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A general boson expansion theory for even and odd fermion states has been developed in
both Dyson and unitary representations. %'e can construct them in several different forms,
one of which essentially reproduces the formula of Marshalek. The underlying algebra may
or may not obey the associative law. A connection of the theory with the Lie algebras B„
and D„has been investigated. As a byproduct, construction of fermion annihilation and
creation operators solely in terms of boson operators has been found.

l. MARUMORI SPACE AND LIE ALGEBRAS B„and D„

The boson expansion method' ' is useful in pro-
viding a simple way to introduce collective vari-
ables in the nuclear (and other) many body problem.
The general idea, is to injectively map the many
fermion Hilbert space into so-called ideal space
which for even numbers of particles is a purely
boson space with one boson representing each
kind of pair excitation. However, the situation
for odd number particle case is more compli-
cated. 4' ' '

The purpose of this article is first to generalize
the method of Ref. 4 and of Marshalek in a rig-
orous way. Secondly, it will be shown that the
boson expansion method is intimately related to the
Lie algebras B„and D„. As a byproduct, we will
give an example that fermion creation and annihila-
tion operators can be expressed in terms of only
boson operators in contrast to somewhat popularly
held belief.

I et C„and its self-adjoint C„=—C„(p=1, 2, . . . , n)

be the standard annihilation and creation operators
satisfying the commutation relation:

CqCv+C vCq=V~C v+CvCq=0,

CqCv+CvCp—-&„v .

Then, the fermion space is the 2"-dimensional
Hilbert space spanned by completely antisymmetric
states

, p, ) =C„C„' ' 'C„ I 0), (1.2)

with q=0, 1, 2, . . . , n, where I 0)~ is the fermion
vacuum state, satisfying

space into an ideal Hilbert space which in general
contains an infinite-dimensional boson Fock space
as its subspace. We set

Pmi ~ ~ ~ i I,) =&I Pg, 0„~ ~ ~, P, )p . (1.4)

The most interesting and important case is of
course when V is isometric. This case will be
discussed in Sec. 3. However, for discussions of
Secs. 1 and 2, we need noI require V to be iso-
metric as is ordinarily assumed. As a matter of
fact, its construction in the next section corre-
sponds to a nonisometric V. We call the image of
V be the (physical) Marumori space. If P is the
projection operator in the ideal space onto the
physical Marumori space, then V has its inverse
U in that subspace, since V is assumed to be in-
jective and hence one to one. Moreover, we have

UV =I, PV =V, VU =P, (1.5)

A~v = —VCpCvUy R""= -R =VC~CvU

Rp v= -Rv„= —VC pCvU

A" =VC„U, Ap=VCqU,

then these operators satisfy the condition

where I is the identity operator in the original
fermion space. If V is isometric, then we have
an additional relation

(1.5' )

Defining now linear operators A "v, R"",R„„,A",
and A„ in the ideal space by

C„I0),=0. PQ =QP =Q, (1.7)

Let V be a linear injective map of the fermion where Q represents any of these operators. From
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(1.6), we find

(A"„+A"A,)P =0,
(Ru AvA")P =0,

(R„„+AqA„)P=0,
(A "A „+A+

(1.8)

n operators

(p=1, 2, . . . , n} (1.12)

form the Cartan subalgebra of D„, whose maximal
eigenvalues define irreducible representations of
D„. If we define J„satisfying antisymmetric
condition

Although the presence of the projection operator
P in (1.8) is actually not necessary because of
(1.'?), we placed it here by the following reason.
All these operators are defined only in the finite-
dimensional Marumori space. However, it is in
practice more convenient to enlarge their domains
of definition into a dense subset of the infinite-
dimensional ideal space. Of course, this exten-
sion is in general not unique, but we shall use
the same notations for these extended operators.
Then, as we shall see in the next section, we can
find a set of extended operators which satisfy
commutation relations

J,b
= —Jb,

for a, b=1, 2, . . . , 2n by equations

for values of g, v =1, 2, . . . , n, then (1.9) is com-
bined into a single relation

[A"„As]=6(A"„-6„A(,
[A" R 8] =-6„R+ —6 R ",
[A~» Res]=6~&8+ 5 "SR~~,

[R R ]=6 A +6 A" —6"A

f8~a gag8 got g8
V p V I' P

[R"", R" ]=[Rq„,R~~]=0,
as well as

(1.9)

(1.15)

for all a, b, c, d =1, 2, . . . , 2n so that J„ is indeed
familiar infinitesimal generator of the 2n-dimen-
sional orthogonal group O(2n).

The larger Lie algebra generated by K"„R"",
R„„A~, and A. „represents similarly the Lie
algebra B„ in the physical Marumori space, which
corresponds to the 2n+1 dimensional orthogonal
group O(2n+ I). Indeed, with identification

[A"„Ag] =5/A„,
[A"„,A "]= —6„A",

2n+1 2Z( p+A )

&„,„,„„=-,'(A,„-A"),
(1.16)

[R"",A)]=6~A" -6.~A",

[Rq„,A ]=6qA„-6,A„,
[»",A "]=[R„.,A.]=o,

(1.10}

in a dense subset of the ideal space. However, the
condition (1.8) will be preserved only if the pro-
jection operator P is now present there, i.e., it
holds only in the Marumori space. In general,
the range of these extended operators are also
dense in the ideal space. Instead of (1.'?), we
have a, weaker relation

we find the validity of (1.15) for all a, 5, c, d in-
cluding the new value 2n+1 in the Marumori space.
Note that H„=K "„(p,=1, 2, . . . , n) are still the
Cartan subalgebra of B„.

The Casimir operator C of the Lie algebra D„
is given by

n

C =
2 Q (2K"„K„'+R""R„„+R„,R"")

ff

J,bJb, .
QP =PQP (1 '?') a, b=l

so that (1.9) and (1.10) will be still valid in the
finite-dimensional Marumori space. These rela-
tions are actually simple reflections of (1.1) and
(1.6).

Our algebra will become a Lie algebra if we use

gP + —'Q]I

C=-,'n(n--,') . (1.18)

Similarly, the Casimir operator D of the larger
algebra 8„ is

Then, by means of (1.1) and (1.6), we can easily
compute eigenvalue of C as

instead of A"„. In fact, (1.9) represents then the
Lie algebra D„of the Cartan classification. The

fl

D =C+
2 Q (A„A" +A"A„)

p=1
(1.19)
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whose eigenvalue is

D =-,'n(n+-,'} . (1.20)

2. DYSON REPRESENTATION FORMULA

Following the standard procedure, ' ' we intro-
duce boson annihilation and creation operators
satisfying

[8 Bn 8] bn58 bnbs

[8~„,8„8]=[8"",8" ] =0, (2.1)

In other words, the physical Marumori space
corresponds to a representation of Lie algebras
B„and D„with conditions (1.18) and (1.20). As
we shall show in the next section, it is actually
the irreducible spinor representation of B„, which
reduces to a direct sum of two inequivalent ir-
reducible representations of the subalgebra D„
with the same dimensionality 2" ' and with the
same eigenvalue (1.18) for the Casimir operator
C.

Finally, a subalgebra generated by A", will form
a Lie algebra of the n-dimensional unitary group
U(n), since its diagonal components A„" (p=1, 2,
. . . , n) will assume only integral eigenvalues for
its construction in the next section. If we subtract
its trace from either A", or K"„ then they of course
form the Lie algebra A&„» of the Cartan classifi-
cation corresponding to the SU(n) group. These
facts will play an important role in the Sec. 3 and
in the Appendix.

consider a direct product algebra and define

A. "„=B"„—a„a, ,
8""=8""+8""Bq —8" a,ay+8" a„aq, (2.5)

R„v —-B„v .

Then, it is easy to check that these operators
satisfy the commutation relation (1.9) corre-
sponding to the Lie algebra D„as well as the anti-
symmetric condition:

R""= -Rv"
(2.6)

R„„=-Rv„.
These operators are defined in a dense subset of
the boson Fock space. Also if we restrict our-
selves to the Marumori space, then (2.5) agrees
with those given in the Ref. 4. Note that our real-
ization does not satisfy the Hermiticity condition

(B„,}t=&"" (2.7)
although it satisfies the U(n) condition

(A") A" (2.6}

Hence, this representation is an analog of the
formula discovered by Dyson' for the SU(2) group.
Following Jansen et al, ' we therefore call it the
Dyson realization. However, as we shall prove in
the next section, we can always find a transforma-
tion S in the Marumori space, which restores the
Hermiticity condition (2.'7}.

Before going into further detail, the Casimir
operator C of D„ is easily computed from (1.17)
and (2.5) to be

gPV — +V/ C = (a„a,)(a,a„)—n(a„a„)+2n(n ——,') . (2.9)

where for simplicity we have set
8"'=(8 )' (2.2)

[a„a„,a~a8] =5"„a„a8—5( a a, . (2.3)

Next, let us set

B"—-B" BVg (2 4)

where the repeated index A. implies an automatical
summation over X from 1 to n hereafter. Let us

If we identify the resulting infinite-dimensional
boson Fock space with the ideal space, then it is
well known" that we can construct the physical
Marumori space for even-number fermion states.
However, if we wish to consider odd-number
fermion states, this is not enough and it is nec-
essary to enlarge the ideal space by introducing
additional operators a„and its conjugate a„
=—(a„)t which commute with B„„and 8"' But.
we shall not yet specify commutation relations
among a„and a„except for

Note that C does not depend upon B„,and 8"".
Next, in order to find correct expressions for

operators A" and A„, let us make an ansatz'

A[' =b„+b„a/+a~"b „,
Ap =b~+Bpxb

where b„and b& are some unspecified operators
which are functions of only a„and a„but not of
B„„and B~'. The commutation relations (1.10)
turn out to be identically satisfied if we have

(2.10)

b)(a„a,) =(a„a„}by=0,

(a„a„)b),=b„~b„,

b), (a„a„)=5~„b„.
(2.11)

Actually, we can relax this condition into the
following weaker form for the purpose of satisfying
(1.10);

[a„a„,b~] =b„~b„,

[a„a„,b~] = —by„b„,
b„(a,aq} — (ba„ag) =b„yb~(a„a~) — qbbz(a„a~) .
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However, for the present aim the condition (2.11)
is sufficient. Now, we have to specify commuta-
tion relation between a„and a„as well as specific
forms of b„and b„so that all conditions (2.3}and

(2.11) are fulfilled. There are several possibilities
and we shall especially mention three interesting
cases here.

given by

eg= Q —,(-I)'(a),)'(a~)' .
lt

If we note an easily derivable relation

(2.20)

Case I

bubv ~u

b„e =eb„=O,

ee =e,

ebu =bu bue =b
(2.12}

This algebra is due essentially to Marshalek. '
From (2.12), we find

bubv =bubv =0

as well as (2.11), i.e. ,

(2.13)

b ),(b„b,) = (b„b,)b ~ = 0,
(b„b.)b)=5.~ b.„,
bi(b„b. ) =bi, b. .

(2.14)

If we wish, we can identify e as

We choose b„=a~ and 5„=a„and assume the
following algebraic relations

a„e =ea„=0,
it is simple to prove that b„and b„defined by
(2.19) and (2.20) satisfy all conditions (2.12)-(2.14}
as well as (2.3}and (2.11}. Hence, we may regard
the present case as a realization of Marshalek
algebra discussed in the case I. Although the ideal
space is now spanned by the usual Fock space
defined by (2.18) of either boson or fermion
particles, the physical Marumori space utilizes
only two distinct states given by (2.16) and (2.1'7)

as we shall see shortly. We emphasize the fact
that the lower sign case in (2.18) corresponds to
the use of boson operators for a„and a„so that
our whole ideal space is purely bosonic.

So far, we have to utilize the vacuum projection
operator e in our construction of Au and Au. How-
ever, we can dispense with its use, if we give up
the associative law of the algebra.

e=1 —b), bg. (2.15) Case III

The ideal Fock space for this algebra consists
of the vacuum state ) 0) satisfying

(2.18)

We identify b„=a„and 5u =au, but we assume

Quav =Quav =0
y

and one particle state defined by

[~) =b~)O} (2.1t)

Quav +avau ~uv

as well as an additional conditions

(2.21)

Case II

Let a„and a„be ordinary Fermi or Bose op-
erators satisfying

Quav +Qvau QuQv +Qvau 0

Quav +Qvau =~uv
(2.18)

We then identify b„and b„ to be

b„=ea„,
b„=a„e,

(2.19)

where e is now the projection operator for the
vacuum state of either fermion or boson space

With the identification (2.15}, the operator e is
nothing but the projection operator for the vacuum
state

~
0) . Hereafter, we shall call b~ and b„ the

quasiparticle operators.

(a„a,)(a~as) =&~(a&aq)

supplemented by (2.14) with replacing b„-a„and
5„-a~. Actually the choice (2.21) for the upper
sign case is originally also due to Marshalek. '
However, as we noted elsewhere, ' any algebra
satisfying (2.21) (with n~2 for the upper sign case)
cannot obey the associative law x(ye }= (xy)s.
Therefore, our algebra is not associative. But
the subalgebra generated by a„a„ is associative.
As the result, algebra among 8», Ru", and Au„

still obeys the associate law, although we have
A „(A+ q) 4 (A„A „)Aq in general. Actually, there
is an intimate connection between this nonas-
sociative algebra and the Marshalek algebra,
which we do not elaborate here upon. ~

Since the nonassociative algebra is rather un-
familiar, we shall mostly deal with the associative
cases (I) and (II), unless it is stated otherwise.
Our real ideal space is the direct product space
of two Fock Hilbert spaces, where the ideal
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vacuum state i 0) satisfies

b„i O& =n, i O& =B„„iO& =O. (2.23)

(2.25}

%'e can easily prove that all these states are com-
pletely antisymmetric for interchanges of any two
indices involved. Actually, it is sufficient to
verify this fact for the special cases l =2 in (2.24)
and l =1 in (2.25) because we have [R"",R 8]
=[R"",A ]=0 and R""=-R"". Therefore, the
subspace spanned by all states of the form (2.24)
and (2.25} is a finite-dimensional space with the
dimension 2", which we identify with the physical
Marumori space. For even-number states, all
terms involving a„a„ in R"" do not contribute at
all because of (2.23). Also, the odd-number states
(2.25) contains exactly only one quasiparticle state.
This formula coincides with the result of the
Ref. 4. By the induction, we can show that we can
combine both (2.24) and (2.25) into a single equa-
tion

A"'i O&

Now, we shall construct the physical Marumori
space as follows. For even-number particle states,
we set

[ p, v„g,v„. . . , p, , v, &=R"& "&R"2"~~ R"&" ii0&,

(2.24)

while the odd-number states are defined by

In other words, the Marumori space is invariant
under operations of these operators. This is
obvious for Q =A" in view of (2.26). The same
argument is also applicable for Q =R"" because of
(2.24) and (2.25) if we notice [R"",A "]=0. With
respect to Q =A~„we utilize the commutation
relation (1.9) together with Ago& =0 in order to
prove the invariance of the Marumori space.
Finally, the remaining two cases Q =R», and A q

can be demonstrated in a similar manner. Equa-
tion (2.28) implies that the commutation relations
(1.9) and (1.10) are still valid for their restric-
tion in the Marumori space. At this point, we
should emphasize that we may not have QP =PQ
in general. As a matter of fact, this extra rela-
tion holds certainly for Q =A"„A, and R"", but
not for two remaining cases Q =R» and Aq. This
is because (2.28) leads to

PQ =PQ P (2.29}

if we use P~ =P. Choosing Q =R»=B„„,this gives

paj" =pa»p~ aj"p . (2.30)

The last inequality in (2.30) must be valid since
B""PR

i
0&=B""B

i 0&, is not completely anti-
symmetric and it cannot belong to the Marumori
space. Especially, this fact implies PR»AR»P
if we recall R„„=B„,. The validity of QP =PQ for
Q =A"„,A, and R"' follows from (2.29) and (2.28}.

Returning to the original discussion, we have
finally to check the validity of (1.8}. This requires
some elaboration. For example we compute

(q =2l, or 2l+1) (2.26)
Ap Av = @pve++u gb ~b

we notice A&A'[0& =R"'i 0& . Actually (2.26) is
also valid' for the nonassociative case III, if we in-
terpret the product of the right side to imply
operating A successively from the right to the
left.

Now, the linear injection map V of the previous
section is simply defined by the one-to-one cor-
respondence

(B„.p b), b„+B„,by by)P. =0,
(Bx b g b „+B"„b), b ),)P = 0,
P(B""b,bi+B""b~b~) =o .

(2.31)

which is not equal to R„„(=B„,). However, as we
shall show in the Appendix, we have fortunately
many identities such as

(2.2'l)

QP =PQP. (2.28)

Since the states defined by (2.26) are not properly
normalized (though they are orthogonal to each
other), this injection map V is not isometric. This
is essentially the reason behind the invalidity of
the Hermiticity condition (2.7), which we shall
remedy in the next section.

Let P be the projection operator onto the physical
Marumori space, and let Q represent any of A~, b„,
R"",R», A", and A„. Then, we can show

Then, we can easily derive now

AqA„P =-Rq+ .

Similarly, we can show

as well as

A"A„P =-A"„P,

A„A "P = (6"„+A"„)P.

These reproduce (1.8). Note that the presence
of the projection operator P is essential for their
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validity. From these, we find also

(A„A„+A,A„)P =0,
(AvA +A Au)P 0

(AvA~+A~Au)P &aP (2.32)

ff„~ g) = l„~ P) (p =1, 2, . . . , n) (2.33)

such that l, & l, ~ ~ ~ l„. For the present case,
the highest weight state in the even number sector
is precisely the vacuum state

~
0) with I„=-,' for

all g =1, 2, . . . , n. However, it is the one-particle
state (n) =a„~ 0) for the odd-number sector where
we have l„=-,' for n —1+ g +1 but l„=—~. It is
interesting to observe that both even and odd
sectors have exactly the same dimensionality
2" ' with the same eigenvalue for the Casimir
operator C, although they belong to two different
inequivalent irreducible representations of D„.
Obviously, both sectors are combined to give a
single irreducible representations of the larger
Lie algebra B„with the dimensionality 2", cor-
responding to one of the fundamental spinor
representation of the O(2n+I) group. The vacuum

This implies that the restriction of operators
A" and A„ in the Marumori space behave as
ordinary fermion creation and annihilation op-
erators. For the boson case of (II) corresponding
to the lower sign in (2.18), this means that 2n

fermion operators A" and A„can be constructed
from n(n+I) boson operators B„„B"",a„, and

a„. Although this construction of fermions from
pure bosons may appear rather surprising, a
different example of this kind has been pre-
viously given by Kalnay, MacCortonina, and
Kademova' in a different context.

We briefly remark that (1.8) and (2.32) are also
valid for the nonassociative case III, if we in-
terpret the product such as A„A+ to imply

A„(A„P) The th. ird equation of (1.&) if for ex-
ample to be read as

Aq(A „P)= -Rq+
which differs in general from (A„A„)P.

%'e can calculate eigenvalue of the Casimir
operator C of the Lie algebra D„ from (2.9) to be
(1.18}. The Marumori space is invariant under
actions of R"",R», K"„,A", and A„so that it
defines a representation of the Lie algebras B„
and D„~ Let us first consider the algebra D„.
Two sectors corresponding to even- and odd-
number particle states are then separately in-
variant under actions of R"",R„„,and K"„. It is
easy to check that they form two inequivalent
irreducible representations of D„. As is well
known, any irreducible representation of D„ is
specified by the highest weight state ~P) satisfying

state
~
0) is now the sole highest weight state of

B„.
Since the Marumori space is invariant under

operations of R"", R„„,and K"„, these operators
are well defined also in the quotient of the ideal
space over the Marumori space, where they define
an infinite dimensional representation of the
algebra D„. An interesting question is whether
any finite dimensional representation of D„could
exist in this quotient space. If the answer is
positive, then we may have another realization
of the boson expansion method in the quotient
space. However, this problem is left for future
investigation, although we can easily prove the
answer to be negative for special cases n =2,
and 3.

Last, we briefly mention that the Marumori
states can be rewritten in a form'

(2.34)

T 1 +

where b„and B» are assumed to commute with
C„and C, Then, the completely anti-symmetric
character of this state is transparent.

3. UNITARY REALIZATION

As we noted in the previous section, our formula
does not satisfy the Hermiticity condition (2.7).
This implies that the corresponding representation
of the O(2n) group is not unitary. However, we

can always find a similarity transformation S to
remedy this situation, since any finite dimen-
sional representation of the groups O(2s} and
O(2n+ I) is known to be equivalent to an unitary
representation. In this section, we shall find its
explicit realization. The non-Hermiticity is also
related to the nonisometric character of the in-
jection map (2.27), which in turn is the result of
the use of nonnormalized state vectors. Hence,
the only thing we must do is to properly normalize
our state vectors (2.26). We shall achieve this
end as follows. First, it is convenient to set

M = -B),=B""B», (3.1)

which is equal to 2 times the number operator for
the boson field B„„.The real tota1. particle number
N is related to M by

In the Marumori space, M can assume any even
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C „=E(M)B„„e+B„„E(M}(1—e),
Cu" Bu"G(M)e+ G(M)Bu (1 e)

du = E(M)bu,

d„=G(M)b„,

where G(M) is the inverse of E(M), i.e. ,

(3.3}

integral eigenvalues from 0 to n, while it can
choose any nonnegative even integral values in the
whole ideal space. Note that N assumes eigen-
values 2l for (2.24) and (M+ I) for (2.25), while
the eigenvalue of M remains to be 2l for both
states.

Now, let E(M) be an arbitrary function of M
and define

q =odd)1 . (3.11)

It is not difficult4 to prove that the new states
X,& are now properly ortho-normalized.

Therefore, if we set

If me set

I ~„R„.. . , 7,& =sI x„q, . . . , x,&, (s.lo)

then its effect is simply to normalize the state
vectors. In fact, we find

I o) =I 0&

I
X.„.. . , R, & =[(q-I)!!]-"I!„q.. .~,&,

q =even&2

~,& =(q!!)-"Ig, . . . , !,&,

G(M)E(M)=1 .

%hen we notice

(3 4)
V =SV,

I x„.. . , X,& =vI ~,. . .~,&, =2'i ~ ~ g "I 0&

Bu„E(M) = E(M + 2)Bu„,
B""F(M)=F(M- 2)B"",

B"„E(M)= E(M)B"„,

(s.5)

C„„=SB
Cyv SBPvS-

dq=SbqS ',
d„=SbpS '.

(3.6)

Because of the reason which will become soon
apparent, we are actually interested in the special
case of

E(M) =(1+M)" .

Then, the explicit form of S is found to be

S =[I(-'M)] "[e+(I+M) '"(I -e)],
f( ) =2'I ( .!)/I (-.'),

(3.7)

(3.8)

where I'(x) stands for the gamma function. We
may easily check

M =PS=a%, (3.9)

so that the transformation S does not change the
antisymmetric character of the Marumori states.

then it is not difficult to check that the transforma-
tion

a~"- c~", a„„-c„„,
b„-d„, b„-d„

preserves all the algebraic relations specified in
the previous section, excepting possibly the
Hermiticity properties. This also holds for the
nonassociative case III. At any rate, this fact
suggests that we will have a transformation S
such that

B""b„by+-B""hubg],
A„= (1 +M}'i'bu +Busby,
Au=(b„+bgB$)(I+M) 'i'+Bu bg,

where operators Q are defined by

q=sys-' .

(3.13)

(3.14)

Now, as we shall prove in the Appendix, we have
identities

(Bu Bg„—MBu„)P =0,
P(B" B~ Bu"M) =0,-
(Bubg —Mbu)P =0 . (3.15)

Then, using (2.31), (3.15), and (3.5), we find

PR"' P[B""(1+M}' 'e+ (I +M)'iuBu" (I —e)]
PA" =P[bu(1+M)' +B" bg]. (3.16)

Hence, comparing this with (3.13), we see that
the Her miticity conditions

(RuuP)t =PR""=R""P,
)'p= pAAuup (s.le)

(3.12)
then the new injection map V is isometric.

Hereafter, we shall consider the cases (I) and
(III) of the Sec. 2. For the case II, we have to
replace a„a„ in 8"" and A"„by b„b„, which is
justifiable in the Marumori space. Under this
understanding, w'e find

R„„=(I +M)'i'Bu„e+Bu„(1+M)'i'(I —e),
Ru" —Bu (B& u5+~&)(I +M) &iue+ (I +M)-&i2

x[»"(B",+ 6D(I
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(3.18)

Formally, we can rewrite the solution as

are now satisfied in the Marumori space. How-

ever, our formulas are still different in form
given by Marshalek'' who introduces the square
root operator D"„satisfying

D, D p, =&"„+B"„.

H = —g e„A "„— g g"„3 R" R„, .
a, 8, p, v

Using (3.13) and (3.16), we can rewrite it as

(s.25)

Then, the corresponding Marumori Hamiltonian
will be written as

D"„=[(1+B)'']" (3.19) PHP =PH'P I

Marshalek then expands the square root operator
into a formal power series expansion in order to
obtain his result. However, such an expansion
diverges as is shown in the Appendix. We could
of course use

H'=Q t (QB Bb ~ b b)

g„""8B B&,(bj' —e) .
a, &, p, v

(3.26}

D"„(Z)=[(1+ZB)'i3]"= Q e„(B")"„Z", (3.20}
n=0

where the operator (B")", is defined in the Appendix

and c„ is the numerical expansion coefficient.
The expansion (3.20) converges in the Marumori
space when the complex number Z is sufficiently
small. Then, (3.19) can be obtained as an analytic
continuation in Z for Z - 1 of D"„(Z) Howev. er,
by this procedure, the Hermiticity condition

The same equation can be derived for the Dyson
representation formula (2.5}, if we notice identities
(3.15) and (2.31). Since the particle number H is
a constant of motion, (3.26) is essentially bilinear
in the boson variable B„v and B"". We remark that
this surprising simplification is due to the presence
of the projection operator P in the left side of
H'. Indeed, let us consider an eigenvalue problem

(D")' =D„" (3.21)

Du~P (1+M)- I3(6&3+Be)P

PD& =P(5~+a~)(1+M)-" (3.22)

as we shall prove in the Appendix. Note that the
impossibility of the expansion (3.20) for Z =1 is
related to the same difficulty for the expansion
of (1+M) 'i3 when we have M~1. At any rate,
if we note (2.31), (2.15), and (3.22) together with

Bpv P =PBpv P, PB""=PB""P

is not obvious and must be checked. Fortunately,
the situation is greatly simplified in the Marumori
space. Indeed we can prove

O' = Q E(p, , . . . , p, , )C„~ ~ C „ I 0) ~, (3.27)

where E(g, y. , ) is completely antisymmetric.
Then we have an eigenvalue equation

( „e+„e~+~ ~ + e„—B)E(y„p,„.. . , g. , )

( 2}t QQ ( } gP 3/3 E( t Pt P3lt4t ' '' ' t l44 )'
n, 8, e

(3.28)

Here the summation is over all q t permutation 6I

among p. ,p, ~ g, . On the other hand, the cor-
responding Marumori equation

then we can finally rewrite (3.13) as

R~„P = (Dq Bg„—[Ds, Bq „]b3 bt3)P t

PR~" =P(a~"D~&+[D" B~"]b b )

A„P =(D„b) +B„).b~)P,

PA u P ( b ) D v& +Bu b ~) (3.23)

PH'O' =E%',

@'=g E(v„, u, )l v, (3.29)

leads to the exactly same equation (3.28), when we

notice

Pattbt b ~ ~ Bv»
I 0)

If we forget the presence of the projection operator
P, then this expression is equivalent to the unitary
form' ' of Marshalek, which is an analog of the
Holstein-Primakoff unitary realization" of the
SU(2) group. However, the realization (3.16)
can be simpler for some cases. For example,
let us consider the fermion Hamiltonian

H= Q e~ Cq Cq+ Q g~e C~CSCqC„.
p a, 8, p, v

(3.24)

=[(2i —1)tt] "lu,p„, v, p, ),
Pa» "b ~ ~ B "3 "3 b„l 0}

=[(2&+1)"] I ~t PPbt ~ t Nb ~bl .

(s.so)

However, we have PH'bb H'P because of (2.30}.
This proves the desired equivalence between H
and PH', but not between II and H'.
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APPENDIX

First, we remark that A. ", satisfies the com-
mutation relation

[Au A8] 6&~A 6 A (Al)

The author would like to express his gratitude
to Professor E. R. Marshalek and Professor A.
Klein for useful conversations.

and (A5) are the basic tool of this Appendix.
Before going into details, we remark that (A5)
corresponds to an identity

(C„C„)(C„C,)+(C.C„)(C„C,) -6„(C„C,)
—6"„(C CB) =0

in the original fermion space through (1.6).
Next, let us take a commutator of (A5) with A q.

If we notice
Second, its diagonal components E„=A~ (no sum-
mation over g) assume only integral eigenvalues
in the Marumori space. Hence, (Al) defines the
Lie algebra of the n-dimensional unitary group
U(n), whose irreducible representations are
specified by n integers satisfying

f &f & ~ ~ ~ &f

which are maximal eigenvalues of E„. Let us call
any irreducible representation of the U(n) a de-
generate representation if there is an integer 0
satisfying

fi =f2 = =fa -fa. i =fa.2
= =f.

As we shall prove elsewhere, " any degenerate
representation satisfies an identity

(A „f„6,")[A&q
—-(f, + n —k)6"„]P = 0,

[A"„,A,] = 6"„A„
and (2.28), i.e.,

A. ),P =PA),P,
then we can easily derive

(A"„A, +A~A, )P =O

which is an analog of

(CqC g}C, + (C„C„)Cy =0 .

Multiplying e to (A6) and noting

ebq =0, eb~ =b~,

we find

(B",5„+B~b,)P=O .

(A6)

(A7)
(A2)

where P is the projection operator for the ir-
reducible representation. Now', our Marumori
space is an irreducible representation of the
algebra 8„, which reduces to a direct sum of
completely antisymmetric degenerate representa-
tions of the U(n) group. Indeed, the state vector
(2.26) belongs to the completely antisymmetric
representation of the U(n) with signature

f, =f, =' ' ' =f. , =o, -
(A3)

Therefore, we must have

(A„"+6„")(A"j, +A"„6"„)P=0 (A4)

if we notice A "~ &, &,) = -q~ &, ~ &,), where
P is now the projection operator for the Marumori
space. Actually, we can prove a stronger result
of

A u A 8 +A A u& + 6 ~ A v& + 6 u A )P 0 (A5)

for any completely antisymmetric representation
with a special form (A3). The proof of (A5) is
essentially the same as has been given elsewhere. "
This may be also directly checked from (2.26)
together with

[A"„,A "]= —6„A"

if we utilize the completely antisymmetric char-
acter of the Marumori space. Equations (A4)

Setting p. = v, this reproduces the last equation
of (3.15}. Actually, in our derivation, we are
considering the cases (I) and (III} of the Sec. 2.
For the case II, we can derive the same if we
notice

(a„a„}P= (5„5„}P.

From (A7), we find

(B~b„b„+B"„b„bg}P=0 (A8)

which reproduces the second equation in (2.31).
Because of (A8), we can rewrite (A5) as

(B"„8f + B„Bs+ 6 "„B
~ + 6 &p Bg }P= 0 . (A9)

This implies that the Marumori states are also
completely antisymmetric with respect to the
bosonic part of the U(n) group, whose generator
is now B"„ instead of A"„. This antisymmetricity
is also evident from (2.24) and (2.25).

Next, let us take a commutator of (A8} with

B,~. Noting B,SP =PB~P and

[B".B.s] =6'B.B +6s B"
then this gives us

[Bz„(h(xbs )+Bye (hg b„)]P=0

(A10)

(All)

which reprodues the first equation of (2.31). The
last equation in (2.31) is simply its Hermitian
conjugate. Similarly, commuting Bq, with (A9),
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we obtain

(Bq B~„+B„B~q)P=0. (A12)

where we have set

(A14)

Now, let us define a tensor operator (B")"„re-
cursively by

(B')" =5" (B" ')" =(B")„B"„.
Suppose that f (z) is an holomorphic function of
z near the origin z =0 with

(A15)

Together with its Hermitian conjugate, this proves
the first two equations of (3.15).

If we set p = P in (A9), we find

[B,B"„+(1 —M)B" —M6"„]P=0, (A13)

(R "R~8 +A"„Az +6~ 4~~)P =0 .

This equation is an analog of an identity

(A19)

tion of [f(B)]"„even when the power series ex-
pansion (A16) for f (z) diverges at z = —1 and/or
z =M. This is essentially an analog of the
symbolic calculus" used in the functional analysis.
Indeed, for the special choice f (z) = (1+ z)'~',
the power series fails for z = —1 and z =M with

18&1, so that the formal method utilized by
Marshalek is, strictly speaking not justifiable.
At any rate, our formula reproduces the first
equation of (3.22), while the second one is simply
its Her mitian conjugate.

W'e can find many other identities by similar
method. For example, taking commutators of
(A5} successively with R„„and R~", we can derive

f(z) = Q c„z"
n=0

(A16) (C„C,)(C.C, )+(C„C.)(C,C, ) -6„'(C„C,)=0

then we can define a tensor operator by

(A17)

However, in view of (A13), we can reduce all
(B")"„with n&2 as linear combinations of B& and

6"„ in the Marumori space. The result is

in the original fermion space. Equation (A19}
assures us of the fact that we can always obtain
the same result whenever we express the four
fermion Hamiltonian (3.24) in terms of boson
variables in different forms. For example, we
may reexpress (3.25) also as

B= —QeqA q
~— Q g~g(AqA„5„+Ap} (A20)

p, u, n, s

[f(B)]".P =
I M f(M)[Bl+5!]

f(- I)[B& -M5~] P .

(A18)

Note that this formula can be regarded as a defini-

in the Marumori space.
Also, combining (A11) and (A12), we find

(A q R~„+A„R„q)P= 0

which corresponds to an identity

(C,C, )(C.C,)+(C,C„}(C.C„)=0.

(A21)
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