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The coupled-channel method is considered in the context of relativistic hadron or lepton
scattering by nonspherical dynamical nuclei. The program Zenith, which calculates elec-
tron-nucleus scattering via Coulomb an,d magnetic multipole potentials, is described and
is applied in particular to the deformed samarium isotopes i~28m and '5~Sm. Two- and
three-level calculations for the ground state 0+ and the excited states 2+ and 4+ containing
all relevant l = 0, 2, and 4 Coulomb potentials are described. The elastic dispersion effect,
arising mainly from coupling with the 2+ first excited state, and the dispersive effect on
the 0+ 2+ inelastic cross section, coming mainly from the diagonal. l=2 scattering in the
excited state, are appreciable at 105 MeV, the highest energy at which measurements have
been made. The largest effect, however, is that on the 0+ -4+ inelastic cross section
arising from the sequential excitation 0+ 2+ 4+ via the l = 2 potential. It has interest-
ing small-angle behavior and becomes greater than 20% at the largest measured angles
at 105 MeV. The dependence of some of these effects on energy and q, ff is explored up to
250 MeV and 2 fm

NUCLEAR REACTIONS ' Sm(e, e') calculations, coupled channels, 5(!
MeV& E & 250 MeV. Dispersive effects on elastic and inelastic cross

sections.

I. INTRODUCTION

The use of electron scattering to explore nuclear
charge shapes and charge-current transition den-
sities is simple and direct. It is customary in
analyzing experimental differential cross sections
to use a partial-wave analysis for the elastic
cross section and a distorted-wave treatment for
the inelastic cross sections. The assumption un-
derlying such a treatment is that while the nuclear
Coulomb monopole field is strong enough to distort
the electron wave functions significantly, the mul-
tipole transition potentials are weak enough that
they need be treated only to first order. While
this is usually a very good approximation, there
is a body of work exploring the extent to which
the latter assumption can affect elastic and in-
elastic scattering. ' With various choices concern-
ing the important intermediate states and multi-
pole potentials, and with various calculational
techniques, the general conclusion may be sum-
marized as that the effect on elastic scattering
of second-order virtual excitation, the so-called
dispersion effect, is fairly small, of order a few
percent in diffraction minima and much less else-
where. There are, however, some exceptions to
this general conclusion. It has been suggested

that at rather low energies, 50 to 120 MeV, disper-
sion effects can be quite large, of order 10 to 20%
for titanium isotopes, for example. ' These large
effects are thought to be associated with the oc-
currence of low-lying nuclear excited states
strongly coupled to the ground state. Such a
source of dispersion effects is presumably a
nucleus-to-nucleus variation on the universal
dispersion contributions arising from transitions
to intermediate states common to all. nuclei, such
as the giant collective states and the high-lying
quasifree nucleon states. ' The latter contributions
are the subject of most of the studies summarized
in Ref. 1. They must be included in any complete
description of the electron-nucleus scattering pro-
cess. The topic of the present paper, however, is
confined to the former contributions to dispersive
effects.

The general problem of electron scattering by a
physical nucleus, including virtual excitation to
all levels, is clearly very difficult. The much
more restricted problem in which nuclear excita-
tion is confined to a few low-lying levels is a finite
problem in wave mechanics, and as such it is pos-
sible to contemplate an exact solution to it. The
straightforward application of standard quantum
mechanical techniques results in the coupled-chan-
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nel method, various applications of which exist in
the literature. The special difficulties which the
electron-scattering problem presents are associ-
ated with the relativistic dynamics and with the
high accuracy which current experiments demand.
This accuracy requirement makes it desirable if
possible to avoid approximations such as Rawits-
cher's assumption' of monopole excitation to one
state only, or the use of the eikonal approxima-
tion' by Brown and Kujawski and Rosenfelder.
What we have attempted is a direct solution of
the coupled-channel problem, with no further
approximation than that of confining excitation
to a few nuclear levels. ' We are aware, of course,
of the success of a coupled-channel calculation of
energy levels of muonic atoms. ' We comment on
its relationship to our work later.

As wil. l become evident, the computation scheme
we have chosen, and the program Zenith which
realizes it, ' are quite complex. They are in fact
not yet in final form, but are undergoing minor
changes as we examine more complicated physi-
cal situations. As a testing ground with potential-
ly the largest possible dispersion effects, we have
considered the deformed samarium isotopes. A
beautiful experiment on '65+'m has been reported
by an MIT-NBS collaboration. " It has been ana-
lyzed by that group with a one-channel partial-
wave program for the elastic scattering and with
distorted-wave Born approximation for the excita, -
tion to the 2+ and 4+ excited states. Our conclu-
sion, reported later in this paper, is that at the
energies used (up to 105 MeV) the dispersive ef-
fects on the elastic and on the 0+ - 2+ inelastic
scattering are not overwhelming, but are big
enough to change appreciably the detailed results
of that analysis. The sequential 0+ -2+ -4+ con-
tribution to the 0+ —4+ excitation is quite sub-
stantial, and certainly needs inclusion. We have,
as yet, examined only a few of the properties of
these dispersive effects and how they depend on
the problem parameters. What we present here,
therefore, is a report on the magnitude and extent
of the particular effects expected in. '"Sm, and
also in '"Sm, an even more deformed nucleus.
We examine the dependence of the elastic disper-
sion effect on energy and angle, and the inadequa-
cy of representing it as a function of the recoil
momentum q alone. We do not, however, exam-
ine the dependence on the atomic number or the
behavior of multipoles other than the quadrupole
and hexadecapole potentials present in '"Sm. We
hope in future work to make detailed comparisons
with previous approximate calculations on other
nuclei. "

The algebra and arithmetic of the method, given
in detail in Ref. 9, are too complicated to repeat in

detail here. In Sec. II we give, therefore, a de-
scription of the principles of the method, making
reference to and comparison with the customary
single-channel partial-wave method, but without
equations. The program Zenith and the tests it
has undergone are described in Sec. III. Cross
sections calculated with Zenith for "Sm are given
in Sec. IV together with percentage dispersive ef-
fects. A more extensive examination of the varia-
tion of the dispersive effects with some charge-
distribution parameters, all for '"Sm, are given
in Sec. V. A suggested procedure for data analy-
sis is given in Sec. VI.

II. COUPLED-CHANNEL METHOD

Calculation of charged-particle potential scatter-
ing by the partial-wave method, encountered in
hadron or lepton elastic scattering by a spin-zero
nucleus, proceeds in three stages: calculation of
the Coulomb monopole potential from the assumed
nuclear charge distribution (assuming that the
hadronic potentials are given explicitly as func-
tions of the radius); integration of the radial wave
equation corresponding to each eigenstate of the
incident particle's total angular momentum J and
parity P to obtain the phase shift for each j,p; and
summation of the Legendre series containing the
phase shifts, to obtain the elastic scattering ampli-
tude and differential cross section. The central
time-consuming task, however, is the second
stage. Out to a radius r=A, which encloses
all of the nuclear charge (and all of the optical
potentials for hadronic interactions), the poten-
tial depends on the particular nuclear radial den-
sity function being used, and the wave equation
must be integrated from the origin to A,„step by
step. The wave function achieves the simple sinu-
soidal form which defines the phase shift (or may
be well approximated by an asymptotic series of
which this is the leading term) at a radius r =ft „„
which for large j is considerably larger than A~.
In the region r&A „ the only remaining potential,
the Coulomb monopole potential, assumes the sim-
ple form Ze'/r, and for this case there exist so-
lutions —Coulomb functions —whose analytic prop-
erties are known. In particular, the Coulomb func-
tions whose behavior at r =0 is regular or irregu-
lar in a standard way, have Coulomb phase shifts
at infinity for which analytic expressions are avail-
able. The phase shifts for the potential of interest
may be obtained, therefore, by comparing each
radial wave function with the corresponding known

Coulomb functions at r =8,„, thus avoiding further
numerical integration out to 8„„.It is necessary
to have calculated the Coulomb functions previous-
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ly, of course, but this need only be done once for
a particular Z and A (and the energy E, if the
incident particle's mass is not neglected). In the
final process, summation of the Legendre series
containing the phase shifts to obtain the scattering
amplitude, a procedure such as the reduction
method" is needed to make this Coulomb series
converge. To reproduce well the 1/sin'28 singu-
larity of the elastic amplitude, additional terms
are added to the Legendre series containing, for
j-values beyond those for which the numerical in-
tegration has been performed, just the point-Cou-
lomb phase shifts, i.e. the phase shifts of the reg-
ular Coulomb functions.

For the more complex system of a charged had-
ron or lepton interacting with a nucleus of spin I 0

through various allowed electromagnetic and had-
ronic multipole potentials, a partial wave decom-
position is still possible, in terms of eigenstates
of the total angular momentum F =I +J. Instead
of separate radial wave equations for each j and

P there now occur sets of 2IO+ 1 coupled radial
equations for each E and P. (For E & I, the num-
ber is less than 2IO+1.) Each radial equation is
either a second-order differential equation or two

coupled first-order equations, of course. The
added feature of a dynamical nucleus with various
states of spin I,- has the effect of increasing the
number of coupled radial wave equations to &~

=P, (21, + 1) (for large E), but does not prevent
the partial-wave decomposition.

The first stage of the calculation, the prepara-
tion of the potentials from the various charge,
current, and magnetization densities, is straight-
forward. For the second state, each set of ~

q

pairs of first-order ordinary differential equations
for a given E has +,~ independent solutions which
are regular at r = 0. The complete wave function
with proper asymptotic boundary conditions is an
as yet unknown superposition of the n~ regular
solutions, so that all of them must be considered.
The integration from the origin to R,„must be
done step by step, as in potential scattering. It
is now &~ times more time consuming, so good
computational technique is at a premium, but there
is no way to avoid it in an exact calculation. In
the region r & R the electromagnetic potentials
have achieved their simple asymptotic forms v, (r)

s$r ' ' for multipolarity ~. Except for the espe-
cially simple case of monopole excitation, where
vo(r) vanishes with the nuclear density (and is thus
zero a,t A,„) the other multipole potentials are not
negligible compared with the Coulomb monopole
potential. Thus exterior functions analogous to
the Coulomb functions depend on all of the multi-
pole potential strengths s, , i.e., on all of the B
(C, &, or M&) for the nuclear levels and transi-

tions involved, as well as on the nuclear charge
Z and the energy E. To our knowledge there exist
no analytic expressions for these generalized re-
lativistic Coulomb functions. Clearly their depen-
dence on all of the strengths makes impracticable
the potential-scattering approach of having a li-
brary of Coulomb functions calculated previously
for appropriate parameter values. The new prob-
lem encountered, comparing the coupled-channel
situation to that of potential scattering, is thus to
calculate the asymptotic properties for the &

coupled equations. This requires that we first
find, at some r=B„„,an asymptotic form from
which it is possible to reconstruct the complete
wave function, with proper boundary conditions
of incoming waves in only the ground-state chan-
nels. We must then carry the n~ interior solu-
tions from R,„ to R„„

In the program Zenith, the procedure adopted to
arrive at the asymptotic forms is as follows. The
possibility of an asymptotic expansion of the cou-
pled equations is indicated by the fact that all l 0
potentials fall off faster than the Coulomb l = 0 po-
tentials, so that the latter dominate the phase be-
havior. Starting with leading terms in the expan-
sion in 1/r which resemble those of the Coulomb-
function asymptotic expansion, a matrix relation-
ship may be established between succeeding coef-
ficients in the expansion. Thus for a given set of
multipole potentials sp' ' ', asymptotic expan-
sions may be attempted, and if & =R„, is chosen
sufficiently large, they will converge to some de-
sired accuracy &. There are in fact 2&~ sets of
asymptotic solutions, since there are &~ coupled
Dirac or Klein-Gordon equations, each effectively
of second order. We adopt a standard definition
for these solutions, and call them the "regular
and irregular Coulomb functions, " but the nature
of their behavior at r=0 is not known.

The integration of the n~ interior solutions from
8 „out to the perhaps quite large R„, is too
time consuming for a step-by-step integration.
We observe, however, that in this region the po-
tentials all have simple power-law dependence on

This simple behavior then makes practicable
an expansion of the solutions about some point
r =ra (where initially r =A,„) in a power series
for which the coefficients may be obtained recur-
sively in matrix form. Since the singular points
of the system of equations being solved are at & =0
and & = ~, the power series expansion about ro has
radius of convergence equal to ro, and so con-
verges out to r = 2r, . Thus, in principle, the so-
lutions may be continued out from r =R,„ in suc-
cessively greater steps, each doubling the pre-
vious value of r. There are, however, practical
limitations imposed by computer word length and
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loss of accuracy when partial sums become too
large compared with the final converged sum.
These "giant steps" are thus of limited size. But
they are many times the step-size needed in the
interior integration. The magnitude of the giant
steps and the number of terms in the expansion
may be optimized to produce an integration scheme
which is ten to a hundred times faster than step-
by-step integration. Even for monopole potential
scattering, it may be used as a practicable alter-
native to the method, mentioned earlier, of main-
taining a library of Coulomb functions.

Comparison of the &~ interior solutions at R.„.
with the 2m~ generalized Coulomb functions reveals
the asymptotic character (phases and amplitudes
of the various channel components) of these &~
solutions. Since each is regular at the origin and
now has known asymptotic form, it is a matter of
&~ «matrix algebra to determine the unique
superposition which corresponds to the scattering
boundary condition of incoming waves of appro-
priate amplitudes in only the ground-state chan-
nels. This scattering wave function has certain
amounts (amplitude and phase) of outgoing waves
in each channel component. After this procedure
has been followed for a sufficient number of I"

(total angular momentum) states the Legendre
series for the desired elastic and inelastic pro-
cesses may be compiled from the appropriate
channel components. These Legendre series have
the nonconvergence properties characteristic of
all Coulomb-scattering problems, of course, and
we sum them by the reduction method. " The fore-
going method does not allow us to supplement the
Legendre series with the terms corresponding, in
potential scattering, to the regular point-Coulomb
phase shifts, since we do not possess the asymp-
totic expansion belonging to the generalized Cou-
lomb functions regular at the origin. (The origin
is, in general, an irregular singular point of the
coupled etluations with point potentials. ) We have
a prescription which appears to work well for the
elastic amplitude, namely to add the uncoupled
point-Coulomb phase shifts for higher I" values.
Since the inelastic Legendre series has better
convergence properties than the elastic series,
the problem is not so pressing for them. We are
working on a method to generate these terms rap-
idly.

At this point comparison should be made with
the corresponding solution to the bound-state prob-
lem, made by McKinley' several years ago. The
asymptotic solutions of the bound-state problem
must decay exponentially with r, so that there are
only n~ different sets. Their asymptotic expan-
sions follow readily from the coupled equations,
which may be integrated inwards to R in a stable

manner. The successful matching of the interior
and exterior sets of &~ equations signals the cor-
rect choice of the energy eigenvalue. The scatter-
ing and bound-state problems thus differ mainly
in their treatments of the exterior solutions. We
have not in fact used the formalism or computa-
tional methods of McKinley's program, since we
wished to be free of any conceptual commitments
in our search for a fast code.

III. PROGRAM ZENITH

Zenith has been constructed, using the Dirac
equation, to calculate scattering of a spin-& parti-
cle of arbitrary charge and mass. At present it
contains only Coulomb and magnetic rnultipole po-
tentials. None of these particular choices is man-
datory on the method, and we hope to construct
versions of Zenith containing other interesting
possibilities. " In one respect, however, the
method is at present necessarily less general
than our description implies: The asymptotic
expansion may be summed in the general multi-
polarity case only if all of the channels are degen-
erate in energy, i.e. only if we make nuclear ex-
citation energies equal to zero. The expansion
does work, even with nondegenerate channels, if
the channels are not coupled at R„„.We may
thus gauge the extent of the approximation made
in the general case, when we perforce neglect ex-
citation energies, by considering the effect of non-
degeneracy in some equivalent monopole-excita-
tion case, or in the artificial situation obtained by
applying a "convergence factor" to the off-diagon-
al multipole potentials so that they become negligi-
ble at r =R„„.This factor spoils the low-q be-
havior of the inelastic differential cross sections,
of course. In the particular situations considered
here, we believe by these comparisons that non-
degeneracy is of negligible importance in the re-
sults we obtain. We hope in the future to remove
this deficiency in the method.

Since in several respects the computations at-
tempted by Z enith go beyond our previous experi-
ence, the choice of appropriate values for the
many internal parameters has been a rnatter of
experiment. As yet, few of them can be safely
made automatic, especially if a new physical sit-
uation (more states, higher spine, different multi-
poles) is attempted. There are, furthermore,
places where we are still developing the method.
Thus at present we regard Zenith as still in the
experimental stage. The limitation as regards
magnitude of the system examined (i.e. , number
and spine of states) depends on the computer fast-
storage available, and as regards incident energy
and nuclear size it seems at present to be. ~
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FIG. 1. Level schemes for the nuclei investigated,
with energies in MeV. In ~~28m, the MIT-NBS analysis
(Ref. 10), whose values are used in this paper, assume
(r')e, = 5.0922 fm; B0+ 2+ (E2) = 3.377 x 104 e fm4,

B„4,(E4) =1.345x10' e fm . For our investigation
in Sm, we use Bo 2 (E2) =4.61x10 e fm (Ref. 21)
and the same undeformed shape as in ~52Sm.

ter only of computational expense. We give further
details at the end of Sec. IV.

We mention briefly the tests that Zenith has un-
dergone which lead us to believe that its new pre-
dictions are reliable. One-state I, =O (nuclear
spin} zero-mass electron scattering agrees com-
pletely with an earlier program used extensively
for elastic scattering studies. " Finite mass one-
state calculations agree to the expected extent
with corresponding calculations made with the
Klein-Gordon potential-scattering program of
Clark. " One-state E, = ~ pure M1 interaction and
I p 1 pure E2 interaction, with zero Coulomb
monopole contribution, agree with Born approxi-
mation. ' It should be observed that this is a mean-
ingful and stringent test for a partial-wave calcu-
lation, since unlike distorted-wave calculations,
the Born approximation integral is in no sense
built into the method, but must be arrived at by
correct summation of the individual I" contribu-
tions. Coulomb monopole excitation with zero excita-
tion energy agrees with the results obtained by the
difference method4 using any of our one-state pro-
grams to generate the vo+ v,„scattering ampli-
tudes.

A two-state calculation, modeling for example
the common situation of a 0+ ground state and a
2+ excited state coupled by a quadrupole C2 inter-
action, produces both elastic and inelastic scatter-
ing differential cross sections. The latter may be
compared with inelastic experiments or with dis-
torted-wave Born approximation (DWBA) fits to
them. Both contain all of the effects of the virtual
excitations associated with these levels and this
coupling. We should be able to reproduce both

DWBA and one-state elastic results to arbitrary
accuracy by suitably reducing the C2 coupling
strength. By also reducing the CO coupling strength
(i.e., Z} we may reproduce pure Born approxima-
tion. The checks we have made include compari-
sons with simple DWBA theory (dependence on ef-
fective q, and on CO strength, etc. ) and compari-
sons with published curves. ~ We are at present
attempting detailed checks with HE~EL" for
sample cases, but in view of the other tests that
Zenith has already passed, we do not think that
any major errors remain.

IV. RESULTS FOR Sm

c = c, 1+ Q P, Y„(g,„)
&=2

(2)

where co=5.7573 fm, ~0=0.6014 fm, P, =0.2896,
P4=0.070, and P, = -0.012. The multipole charge
distributions p, (r) defined by

p(c, z„r)= P p, (r)Y»(8„), (3)
l=o

obtained numerically, produce & =2 and l =4 transi-
tion charge distributions such that Bo, z, (E2)
= 3.3'17 x 10 e fm, Bo+,+(E4) = 1.345 X 107 e' fm'
and an l = 0 charge distribution with (r z) "z = .59022

fm. We have made no fits to experimental data,
but have used this completely prescribed nuclear
model to calculate various effects introduced by
the coupled-channel method. '

With such a necessarily complex nuclear model,
possible parameter variations are too numerous
to contemplate. We restrict our present consider-
ations of the three-level system to two coupling

2 4

Q,
2

p

4+ ~) 0,
2 44

2+
~ ~0, ,4
2

p

Mode (o) Mode (b) Mode (c)

FIG. 2. Coupling modes used in coupled-channel
calculations with 5 Sm. The lines and loops terminating
in arrows indicate the various diagonal and transition
potentials, with their multipol. arities.

The nucleus is rotational with the level scheme
shown in Fig. 1. The MIT-NBS analysis" of elec-
tron scattering cross sections, elastic and inelas-
tic to the 2+ and 4+ levels, at energies from 50
to 105 MeV, gives the following nuclear model
parameters": The intrinsic Fermi shape

p(c, z;r)=p (exp[(r -c )/z ]+1) (1)

is deformed into the shape p(c, z„r) by the radius
variation"
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modes: (a) the scheme illustrated in Fig. 2(a),
where besides the monopole potentials there are
only the l =2 and 4 transition potentials linking
the 0+, 2+, and 4+ levels; (b) the scheme with
all l = 0, 2, and 4 diagonal and transition potentials
which can link the three states, as shown in Fig.
2(b). Mode (a) permits inelastic scattering and
allows us, by comparison with singl, e-state elastic
scattering or with DWBA inelastic scattering, to
calculate the part usually considered important
among the dispersion effects due to these levels.
(See, however, Ref. 3.) It also allows us to ob-
tain the contribution to 0+ -4+ excitation from
the sequential 0+ - 2+ - 4+ transitions. From
mode (b), the complete scheme for these three
levels, we can check what other contributions
are left out by the simpler coupling scheme. All
calculations in this section have been made with
the approximations that the electron mass and
the nuclear excitation energies can be neglected.
We examine the quite unimportant effect of these
approximations in the next section.

In Fig. 3 are shown differential cross sections
at an incident energy of 105 MeV, obtained with
coupling mode (a). Inset in that figure are the
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FIG. 3. Differential cross sections for 105 MeV
electrons on ~~2Sm, obtained with Zenith calculating in
modes (a) and (b). The nuclear model, obtained by the
NIT-NBS group (Ref. 10), is described in Sec. IV.
Inset are plots of the multipole charge densities p& (r)
defined by Eq. (3).

FIG. 4. (a) Angular dependence of R, relative disper-
sion effects, as defined in Eq. (4) of the text, for the
cross sections obtained in mode (a), with only sequen-
tial l = 2 and l = 4 potentials. (b) R~. q, as defined in
Eq. (5) of the text. It represents the relative effect of
the diagonal /= 2 and 4 potential. s introduced by coupling
mode (b), as compared to the effects calculated using
mode {a). (c) R, relative dispersion effect as defined by
Eq. (4) of the text, for coupling mode (b). This repre-
sents all. of the coupled-channel effects.
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multipole charge densities p, (r). In Fig. (4a),
with a linear ordinate, are shown the angular
dependences of the relative dispersion effect on
the elastic cross section

R „= [a„—o„(1state)] /c„(1 state) (4a)

and of the coupled-channel effects on the inelastic
cross sections,

f [o ' f o ' f(DWBA) J /c, ~(DWBA) . (4b)

Here, o(DWBA) is obtained by using the two-state
mode (c), shown diagramatically in Fig. 2(c), for
the g;ound state and the particular final state in-
volved. The coupling strength s, of the transition
potential is then reduced to s, /r, where r is some
factor & 1, such as v10, and the resulting inelastic
cross section is multiplied by &'. In this manner
the coupled-channel effects still present in the
two-state calculation are reduced by a factor r'
relative to the inelastic cross section, which be-
comes, when these effects are negligible, just the
first-order result of the coupling potential, i.e.
the distorted-wave Born approximation. As Fig.
(4a) reveals, ff „ is smoothly varying, with an ex-
cursion of order 5/j&, a noticeable correction to
the very accurate MIT-NBS data. It is not huge,
however, and its inclusion should have only a
minor effect on the nuclear parameters previous-
ly deduced. The dispersion effect Rp, „on the
0+ - 2+ transition is an order of magnitude smalle r.
Its somewhat irregular behavior may be the result
of calculational inaccuracy, although its over-all
size is almost certainly no larger than that shown.
In the sense of a perturbation expansion in the 1 =2
transition potential, both Rp 2 and R } are of
second order, so the smallness of R„„com-
pared with R,&

is not an obvious result.
For the 0+ -4+ transition, we check by calculat-

ing in mode (c), omitting the 2+ state, that the
l =4 transition potential is small enough for higher-
order effects due to / =4 to be negligible. The
three-state result of Fig. 4(a) for the 0+ -4+
transition must thus come from the 2+ intermed-
iate state. The effect is big, of order *15'fo at
large angles, where measurements are usually
made. An interesting effect occurs at small an-
gles, where the q" ' dependence of the DWBA re-
sult would predict, for 1=4, that the cross section
should vary like p'. This behavior is completely
modified by the sequential 0+ -2+ -4+ excitation,
which is mediated by the l =2 potentials, and thus
varies like q, as is evident in Fig. 3. It would be
amusing to explore this effect, perhaps by using
the (e, e'y) process to identify the inelastic group
of electrons. '

Differential cross sections obtained with the
complete coupling mode (b) at 105 MeV are also

represented in Fig. 3, but on that scale only the
0+ -4+ case is visibly different from that obtained
with mode (a). The differences are significant on
an experimental scale, however, and Fig. 4(b)
shows the quantity

(5)

for the various transitions. The important contri-
butor to the difference between the modes is the
diagonal L =2 potential. The effect on R,&

is seen
to be small, as might be expected since the diag-
onal potential contributes only in third order. On

Rp „, however, the correction is of first order
in the 1 = 2 potential, which explains its very ap-
preciable size. ' The effect is greatest, however,
in R„„,but only at very large angles.

For completeness, we show in Fig. 4(c) the
quantities R„, Rp+ 2+, and Rp, , obtained with
coupling mode (b). These represent the total cor-
rections that must be applied to the single-state
or DWBA calculations to allow for coupled-chan-
nel effects.

These Zenith calculations were made on both an
IBM 360-91 computer and on an IBM 360-75 com-
puter. For the three-state (0+, 2+, 4+) runs,
storage of about 360 kilobytes is needed, while
for the two-state (0+, 2+) runs, 275 kilobytes
suffice. The time taken depends markedly on the
accuracy required. To obtain the curves of R
shown, it is necessary that differential cross sec-
tions are accurate to better than 0.1/0 at all of the
angles quoted. This requires that the partial-wave
series for the inelastic amplitudes be continued
considerably beyond the F values where nuclear
finite size affects the cross sections, and the
present limitation on accuracy comes mainly
from this source. The particular three-state
runs which produced Fig. 3 took 69 minutes on
the model-75 computer and 28 minutes on the mo-
del-91. One-state runs under comparable condi-
tions take about 10 seconds on the model-75, and
about 3 seconds on the model-91. Recent and pro-
jected improvements in Zenith will speed up these
times significantly, we hope.

V. DISPERSION IN Sm

The dispersion effect usually examined theoret-
ically is the contribution to elastic scattering from
second-order virtual excitation of another level.
Although, as the results reported in Sec. IV show,
there are other consequences of channel coupling,
for elastic scattering this is the important effect.
To explore its behavior economically we use the
simplified calculational mode (c) illustrated in

Fig. 2(c): The nucleus is assumed to consist of
only two states, with J = 0+, 2+, and the only
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Coulomb interaction, besides the monopole po-
tentials, is the l =2 transition potential linking
the two states. The intrinsic parameters c„&,
of the undeformed Fermi shape are taken to be
the same as those of '"Sm." Only a P, -type de-
formation is assumed, and when fitted to produce
the observed 8„„(E2)=4.61x 10' e' fm'" its val-
ue is P, = 0.353. The reason for choosing "'Sm to
explore the dispersive effects is now revealed, in
that P, is 20% bigger than in '"Sm. We shall thus
be looking at the biggest elastic dispersive effects
to be expected from transitions among the rota-
tional levels in these isotopes. (See, however,
Ref. 3.) We are aware, of course, that the re-
stricted parameter choice co, ~„p, does produce
an appreciable l =4 charge density, and that this
two-state system would have, in nature, also di-
agonal l = 2 and l = 4 effects in the 2+ state. We
omit them so that we may examine the simplest
dispersive effects, those associated just with the
two states and the transition l =2 density. Many
approximate calculations of dispersive effects con-
sider only this mode, and thus our results will
hopefully provide also a useful benchmark for
such calculations.

Figure 5 shows the elastic and inelastic (0+
—2+) differential cross sections for our model
of '"Sm, at E,=250 MeV incident energy. Also
shown are the dispersive effects obtained with the
two-channel method, specifically

D„„=a„„(2state) —&0, „(DWBA),

(6b)

~00

—250 Mew
-- 180 MeV—105 Meg

50 MeV

O.5 —
1.0 ~

5.0—

0
Ieff +

150'

150'

where the cross section ao, 2, (DWBA) is actually
ten times the two-channel cross section obtained
with the coupling strength s, reduced to s, /v10 .
The calculations shown assume zero electron
mass and zero excitation energy. (We explore
these approximations later. ) The Iluantity D is
plotted to show the actual magnitude of changes
in the cross sections, without the somewhat spur-
ious structure introduced by calculating the rela-
tive effect. We note the complex structure of D„,
but the surprisingly smooth form of Do+~, . We
also note the smallness of the latter quantity.

D„=o„(2 state) —o„(l state) (6a)
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FIG. 5. Differential cross sections at 250 MeV for
the l= 2 deformed model of ~~48m. Also shown are the
dispersive differences D defined by Eq. (6).
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q =2~ 1+— sin —8

eff 5 ck 2

FIG. 6. {a) Relative dispersion effect R,&, defined by
Eq. (7), for the l =2 deformed model of ' Sm at various
incident energies, as a function of q,«defined by Eq, (8).
{b) & (q,ff), defined as o/OM«„ for the elastic and

0 ' 2+ inelastic transitions, as a function of q,ff.
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q,« —q[1+ ,' (Ze'—/c,)/E, ] (6)

where q = 2E, sin-, 8/Sc. The effective "form fac-
tors squared" E'= o/o„„„are shown for compari-
son in Fig. 6(b). The quantity (—', )(Ze'/co) in Eq.
(8) is an average of the nuclear attraction, ob-
tained in considering monopole scattering. " We
observe that in Ref. 10 and other places the length
c, is replaced by (r') '". We know of no theoret-
ical or empirical justification for that substitution.
As we see from the figure, however, R,&, when
calculated at various energies which reproduce
the same q,«, depends markedly on energy in a
manner which cannot be removed by any simple
redefinition of q,«. Up to 50 MeV the dispersive
effect is small, reaching a maximum in magnitude
of -1.4% at 8=150', where q.«=0.69 fm '. At this
q,«, but at higher energies, R,&

tends toward the
value -0.4/o. The same energy dependence occurs
at all higher q, and is clearly not of a kind that
can be mimicked by a change in the definition of
q,«Thus scattering at a given q,«attained by
low Eo but large 8 (say 8 & 120') has a significantly
different R„ from the value obtained with large Ep
and small 19. The connection between this behavior
and the large dispersion effects reported in Ref. 2
are commented on at the end of this section.

Since R,&
is relatively small at energies up to

105 MeV, even for this very deformed nucleus, it

This feature has occurred already, in the form of
Rp 2+ in the '"Sm calculations shown in Fig.
4(a). It is because the dispersive effect of se-
quential coupling on the 0+ - 2+ cross section is
so small that we have not made a detailed exam-
ination of its q and E dependence in this section.

The relative dispersive effect

E„=[o(2 state) —o(1 state)) /a(1 state)

is plotted in Fig. 6(a) as a function of

is desirable to check whether this result depends
on our neglect of, for example, m, the electron
mass and & the excitation energy. The approxima-
tion m, = 0 we usually employ to reduce computa-
tion time, since it halves the number of indepen-
dent phase shifts. The approximation 4 =0, as
we discuss in Sec. II, may be avoided only if the
transition potentials can be made to vanish at the
radius R,„. The stratagem of replacing the
transition quadrupole potential by an equivalent
monopole excitation, the basis of the claims made
in Ref. 2, was examined by us in preliminary cal-
cium calculations. " It appears there that the an-
gu1.ar structure of the dispersive difference D, i

is simpler for monopole excitation than for the
quadrupole excitation illustrated in Fig. 5. The
extra zeros in the quadrupole case mean that on
the average the dispersive effects are consider-
ably smaller for quadrupole excitation than for
monopole exictation of equivalent strength. We

prefer, therefore, to use the alternative trick of
applying a "convergence factor" to the 110 poten-
tials. Both the m, =0 and the & = 0 approximations
should become better at higher energies, so we

explore them here at Ep=50 MeV, the lowest ex-
perimental energy used. " Some effects of m, 10
are given numerically in Table I. On cross sec-
tions the effect is appreciable theoretically, but
even at very backward angles it is hardly notice-
albe experimentally. On R,i there is no detectable
effect except at 175', where

R
1 (m ) —Eg (m = 0) 0,02%

Thus to an accuracy level of 0.1% and energies of
50 MeV and above, it is a completely reliable ap-
proximation to neglect the electron mass in calcu-
lating It.i. (For calculating Coulomb contributions
to magnetic scattering close to 180' this is not;

necessarily so, of course. ) To check on the effect

TABLE I. Results of Zenith calculations of 50 MeV electrons on the l = 2 deformed model
for '54Sm. Columns 2 and 3 give the relative effect, on the elastic and 0+ 2+ inelastic cross
sections, respectively, of finite electron mass m, . Columns 4 and 5 give the elastic disper-
sive effect R,&, defined by Eq. (7), for finite m, and m, =0, respectively. Columns 6 and 7

show the difference R,l(b, ) -R,i (A=0) for 4, the nuclear excitation energy, equal to 0.5 and

1,0 MeV. (Experimentally 6 =0.087 MeV. ) Note that all results are given as percentages.

(deg)

Effect of m, ~ 0
on g«on 00 &+

x 100 x100
Rel (me) Rel ~me

x 100 x100

R„,(Z) -R„(~=0)
5, =0.5 MeV 6 =1.0 MeV

x1pQ x1pp

10
20
30
60
90

120
150
175

0.020
0.021
0.022
0.029
0.040
0.052
0.078
1.043

0.014
-0.006

0.009
0.013
0.023
0.041
0.104
1.62

—0.012
0.004
0.025
0.070

-0.149
-0.876
-1.384
-1.378

-0,012
0.004
0.025
0.070

-0.149
-0.876
-1.384
-1.358

-0.0002
0.0004
0.013
0.049
0.067

-0.0004
0.000 9
Q. 027
Q. 100
0.135
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of neglecting 4, we show also in Table I the differ-
ence B„(&)-B.r(& =0), obtained for the artificial
values&=0. 5and1. 0MeV. The actual&for "Sm
is 0.087 MeV, and the effect is clearly proportion-
al to &. The effect of neglecting & in "Sm thus
appears to be negligibly small for this very low-
lying state. Our trick of applying the conver-
gence factor to the quadrupole transition poten-
tial does affect the inelastic cross section. The
convergence factor is arranged to be equal to
1 at r=(r'}'", in which region the transition
charge density and transition potential are a max-
imum, but it becomes negligibly small at r =R
where here R,„=3(&')'r2. As is shown in Fig. 7,
the inelastic cross section at very forward angles,
which comes from the I =2 excitation potential at
very large impact parameters, is considerably
reduced by the convergence factor. But over
most of the angular range the inelastic cross
section is increased by about 5(P%%d . The finite
& calculation thus represents the physical situa-
tion only approximately. We find it hard to be-

100

10—

-1
10

CU -2
10

lieve, however, that neglecting & (the excitation
energy) can result in appreciable errors for the
present physical situation at energies of the kind
considered.

In a preliminary account of results on calcium
isotopes" we reported R,&

in "Ca to be of order
2% at 90' and 250 MeV." Our present calculations
show R,~ for "~Sm having an excursion of order
10' under the same conditions. The nucleus "Ca
is not deformed, however, and its B„,(E2) =350
e'fm'" is very small compared to those of rota-
tional nuclei. We may thus ask how the "Ca val-
ues compare with those of the highly deformed
nucleus "4Sm with its much larger B(E2). We do
not wish to examine Z-dependent effects in the
present work. We examine, however, the effect
of another difference between a spherical vibra-
tor and a highly deformed rotator, namely, the
radial dependence of the monopole and quadrupole
charge densities. The rotational / =0 and l =2
charge densities obtained from the p(r), deformed
from p(co, zo; r) by the large p~ =0.353, are shown
in Fig. 8. As an example of vibrational densities
we take the same undeformed Fermi shape, but
deform it with only a very small P„ i.e.,
P, =0.0035. The p, (r) is thus effectively the unde-
formed p(c„z„r) and the p, (r) is proportional to
&p(c„z„r)/Sr except near r = 0. With these differ-
ent shapes we use, however, the same strength of
the quadrupole transition as in the fully deformed
case, producing the p, (r) also shown in Fig. 8.
The simplified two-channel system employed in

this section produces with these p, (r) the cross
sections shown in Fig. 9. We observe their close
similarity to the cross sections of the fully de-
formed shape, shown in the same figure, except
for a less rapid falloff with angle expected from
the smaller surface thickness of the undeformed

b
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QCATTERING ANG LE
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0.075—
m
E
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0.025—

154
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—Deformed
-- - Almost Undeformed

FIG. 7. Differential cross sections for 50 MeV elec-
trons on the l = 2 deformed model of Sm. The full
curves are obtained in the same manner as those shown
in Figs. 3 and 5. The dashed curve is the inelastic cross
section as it is affected by the convergence factor neces-
sarily applied to the l = 2 transition potential when the
nuclear excitation energy Ll is taken to be nonzero. It
does not represent the true effect on the inelastic cross
section of neglecting 4.

0.000
0 1 2 4 5 6 7

R {fm)
8 9 10

FIG. 8. Multipole charge densities p&(r), defined by
Eq. (3), for the l=2 deformed model for "Sm (full
curves) and for the almost undeformed shape (dashed
curves).
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shape. This results in cross sections which at
90' are larger by about a factor 4. The resulting
elastic dispersion, R,~ is, however, remarkedly
close to that of the fully deformed shape, as Fig.
10 reveals. Thus for the rotational nuclear model
R„seems to be rather little dependent on the ra-
dial shape of p, (r) and po(r), so long as the transi-
tion strength is the same.

We observe another regularity which the present
model possesses. For both the almost unde-
formed and the fully deformed shapes, p, (r) and

p, (r) are closely related in that they both come
from one deformed shape p(c, zo; r). In vibration-
al nuclei, it is usually necessary to spoil this
close relationship, such as is embodied in the
Tassie model, for example, by allowing the tran-
sition radius and skin thickness to vary indepen-
dently of the elastic values. To examine the ef-
fect of such a variation, we show also in Fig. 10
the result of increasing the radial scale of p, (r)
in the almost undeformed case by 5%. The over-
all effect is that R,&

is decreased somewhat. Thus
the close relationship contained in the rotational
model p, (r ) and p, (r), with its concomitant alter-
ation of maxima and minima in the elastic and ex-
citation cross sections, is apparently such as to
produce a maximum elastic dispersion effect.

If we compare, finally, the numerical size of
R„ in "'Sm with that obtained earlier in "Ca, we
have to reconcile an increase in R „by about a

100

10-

0
10

factor 5 with an increase in B(E2) by about 130.
We observe that B(El), the measure of the strength
of a transition of multipolarity l, has dimensions
e'fm", so that except for l =0 its value depends on
the size of the system concerned. The transition
potential v, (r) is approximately equal to s,R„„',, at
some nuclear radius R„„,near the edge, and for
transitions from the ground 0+ state the strength
q is related to B(EI) by

s, =e[4rrB(El)/(21+1)J"'

Thus the square of the transition potential at R„„,,
a measure of the size of the dispersive amplitude,
is proportional to B(El)/R„",„'

,
' Di. s.regarding the

additional 2 in the R„„,exponent as a typical Cou-
lomb manifestation, we surmise that the disper-
sive effect depends on B(El) according to B(Elf'R'„„',.,
This is equivalent, for a deformed nucleus, to the
assumption that the effect depends mainly on the
geometric magnitude P of the deformation and is
not much dependent on R„„,separately. Assuming
an A"' dependence for R„„,we thus remove a ra-
dial scale factor (154/44)"'= 5 from the ratio of
B(E2). If we also remove the Z factor (62/20)= 3
expressing the fact that what we quote is an inter-
ference term with the elastic amplitude, we are
left with an expected increase of R„between Ca
and "'Sm of a factor 9. Thus on the basis of or-
der-of-magnitude arguments R„ is about half as
big as we expected from our 'Ca calculations.
The size thus checks quite well.

The large dispersive effects reported in Ref. 2

were for electrons of order 100 MeV on titanium
isotopes. The B(E2) values for the first excited
states of '~BTi are somewhat larger (by a factor
2 to 5 ') than that of ~Ca. We deduce from Fig.
6(a) that for "4Sm, dispersive effects at large
angles and 105 MeV are srnallex than those around
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FIG. 9. Differential cross sections for 250 MeV
electrons on the almost undeformed model for Sm.
Also shown (dashed curves) are the cross sections of
Fig. 5.

FIG. 10. Relative dispersion effect R,~
as a function

of & for the I = 2 deformed model for ~5 Sm (dashed
curve), the almost undeformed shape (fu11 curve), and
for the almost undeformed shape with p2(r) increased
in radial scale by 5% (dotted).
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90' and 250 MeV —the basis of our previous numer-
ical estimates —by about a factor 2. We thus
would expect the dispersive effects arising from
the low-lying 2+ state alone in "'"Ti at 100 MeV
to be perhaps twice as big as those in "Ca at 90'
and 250 MeV, i.e., about 4k. This number com-
pares to Wall's 10 to 20/0. ' See, however, Ref. 3.
The bases for the two values are different in sev-
eral important respects so no definite conclusion
is possible at present. A study of dispersive ef-
fects in the Ca and Ti isotopes is in progress.

VI. METHOD FOR DATA ANALYSIS

Given that the dispersive effects calculated in
Sec. IV can affect appreciably the analysis of the
experimental cross sections, but that the calcula-
tion of these effects is as yet time consuming and
not automatic, it would seem reasonable to pro-
ceed by successive approximations. The quantity

R; ~ shown in Fig. 4(c) expresses the fact that
the coupled-channel cross section for the nuclear
process I-f is I+R, z times as big as the cor-
responding DWBA (or one-state partial-wave)
cross section. It may be hoped from some of the
results of Sec. V that A is not too sensitive to the
details of the assumed nuclear shape. The assump-
tion that the giant collective states do not contri-
bute sensitively is also required (see Ref. 3). With

these assumptions, one may then divide the exper-
imental cross sections by the quantities 1+8,~
and reanalyze the resulting experimental quantities
with the customary tools, producing a nuclear
shape somewhat different from that of Ref. 10.
We may then recalculate the dispersive effects
R; z with this new shape. Hopefully they will
have changed only insignificantly. Otherwise the

process can be repeated.
It is unfortunately clear from Fig. 6(a) that R;

depends markedly on energy, so that companion
figures to Fig. 4(c) at the other experimental en-
ergies will be needed. Unless there are compell-
ing reasons for varying E rather than 6), it is cer-
tainly simpler theoretically if E is kept fixed in
future experiments.
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