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Brueckner-Hartree-Fock (BHF) calculations are presented taking into account the Pauli
operator in the self-consistent basis rather than in the oscillator basis. The definition of the
single particle energies includes an on-shell rearrangement diagram (starting energy rear-
rangement) stemming from the only partial occupation of the occupied states due to the short
range correlations. Further, it includes an off-shell diagram (Pauli rearrangement) term
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which originates from the density dependence of the Pauli operator. The three additional
terms, the correction for the self-consistent Pauli operator, the starting energy, and the
Pauli rearrangement terms, contribute significantly to the nucleus. It is shown that the de-
finition of the single particle energies is analogous to that in density dependent Hartree-
Fock calculations. One obtains all the effects of a density dependent force within the BHF
formalism without making a detour to nuclear matter and thus avoids many of the approxi-
mations used in the calculations with density dependent forces. The method is applied here
for 160 using the Reid soft core and the Yale potential.

NUCLEAR STRUCTURE Brueckner-Hartree-Fock calculation in finite nuclei,
180 calculated binding energy, rms radius, charge distribution, electron
scattering.

I. INTRODUCTION

In an attempt to explain some of the properties
in finite nuclei starting with a basic nucleon-nu-
cleon force, Brueckner-Hartree-Fock (BHF) cal-
culations'~7 have been done with some success in
the closed shell nuclei. These calculations, how-
ever, have been unable to give the correct satura-
tion properties in the nuclei considered. On the
other hand, the density dependent forces®® have
been rather successful to a much higher degree.
These density dependent forces are determined by
solving the Bethe-Goldstone (B.G.) equation as a
function of the Fermi momentum and thus of the
density. This leads to the effective force in the
momentum space. In order to be able to use it in
finite nuclei one has to transform it to a spatial
representation. In doing so one makes several ap-
proximations, e.g. Brandow’s suggestion, namely
of equating the integrands if the matrix elements
are equal, averaging over starting energy, mo-
menta and angular momenta, and using the local
density approximation. Finally, one fits the nu-
clear matter data using two parameters. The pres-
ent paper is an improvement of our previous
work,'%!! where we have tried to explain the be-
havior of the density dependent forces within the
context of the BHF formalism by treating the densi-
ty dependence in the Pauli operator more care-
fully. Specifically, we treated the Pauli operator
in the self-consistent basis and included off-the-
energy-shell diagrams related to the Pauli opera-
tor. In the present work we extend the method by
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taking into account the density matrix dependence
of the reaction matrix through the starting energy.
This yields an additional rearrangement term
(starting energy rearrangement). In first order it
is identical with a term contained in the renormal-
ized BHF (RBHF) but derived there in a different
way. In contrast to Refs. 10 and 11, where an
averaged energy denominator in the BG equation
was chosen before the iteration, in this work also
the starting energy is treated self-consistently.
Preliminary results of this method have been given
at a conference in Balatonflired, Hungary.'?

II. THEORY

The total energy in the BHF approximation is
given by

(B =3 Gl +3 2 (iRlG@likypip,, (1)
7 ir

where the density matrices p are diagonal in the
self-consistent single particle states [i), |k),

[By...:
51, i<F;
Py = (2)
)0, i>F;

where F stands for the Fermi surface. The self-
consistent single particle states can be expanded
into oscillator basis states |a), [b), |c)...:

liy=3" laxaliy - 3)
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The reaction matrix G in Eq. (1) is defined with the
self-consistent Pauli operator Q:

c:vw%c, @)

with
e=W-H,(1)=H,@2),
H=7" iy, —c;)i] .
i

Here V is the nucleon-nucleon interaction and @
the self-consistent (s.c.) Pauli operator @ = (1 - p)
(1 =p). The energy denominator e contains the
self-consistent single particle Hamiltonian H ¢ with
an arbitrary shift ¢; for every state |i). As a first
step to calculate G, one calculates the reaction
matrix G, in the oscillator basis, with oscillator
Pauli operator @,. This was done using the modi-
fied versions of the BGOLAP and TGEN codes origi-
nally written by M. R. Patterson of Oak Ridge Na-
tional Laboratory:

GoW)=V+ V%QGO(W), (5)
o]

with
8o=W=H,(1)-H,(2),

Ho= Y layle, —co.Xal .

The intermediate particle spectrum is here de-
fined by the harmonic oscillator Hamiltonian with
an individual shift for every level. The self-con-
sistent reaction matrix G is related to the reac-
tion matrix G, by the identity

6 =G+, (2-2) e, ®
o
It is worth noting that in our formalism one re-
quires two different definitions for the intermediate
states in Eqs. (4) and (5) to guarantee that the cor-
responding energy denominators commute with the
respective Pauli operators:

[Q:é]:[Qo,éo]:O- (M

The self-consistent and the oscillator energy de-
nominators é and &, are defined apart from indi-
vidual energy shifts c¢; and c,, for every single
particle level. We restrict the number of free
parameters to only one by chosing the final ener-
gies of the unoccupied single particle states to be
the oscillator energies plus a level independent
shift:

€, —c,=hw(N,+3)-C,
€,=Cog=liwN,+3)-C. (8)

The correspondence between the self-consistent

single particle states |i) and the main oscillator
shell N is defined by the largest overlap |(|NZj)|.

The effective interaction G(W) to calculate the
total energy (1) can in principle be calculated solv-
ing the Bethe-Goldstone equation [Eq. (4)] if the
s.c. Pauli operator and the starting energies are
known. This would be very time consuming since
the Bethe-Goldstone equation, Eq. (4), would have
to be solved in every HF iteration. A more favor-
able starting point for the calculation of the reac-
tion matrix G(W) is the identity (6). If the s.c.
Pauli operator is not too much different from the
oscillator Pauli operator Q,, the iteration of Eq.
(6) is converging rapidly:

G(W)=Go(W)+Go(W)<%-%Q>GO(W)+- .
[o]
)

The third order term in the above equation was
checked numerically and was found to be less than
5% of the second order term, which in turn itself
is very small compared to G, (W). The third and
higher order terms are therefore neglected in ex-
pansion (9). The expression (9) for the reaction
matrix G(W) has two decisive advantages: First,
it exhibits separately the dependence on the start-
ing energy W and the Pauli operator @, two quan-
tities which are responsible for the density depen-
dence of the effective force.®® Secondly, it ex-
presses the effective interaction G (W) by the reac-
tion matrix GO(W) calculated with the oscillator
Pauli operator. The quantities G, (W) can be tabu-
lated independently of the result of the HF itera-
tion, and have to be calculated only once.

The density dependence is contained in the Pauli
operator @ = (1 —=p)(1 =p), and in the starting ener-
gy

Wip=€; +€,, €, =(iltliy+ D (ik|Glikyp,.  (10)
k

The effective density dependent force is now de-
fined by the expression (9) with the correction
term due to the difference between the self-consis-
tent Pauli operator and the oscillator Pauli opera-
tor. The Hartree-Fock equations which define the
self-consistent single particle states are derived
using the variational principle employed for the
usual density dependent forces.® We should em-
phasize that we are not trying to justify the use of
the variational principle. Instead, we are interest-
ed in the comparison of the definition of the s.p.
energy given above in the context of the BHF for-
malism with that of the definition of the s.p. ener-
gy coming out of a density dependent Hartree-Fock
calculation. We are not using a density dependent
force derived by fitting the nuclear matter data,
making several approximations on the way. Instead
we are taking the realistic nucleon-nucleon forces
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which fit the phase shift data and looking at their
density dependence rather closely in finite nuclei.
In order to do that we are using the same varia-
tional principle as used with the density dependent
forces derived from the nuclear matter. Obviously
the validity or the nonvalidity of the variational
principle in this context remains the same as for

the density dependent forces. Here we want to un-
J
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derstand the variational principle, which varies
not only the wave functions but also the density de-
pendence of the force, as supplying an essential
ingredient of the density dependent forces. This
variational principle defines the single particle
energies, in the same way as Landau,'® as the
variational of the total energy with respect to the
occupation probability of a single particle state.

The variation of the total energy given in Eq. (1), with expression (9), leads'''° to

B, %{92 (ila) H,(bli)

=(i|t]i) +Z (ikico(wik)‘ik>pk+z (ik|Go[ (1 =p)(A =p)/&4, =Qo/804:] Golik) Py
3 ®

+ D (k|G W 4, )lik) [ D (ks| :WGQ |es) ps} Pe= D (rs[Go W, )ik) (1 - p,) e, J(ik|Go W, )I7s) p,p,
R S ks

rsk

with
éikzwik ‘Hs(l) —Hs(2)
éom =Wy 'Ho(l) "Ho(z)
e .. =W

rs =€ =€

rs

where H, and H, are defined by Eqs. (4), (5), and
(8). Note that €; ine, is the hole energy in our
case and €, is the particle energy with the proper
shift. The dependence of the effective interaction
(9) on the density matrix p through the starting en-
ergy W and the Pauli operator @ has been varied
only in the leading terms depending on W and @,
respectively.

The Hartree-Fock equation for the expansion co-
efficients (ali) and the single particle energies are
then given by

> Ho(blt)=e(ali) . (12)
b

A look at Eq. (11) reveals that the first two terms
correspond to the usual BHF approach with the

two self-consistencies for the single particle states
and the starting energy W;,, and correspond to the
diagram of Fig. 1(a) for the s.p. energy. The in-
clusion of the third term corrects for the difference
between the self-consistent Pauli operator and
oscillator Pauli operator and the single particle
energy contribution from this term is represented
by Figs. 1(c) and 1(d). The last two terms are the
rearrangement contributions which originate from
the variation of the density dependence in the force
(9). The fourth term comes from the variation of
the starting energy W. This can be seen by writing
the derivative of the reaction matrix G, with re-

11)

r

spect to the starting energy W in the following way:

200 - o) Qo/20%)Co ). (13)
It corresponds to the diagram in Fig. 1(b). It is an
on-the-energy-shell insertion and has been dis-
cussed earlier.»'*'5 The inclusion of this term in
the calculation corresponds to the RBHF.% '° It
can be included in the second term using the partial
occupation probabilities for the single particle
states |k), defined in the lowest order as

3G
=1+ (ks| 5o [ks)p, . (14)
s ks

We emphasize here that the occupation probability
in Eq. (11) is included only to the first order. The
second difference between using Eq. (11) without
the third and the last term on the right-hand side
and doing the conventional RBHF calculation is
that Eq. (11) does not take into account the over-
counting correction which is used in conventional
RBHF®'® calculations. These correction terms
are not included in order to have an exact corre-
spondence to HF calculations with density depen-
dent forces.®° But as additional information we
also give in the tables the binding energy with the
overcounting correction.®!s

The last term originates'''° from the variation of
the Pauli operator and corresponds to the off-the-
energy-shell diagram of Fig. 1(e). For this rea-
son it is known as the Pauli rearrangement term.
This is included in our definition of the single-par-
ticle energy. It is also taken into account in Lan-
dau’s work.'?

The above comparison shows that our definition
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of the s.p. energy within the BHF formalism com-
pletely overlaps with the defintion of the s.p. en-
ergy for the density dependent forces. In this
sense our calculation can also be regarded as pro-
viding a microscopic description of the density de-
pendent forces.

III. RESULTS

The above described theory is applied to %0
utilizing the Yale!” and the Reid soft core poten-
tial.'® The Reid soft core potential'® is defined for
relative angular momenta j <2. For higher par-
tial waves we take the Yale potential.!” The details
concerning the solution of the reaction matrix in
the oscillator basis G, (W) are given elsewhere.*°
The HF equation (12) with the Hamiltonian (11) is
solved in an oscillator basis (7w =13.29 MeV), in-

e )
Rl

FIG. 1. Diagrams defining the single particle energies
in this paper. (a) Corresponds to the usual Brueckner-
Hartree-Fock (BHF) approximation. Diagram (b) de-
picts the starting energy rearrangement term, which is
the fourth term on the right-hand side of the Hartree-
Fock (HF) Hamiltonian, Eq. (11). It is, in first order,
equivalent with the partial occupation probabilities
discussed elsewhere (Refs. 1 and 14) and taken into
account in the renormalized BHF (RBHF) approach
(Refs. 6 and 15). The diagrams (c) and (d) differ by
the particle lines which are self-consistent (s.c.) and
oscillator (osc) states above the s.c. Fermi surface F
and the oscillator Fermi surface F,, respectively.
These two diagrams correct for the difference between
the s.c. and the osc Pauli operator @ and Q,. The con-
tribution e is the Pauli rearrangement term. It origi-
nates from the variation of the density (matrix) depend-
ence of the Pauli operator. It corresponds to the last
term in Eq. (11) and admixes 1p2h states. It yields
automatically an imaginary single particle energy if
one describes the intermediate particle states by a
continuum (Ref. 13). We describe the intermediate
single particle states by a shifted oscillator potential
defined in Egs. (4), (5), and (8). To prevent possible
singularities one introduces (Ref. 22) a width I' into
the denominator of this term and takes the real part.
The single particle energies, which are most sensitive
to this width, are affected by less than 5% if one varies
this width between 0 and 5 MeV in our examples.

cluding the seven lowest oscillator shells (22 +1
=N s6). By varying the basis it has been shown
that it is large enough for all data discussed here
apart from the high momentum transfer electron
scattering data (E, =750 MeV and larger angles).

The HF Hamiltonian (11) has been solved includ -
ing different terms. The self-consistent solution
of the first two terms with self-consistent starting
energies corresponds to the Brueckner-Hartree-
Fock (BHF) approach.’~% The first, second, and
fourth term correspond to the renormalized BHF
(RBHF) Hamiltonian.®!5 Again one has to satisfy
both the HF and the starting energy self-consis-
tency. As mentioned earlier, there are two dif-
ferences between our RBHF and other RBHF cal-
culations.*!® First, the occupation probabilities
are included in our calculations only in first order.
Secondly, we do not include the overcounting cor-
rections, which reduces the potential energy by
3%. Hence our results are more bound by approx-
imately 1 MeV farticle than for other calculations.
But for additional information we also give the
binding energies corrected for overcounting in
Tables I and II. However, one should have in mind
that especially for the DBHF method the correction
is not adequate since there the starting energy re-
arrangement and the Pauli rearrangement are
strongly coupled,'® while the correction for the to-
tal binding energy is only suitable for the starting
energy rearrangement. The first four terms of
the Hamiltonian (11) include in addition the self-
consistent Pauli operator (RBHF +s.c. @) instead
of the oscillator Pauli operator. If one also in-
cludes the Pauli rearrangement which is the last
term in Eq. (11), we name the method the density
dependent Brueckner-Hartree-Fock (DBHF) meth-
od.

The only free parameter in these calculations is
the energy shift C of the intermediate particle
spectrum for the unoccupied states defined in Egs.
@), (5), and (8). For both interactions, the Yale'’
and the Reid soft core potential,'® we choose the
shift C so that the energy of the 1s, ,, state of the
first unoccupied oscillator shell agrees with the
self-consistent BHF single particle energy of the
1s,,, level. This choice corresponds to C =41.5
MeV and C =42 MeV, respectively. To see the
influence of this shift we also give results for
C=46.5 MeV =% 7w for the Yale and C =38 MeV
for the Reid soft core potential.

All different approaches have been initially cal-
culated with the matching self -consistent starting
energies. But it turned out that the choice of the
starting energies in the correction term for the
self-consistent Pauli operator [third term of Eq.
(11)] and for the Pauli rearrangement [last term
of Eq. (11)] is not too sensitive. We therefore
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TABLE I. Single particle energies € in MeV, occupation probabilities P (14), binding energy per nucleon (BE/A) and
rms charge radius (r,% !/? for 0 resulting from various self-consistent calculations with the Yale (Ref. 17) potential.
The basis includes the seven lowest oscillator shells (2n +1 =N <6; fw =13.29 MeV)., The results for Brueckner-
Hartree-Fock [BHF = first two terms of Eq. (11)], for BHF with the self-consistent Pauli operator [BHF +s.c. @ = first
three terms of Eq. (11)], for BHF with s.c. Pauli operator plus Pauli rearrangement term [BHF +s.c. @ +P.r. = first
three terms and last term of Eq. (11)], for the renormalized BHF with the s.c. Pauli operator [RBHF +s.c. @ = first
four terms of Eq. (11)] and for the density dependent BHF [DBHF =all terms in Eq. (11)] are given for the intermediate
particle spectrum with the shifts C =(2+3)%w ~46.5 MeV and C=41.5 MeV (shift to the self-consistent position of the
1s/; level). The binding energies are corrected for the center of mass motion (B.E, =B.E. ncor + 2#w). The single
particle energies are not corrected for the center of mass motion (Davies and Becker Ref. 6). The binding energy with
the overcounting correction of the renormalized Brueckner-Hartree-Fock (RBHF) is also included [(BE/A),]. The rms
radius is corrected for the finite size of the proton and for c.m. motion ((r,%) =(r,% +0.65 fm? —$%/mwA). The ex-
perimental separation energies should not be directly compared with the HF energies (Refs. 19 and 20).

2ny+ly =6
C=46.5 MeV
BHF s.c. Particle spectrum C=41.5 MeV
BHF +s.c.Q BHF RBHF
Rle} BHF +s.c.Q +P.r. DBHF BHF +s.c.Q +s.c.Q DBHF Expt.

051/ € -48.56 —47.91 -44.31 —35.10 —46.03 —42.74 -—34.34 -29.28 -40 =8

P 1.0 1.0 1.0 0.87 1.0 1.0 0.79 0.89
093, € -25.99 -25.64 —24.47 -17.89 -23.53 -22.27 -15.81 -14.81 -18.4

P 1.0 1.0 1.0 0.81 1.0 1.0 0.77 0.83
0912 € -21.58 -21.30 -19.42 -13.58 -19.49 -18.38 -13.03 -11.25 -12.1

P 1.0 1.0 1.0 0.83 1.0 1.0 0.80 0.85
0sy) € -51.77 -50.98 —47.32 —38.64 —49.04 -45.71 -37.67 -—32.52

p 1.0 1.0 1.0 0.83 1.0 1.0 0.75 0.84
0932 € -28.83 —28.40 -27.15 —20.74 -26.26 -24.92 -18.51 -17.40 -21.9

P 1.0 1.0 1.0 0.79 1.0 1.0 0.76 0.81
0p1 € -24.70 -24.36 -22.43 -16.71 -22.49 -21.36 -15.99 -14.14 -15.7

p 1.0 1.0 1.0 0.82 1.0 1.0 0.77 0.83
BE/A (MeV) 6.59 6.56 7.26 9.14 5.71 5.36 8.32 7.98 7.98
(BE/A), MeV) 6.59 6.56 7.26 6.96 5.71 5.36 6.99 5.16
r H YV (fm) 2.37 2.39 2.44 2.55 2.41 2.48 2.55 2.69 2.7+0,1

TABLE II. Single particle energies € in MeV, occupation probabilities P (14), binding energy per particle (BE/A) and
rms charge radius (r,% 2 for 80 resulting from various self-consistent calculations with the Reid (Ref.18) soft core
potential. The details are described in Table I. The intermediate particle shifts are C=42 MeV and C =38 MeV (shift
to the self-consistent position of the 1s,,, level).

s.c. Spectrum C =42 MeV C=38 MeV
RBHF RBHF
180 BHF RBHF +s.c.Q DBHF BHF RBHF  +s.c.Q DBHF Expt.

T0Sy /5 € -50.76 -38.93 -37.93 -32.94 -48.96  -36.77  —=35.91 -31.74 —40 8
P 1.00 0.82 0.83 0.86 1.00 0.80 0.81 0.85

03, € -25.72 -18.17 -17.87 -16.44 -24.05 -16.60 -16.36 -15.31 -18.4
P 1.00 0.79 0.80 0.81 1.00 0.80 0.80 0.82

0P 19 € -21.00 -14.93 -14.62 -12.60 -19.51  -13.69 -13.45 -11.75 -12.1
P 1.00 0.80 0.80 0.81 1.00 0.80 0.81 0.83

V0S|, € -54.22 —41.75 -40.72 —35.46 -52.39  —39.49  -38.62 -34.31
P 1.00 0.81 0.82 0.86 1.00 0.79 0.80 0.84

V0p3 € -28.77 -20.56 -20.24 -18.62 -27.06 -18.91  -18.66 -17.51 -21.9
P 1.00 0.79 0.80 0.81 1.00 0.80 0.80 0.82

v0p 1/ € -24.31 -17.56 -17.25 -15.06 -22.78 -16.25 -16.02 -14.24 -15.7
P 1.00 0.80 0.80 0.81 1.00 0.80 0.81 0.83

BE/A (MeV) 6.36 8.40 8.11 8.34 5.77 7.63 7.40 7.56 7.98

(BE/A), (MeV) 6.36 7.32 7.08 5.71 5.77 6.60 6.41 5.23

. H? (fm) 2.33 2.44 2.48 2.57 2.358 2.487 2.52 2.60 2.7+0.1
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used afterwards for these two terms the starting
energies of the RBHF approach. In addition, we
kept in these two small terms the excited particle
spectrum constant at the sd shell in order to re-
duce the computational work. These are not seri-
ous approximations, since there are two small cor-
rection terms and any reasonable approximation
should be a good one. This is not apparent at first
since the denominator in the Pauli rearrangement
term may even change sign. We went back to check
this numerically by introducing an imaginary term
in the denominator of the Pauli rearrangement
term to avoid any singularities, taking finally the
real part of the calculation. In the extreme case
where the denominator was made minimum we
found the effect on the single particle energies
(where the effect is largest) to be less than 5%
compared with the more exact calculation. This
justifies our approximations used in these two
terms.

The effect of the different terms in the HF Ham-
iltonian (11), which are depicted in Fig. 1, can be
seen from the results displayed in Tables I and II

T S
N - BHF
b o0 --BHF+sc.Q
g \\\ — DBHF
\
N [Yale]
W
\
[}
£ \\
< o005 \ .
A\
| N
| N
| N
L 1 ! _ “YSs
1 2 3 4 5

r (fm)

FIG. 2. Charge distribution for %0 with the Yale
(Ref. 17) potential. The particle spectrum is shifted by
C =41.5 MeV, so that the lowest unoccupied s state
(Lsy/,) agrees with the self-consistent result of the
BHF calculation. The dotted lines are for BHF, the
dashed-dotted lines for BHF plus s.c. @, and the solid
lines for density dependent Brueckner-Hartree-Fock
(DBHF), which includes all terms of the Hamiltonian,
Eq. (11). The distribution takes into account the finite
size of the proton and the ¢c.m. correction (Ref. 8).

and in Figs. II to VI.

It is well known®!® that the RBHF approach re-
duces the absolute value of the single particle en-
ergies drastically. Tables I and II show reductions
between 12 and 8 MeV for 0s,,, single particle en-
ergies. The binding energy per particle is in-
creased by about 2 MeV. The overcounting correc-
tion®'® reduces this to half of the value.

Next we show the effect of the two new terms
included in our calculation. First we look at the
effect of using the self-consistent Pauli operator
rather than the oscillator Pauli operator. Its ef-
fect is small as expected. The single particle en-
ergy becomes more repulsive; the reduction in the
extreme case is up to 1 MeV or 4 MeV depending
on the order in which the terms are included. The
binding energy per A (BE/A) is reduced up to a
maximum of 0.35 MeV. However, it does reduce
the density at the center of the nucleus and this
increases the rms radius.

The Pauli rearrangement term is more impor-
tant. It reduces the single particle energy in the
Os state up to 5 MeV. It does reduce the density
of the nucleus at the center up to 25%, and this in-

BHF
RBHF
DBHF

[Reid]

(fm-3)

Pech

r(fm)

FIG. 3. Charge distribution for '%0 using the Reid
soft core (Ref. 18) potential in the Brueckner-Hartree-
Fock (BHF, dotted line), the renormalized BHF [RBHF
= first, second, and fourth term of Eq. (11), dashed-
dotted line] and the density dependent BHF (DBHF,
solid line) approaches. The shift of the particle spec-
trum is C=42 MeV. The distribution is corrected for
the finite size of the proton and the center of mass
motion (Ref. 8).
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creases the rms radius while keeping the BE/A
practically the same (BE/A changes at most by
0.45 MeV). Hence this term does help the satura-
tion of the nucleus more significantly. Both terms
taken together do help quite a bit to saturate the
nucleus at the correct density, namely, the BE/A
changes only by 0.06 MeV while the radius in-
creases from 2.44 to 2.57 fm for the Reid soft core
potential (see Table II). Hence it is obvious that
these two terms, although unimportant for the
BE/A, are quite important for the s.p. energies
and rms radius and also for the density distribu-
tion of the nucleus.

In order to test our density distribution we cal-
culated the electron scattering cross section.'®

10'15 T T T T
3. Electron Scattering on'%0
- ‘{_\
LK SN E=3745 MeV
"Q\ X Experiment
\ --- BHF
0k N —— BHF +s5.c.0.
10-¢|
10'5[—
- =
£ N
%‘ 10-5E E= 750 MeV ]
~ F 3
] E 3
r ]
} ]
1075 7
107+ g
1078 .
1079 1
30 70

0 (deq)

FIG. 4. Elastic electron scattering from the charge
distribution calculated with the Yale potential shown
in Fig. 2 for !0 at 374.5 MeV (top part of figure) and
at 750 MeV (bottom part). The different approaches
are described in Fig. 2. The crosses represent the
experimental data (Ref. 18).

FAESSLER, AND H. MUTHER 10

The results are shown in Figs. 4 and 5, for the
density distributions plotted in Figs. 2 and 3. The
agreement with the electron scattering data at
379.5 MeV with the effect of the two additional
terms (s.c. Pauli operator and Pauli rearrange-
ment terms) is rather good. The agreement at
750 MeV is also improved. However, our basis
should be enlarged to expect any better agreement
with the electron scattering data at this energy.
We have listed the experimental numbers for the
s.p. energy, BE, and rms radius in Tables I and
II. One should be careful in comparing the single
particle energies of the theoretical calculation with

107! . . . -

Eg = 374.5 MeV

i Experiment

102F N\ — -~ BHF
) —— DBHF
[Reid]
1073 1
1074 .
1075k 4

do/dQ) (mb/sr)
S

S
N

107
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FIG. 5. Elastic electron scattering cross section
at 374.5 and 750 MeV for the charge distribution of
160 calculated with the Reid soft core potential (Ref. 18)
shown in Fig. 3. The two curves are for the BHF
(dotted line) and for the DBHF [all terms of Eq. (11),
solid linel . The shift of the intermediate particle
spectrum is C =42 MeV.
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FIG. 6. Binding energies per particle versus rms
radius with varying shifts for Yale (Ref. 17) and Reid
(Ref. 18) soft core potentials. The point with the
error bar indicates the experimental value.

those of the experimental ones. While it is true
that the introduction of the rearrangement terms
introduced here does bring physically the s.p. en-
ergies calculated here closer to the experimental
ones,'® there is still not a one-to-one correspon-
ence since the final hole state in a pickup reaction
is mixed with 1p2h and 2p3h states.?®?' Comparing
the single particle energies for the Os and 0p state
in Ref. 10, Table I (second to last row correspond-
ing to the BHF +s.c. @ +P.r. approach) with the re-
sults of DBHF in Table I of this work (C =46.5
MeV) one finds the following changes: The inclu-
sion of the starting energy rearrangement and the
self-consistent starting energy W lowers the abso-
lute value for the Os single particle energy and in-
creases these numbers for the 0p states. This can
be explained with the starting energy dependence

of G matrix elements. While the self-consistent
absolute values of W for the 0s nucleons are larger
than the averaged values in Ref. 10, this leads to

a reduction of the matrix elements and therefore
also of the single particle energies. The opposite
is true for the Op states.

The elastic electron scattering cross sections do
not agree so well as for phenomenological density
dependent forces.? This may be caused by one of
the three facts:

(i) Negele® fits two free parameters to nuclear
matter data while this is a parameter free calcu-
lation. The electron scattering data are mainly
determined by the half-density radius and the slope

of the density distribution at this point. Negele fits
the half-density radius, then the slope comes out
alright in his case. One naturally expects the part-
ly fitted results to be better.

(ii) The derivation of the phenomenological densi-
ty dependent forces in nuclear matter uses approx-
imations which may change partly the character
of the force.

(iii) In Ref. 8 the HF calculations are performed
in7 and not in a finite configuration space. This
may improve their results for high momentum
transfer compared to the cross sections given
here.

Figure 6 shows the binding energies per particle
plotted versus the rms radius for the Yale'” and
the Reid soft core!® potential for different inter-
mediate particle shifts C. The Yale force seems
to be doing better than the Reid soft core potential
in the sense that it passes closer to the experi-
mental point. The numerical calculations yield
1.7 MeV additional binding per particle per AC =10
MeV shift for the Yale potential and 1.2 MeV per
AC =10 MeV shift for the Reid soft core potential.

IV. CONCLUSIONS

The BHF calculations presented here for the
Yale and the Reid soft core potential take into ac-
count the Pauli operator in the self-consistent
basis. In addition a related rearrangement term
is also included. Both these terms are found to
give improved saturation properties for both po-
tentials employed. The treatment of the Pauli op-
erator in the self-consistent basis, as we have
shown, does include the density dependent effects
automatically. The results of our calculations
show all the features known from the phenomeno-
logical density dependent forces. It reduces the
separation energies, increases the rms radius and
the binding energy. The charge distribution is
lowered in the center of the nucleus and is greatly
improved as shown by the electron scattering data.
It therefore seems that for the density dependent
forces the detour over nuclear matter can be
avoided.
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