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A discussion of off-shell properties of the T matrix is given based on the damping equa-
tion and unitarity. The off-shell function ¢; (%, q) of Baranger et al. is shown to be ¢; (&, q)
=cosd; (k) (k|K,; (k*|q), where 6; and K, are the phase shift and partial-wave K (reaction)
operator. The ratio of the imaginary to the real part of the half-off-shell partial-wave T
matrix element is shown to be tand; (¢), thus providing a unitarity constraint to be satisfied
by any approximate T matrix elements. In addition, the imaginary part of the fully-off-
shell T matrix element is shown to be proportional to the product ¢; (v, k) ¢;(k,q). These
results hold for both one-body and two-channel identical particle scattering.

A well-known result in the theory of one-body
scattering is the Heitler damping equation' relat-
ing the T and K operators:

T=K-inK6(E-H)T=K-inT6(E -H)K, (1)

where H is the unperturbed part of the Hamilton-
ian H, and the interaction V=H —H,. Equation (1)
is a means of guaranteeing unitarity, since any
Hermitian K will produce a unitary S matrix.

We have recently shown? that an equation sim-
ilar to (1) holds for the symmetrized T and K op-
erators T and X that occur in the description of
the scattering of identical particles. In particular,
if T=T(d)+ T(e) and X = K(d) + K(e), where d and e
refer to the direct and exchange processes and the
+ (~) sign indicates bosons (fermions), then?

T =% —inX0(E - H))T=K - inT0(E —H,)X .  (2)

Here we have assumed a simplified problem where-
in there are only two identical particles (1 and 2)
interacting with a center of force, so that H; de-
scribes the plane wave motion of ¢ and the bound
and continuum states of j in the presence of the
center of force. Equation (2) has as the direct
process particle 2 incident on and emergent from
a bound state of 1 while the exchange is that of 1
incident and 2 emergent. Equation (2) expresses
unitarity in a two-channel case, and we have used
it to derive new coupled equations for direct and
exchange T and K operators.?

Relatively little use has been made of the damp-
ing equation, in part because K is difficult to cal-
culate and in part because Eq. (1) still remains to
be solved for T [or Eq. (2) for '] after K (or X)
has been determined. Nevertheless, K is an im-
portant theoretical quantity and has been used in
both formal and computational studies. In this
note we use the damping equation and Eq. (3) be-
low to derive some properties of off-shell T ma-
trix elements. We work with 7T and K, but identi-
cal results hold for the identical particle case and
can be obtained simply by replacing K, and K [see
Eq. (3) below] and T everywhere by X,%, and 7.

We have previously studied* the quantity K de-
fined by

K=v+Vv

®

F_H V=ReT, 3)
where ® means principal value, and shown that it
is related to K. For the case of central interac-
tions, and with E=#2k%/2M, the following half-
off-shell relations hold:

(k| K,(k*)| ¢)=cos?5, (k) (k| K;(k?)| ) (4a)
and

(4l K, (k?)| k)=cos®6,(k)(q| K,(k®)| k) ,  (4b)

where the subscript labels the /th partial wave and
6,(k) is the usual_lth order phase shift. Similar
equations relate X (defined® by X =Re?) and X in
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the identical particle case.
The normalization used to obtain Eqs. (4), and
used here also, is*

— pp (k| T;(R?)| k)= €™ gins, (k) (5)
and
— 1Py (k| Ky (k?)| ky=tans, (k) (6)
where p,=Mk/li? is the density of states factor.
We first examine half-off-shell matrix elements
of T,(k?) using Eq. (1):
(ql T,(k?)| ky=(al T,(k?)| k)
- impy(ql Ty(k?)| k)(k| Ky (kP B)
or, solving for (g| T,(k?)| k) and using (6),
(ql T,(k?)| k)= €' cosd, (k) q| K,(k*)| k) .  (T)
Similarly, we find
(kI T, (k%) q)= €™ cosd,(k)(k| Ky(kD) q) . (8)
From this equation we see that the real half-off-
shell quantity ¢,(q, #) introduced by Baranger efal.’
is just
@1(q, k)= e=10q| T, (k)| k)=cosd, (k)(ql| K, (k?)| k) ;
9)

@,(k, q) is similarly defined. Hence, the symme-
tric (antisymmetric) part of ¢,(q, k) is given by
the symmetric (antisymmetric) part of the half-
off-shell K matrix element (¢| K,(22?)| k). Equa-
tions (7) and (9) provide a simple proof based on
unitarity that the phase of the half-off-shell T ma-
trix element is just 6,(k).6

Since K is Hermitian, its matrix elements are real.

Furthermore, Re(p| T;(k?)| ¢)=(p|ReT,(k?)|q)
and similarly for Im7,(k?), so that from Egs. (7)
and (8) we easily find

(RIImT,(k%)| q) _(qIImT,(k*)|k)
(kIReT,(k*)]q) ~ (qIReT,(k*)[k)

=tanb,(k) .

(10)

Thus, just as with the on-shell matrix elements,
we have that unitarity fixes the ratio of the half-
off-shell elements of ReT, and Im7T, to be tand, (&),
an on-shell quantity. While such a condition can
be derived from the work of Baranger e!f al.,’ we
seehere thatitisadirect consequence of unitarity,
as expressed in Eq. (1). It is implicitly contained
in earlier discussions of off-shell unitarity,” but
the implications of this result do not seem to have
been previously recognized. Equation (10) is a
constraint on any approximate method for calculat-
ing half-off-shell T matrix elements. Methods
based on the construction of a potential will ob-
viously lead to matrix elements of T satisfying

(10), as will any method in which ¢;(&, q) is ap-
proximated. For other methods (10) may provide
a useful check on the validity of the approach,
particularly as it clearly demonstrates that the
real and imaginary parts of the half-off-shell ele-
ments are not independent, just as in the on-shell
case. We further see that at a resonance [0,(k)
=37, either one of the following two relations

(Rl ImT,(R?)| g)==, 0,(k)=37
or

<klReT1(k2)]q>=0, éz(k)—“-%”

must hold, or that both the numerator and denom-
inator of (10) go to zero or to infinity in such a
way that their ratio is infinite. Finally, since we
expect that 6,(») =0, Eq. (10) provides a constraint
on the analytic behavior of (k| T,(k2)| q) as a func-
tion of ¢ when k2%— |
Let us now consider fully-off-shell matrix ele-

ments. Separating real and imaginary parts in
(1), we have [2ReT=T+T"; 2ImT =-i(T - T")]:

Im7 = - 1KS(E - H)ReT

= - TReTS(E - H)K (11)
and

ReT=K+nKO(E - H)ImT
=K+mImTO(E - H)K . (12)

By using Eq. (3), Eq. (11) may be reexpressed as
Im7=-7K5(E - H)K , (13)
indicating that the quantity K plays a basic role in
determining the imaginary part of 7.
If fully-off-shell partial-wave matrix elements
of (13) are taken, we get

(PIImT; (k%) q) = - mp(p| K, (k)| k)(R| K, (k?)| g)

= — P, cos?5, (k)
X (p| K, (k?)| k) k| K, (k?)| q)
=—1p.@,(p, Ry, (%, q) . (14)

The second and third lines of (14) follow on the use
of Egs. (4) and (9), respectively. Knowledge of
¢,(p, k) thus determines the fully-off-shell part of
ImT,; i.e., as pointed out by Baranger ef al.,
only half-shell quantities are needed to obtain
fully off-shell ones. However, we here see that
unitarity provides us with a direct relationship:
no integrals need be evaluated® to find Im7,.
Equation (14) is of course an alternate form of
the off-shell unitarity formula.”

As implied by Eq. (12), unitarity does not lead
to any especially simple expressions for ReT,.
Substituting (11) into (12) and taking partial wave
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matrix elements we easily find

(pIReT (k)| 4)=(p| K,(k?)| g)+p,5ind, (k) cosd, (k)(p| K;(k*)| k)(k| K\ (k?)| ) . (15)

The second term on the right-hand side of (15) can
be cast into other guises by using Eqgs. (9) or (14),
but these do not eliminate the presence of the ful-
ly-off-shell quantity (p| K;(¢?)| ¢). Unitarity can
take us no further and we need some dynamical
input to reach the conclusion that (p| ReT,(#2)| ¢)
is also determined by half-on-shell quantities®

r

and a knowledge of any bound states.® A further
discussion of this point and the extension of these
results to the multichannel case will be discussed
elsewhere.

As noted above, these results all hold for the
identical particle case. One need merely replace
T, K, and Kby 7, X, and X, respectively.
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