many of the properties of deformed nuclei.

ACKNOWLEDGMENTS

The authors thank the tandem accelerator staff for their cooperation during the experiment. We are grateful to K. Coluikos and P. Nicolaides for their careful scanning of the nuclear emulsion plates. Thanks are also due G. Florey for help with the data analysis.

- ⁹J. R. Powers, H. T. Fortune, and R. Middleton, Phys. Rev. C 4, 2031 (1971).
- ¹⁰J. R. Comfort, Argonne National Laboratory Physics Division Informal Report No. PHY-1970B (unpublished).
- ¹¹The distorted-wave code, courtesy of P. D. Kunz, University of Colorado.
- ¹²E. Vatai, A. C. Xenoulis, K. R. Baker, F. Tolea, and F. W. Fink, Nucl. Phys. A219, 595 (1974).
- ¹³J. Picard and G. Bassani, Nucl. Phys. <u>A131</u>, 636 (1969).
- ¹⁴R. Broda, A. Z. Hrynkiewicz, J. Styczen, and
- W. Walus, Nucl. Phys. A216, 493 (1973).
- ¹⁵V. Paar, Nucl. Phys. <u>A211</u>, 29 (1973).

^{239 (1973).}