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the identical particle case.
The normalization used to obtain Eqs. (4), and

used here also, is4

—vp~&k( T, (k') j k&= e' ~~ ' sin5, (k)

—vp, &k) K, (k')
~ k) = tan5, (k), (8)

(10), as will any method in which y, (k, q) is ap-
proximated. For other methods (10) may provide
a useful check on the validity of the approach,
particularly as it clearly demonstrates that the
real and imaginary parts of the half-off-shell ele-
ments are not independent, just as in the on-shell
case. We further see that at a resonance [5, (k)
=-,'wj, either one of the following two relations

where p, =Mk/k' is the density of states factor.
We first examine half-off-shell matrix elements

of T, (k') using Eq. (1):

&q) T, (k'&[k&=&q( T, (k'&) k&

or
&kl imTi(k') I q) =", o, (k) = ;v-

&k)ReT, (k')~q)=0, o, (k)=-,'v

fop, &q( T, (k')( k&&k( K, (k')] k&,
or, solving for &q( T, (k') ( k) and using (6),

&q) T, (k2) ] k) = e'" coso, (k)( q) K, (k') ( k) . (7)

Simi1.arly, we find

(kj T, (k')) q&=e'" cos5, (k)&k~K, (k')( q) . (8)

From this equation we see that the real half-off-
shell quantity q, (q, k) introduced by Baranger ef al. '
is just

y, (q, k) —= e "i&»&q( T, (k')( k&=cos5, (k)&q~ K, (k')) k);

(9}

y, (k, q) is similarly defined. Hence, the symme-
tric (antisymmetric) part of q, (q, k) is given by
the symmetric (antisymmetric) part of the half-
off-shell K matrix element &q~ K, (k')

~ k). Equa-
tions (7) and (9) provide a simple proof based on
unitarity that the phase of the half-off-shell T ma-
trix element is just 5, (k).

Since E is Hermitian, its matrix elements are real.
Furthermore, Re&PI Ti(k~)l q) =&Pl ReT, (k') ) q)
and similarly for ImT, (k'), so that from Eqs. (7}
and (8) we easily find

&k(lmT, (k') q) &q) lmT, (k')~ k&

&k( ReT, (k') q) &qj ReT, (k'}( k&

must hold, or that both the numerator and denom-
inator of (10) go to zero or to infinity in such a
way that their ratio is infinite. Finally, since we
expect that 5, (0) =0, Eq. (10) provides a constraint
on the analytic behavior of &k~ T, (k')

~ q) as a func-
tion of q when k'- ~ .

Let us now consider fully-off-shell matrix ele-
ments. Separating real and imaginary parts in
(1), we have [2ReT= T+T; 2ImT =-i(T —Tt)):

Im T = —rrKO (E —Ho)Re T

= —vReT5(E —H, )K

Re T = K+ vKo(E —Ho)Im T

= K+ rim T5(E —Ho)K . (12)

By using Eq. (3), Eq. (11) may be reexpressed as

Im T = —vK5(E —Ho)K, (13)

indicating that the quantity K plays a basic role in
determining the imaginary part of T.

If fully-off-shell partial-wave matrix elements
of (13) are taken, we get

&plimT, (k')I q) =- vpr &Pl K, (k')I k&&klKi(k')I q&

= —wp~ cos25, (k)

x &Pi K, (k2)ik&&ki gK( k)i2q)

(10)
= - ~p.q i(p, k)9 i(k, q) . (14)

Thus, just as with the on-shell matrix elements,
we have that unitarity fixes the ratio of the half-
off-shell elements of ReT, and ImT, to be tano, (k),
an on-shell quantity. While such a condition can
be derived from the work of Baranger eI al. ,

' we
see here that it is a direct consequence of unitarity,
as expressed in Eq. (1). It is implicitly contained
in earlier discussions of off-shell unitarity, but
the implications of this result do not seem to have
been previously recognized. Equation (10) is a
constraint on any approximate method for calculat-
ing half-off-shell T matrix elements. Methods
based on the construction of a potential will ob-
viously lead to matrix elements of T satisfying

The second and third lines of (14) follow on the use
of Eqs. (4} and (9}, respectively. Knowledge of

y, (P, k) thus determines the fully-off-shell part of
ImT, ; i.e., as pointed out by Baranger et al. ,
only half-shell quantities are needed to obtain
fully off-shell ones. However, we here see that
unitarity provides us with a direct relationship:
no integrals need be evaluated' to find Im T, .
Equation (14) is of course an alternate form of
the off-shell unitarity formula. '

As implied by Eq. (12), unitarity does not lead
to any especially simple expressions for ReT, .
Substituting (11) into (12) and taking partial wave
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matrix elements we easily find

(pj ReTs(k') ] q&=&p( Ifg(k') I q&+ wpasino, (k) cos6, (k)&pl fbi(k') I »&kl fbi(k') I q& (15)

The second term on the right-hand side of (15) can
be cast into other guises by using Egs. (9) or (14),
but these do not eliminate the presence of the ful-
ly-off-shell quantity (P~ IC, (q') ) q). Unitarity can
take us no further and we need some dynamical
input to reach the conclusion that (p) ReZ', (k') I q)
is also determined by half-on-shell quantities'

and a knowledge of any bound states. A further
discussion of this point and the extension of these
results to the multichannel case will be discussed
elsewhere.

As noted above, these results all hold for the
identical particle case. One need merely replace
T, E, and K by 5, X, and X, respectively.
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