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Derivation of a coupling potential for Coulomb-nuclear interference effects
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A collective coupling potential for surface vibrations is calculated from an extended
liquid drop model. It describes Coulomb and nuclear excitations. Applying the potential
to the reaction 5 Ni { 0, 80')58¹*we obtain a good agreement with recent experimental
data.

NUCLEAR REACTIONS 58Ni{i60 AGO}58Ni~ 8 34 58 MeV. derivation of
coupling potentials; calculated 0 {E).

1. INTRODUCTION

Coulomb-nuclear interference measurements' '
are very sensitive on the heavy-ion potential in
the region of the Coulomb barrier. Until now theo-
retical calculations' ' on this effect were based
upon phenomenological optical potentials, whose
parameters are fitted to the experimental data for
each considered nuclear system. In this work we
present a method to calculate the heavy-ion elastic
and coupling potentials from an extended liquid
drop model. In Sec. 2 the collective ion-ion poten-
tials are derived, which are used in Sec. 3 for a
semiclassical description of the collision process.
The results obtained from the theory for the elas-
tic and inelastic scattering of "0on MNi are dis-
cussed in Sec. 4.

2. COLLECTIVE HAMILTONIAN AND

THE ION-ION POTENTIAL

The Hamiltonian describing the scattering of two
nuclei has the following general structure

"2
H= " +H, (],)+H, (],)+V(r, ]„$,).

It consists of the kinetic energy of the relative mo-
tion, the intrinsic energies H, ($;) of the two nuclei,
and their interaction potential V, the latter depend-
ing on the relative distance r and the intrinsic co-
ordinates $;. In this paper we want to deal with
the excitation of collective modes during the heavy-
ion collision. The most dominant collective states
in spherical even-even nuclei a,re the surface vi-
brations, and hence it seems suitable to use the
collective vibrator model for the intrinsic Hamil-

tonian

H(~) =-H„„(4")
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In the following we calculate the real part of the ion-ion potential V(r, c(')", o, '
) by means of the extended

liquid drop model. ' ' In this model the binding energy E~ is assumed to be a functional of the nuclear den-
sity p(r):

-
I r-r'I/p

~,(p())=))'.&+2 f((()-( )'d,—;O)()(-, -, ,
(

(((~ )-P())d &''

+- ~ p(r},p{r'}d7d7'+ 2 ~ —1 p{r)'dr . (3}

The first contribution to E~ is proportional to the
number of nucleons. The second term in Eq. (3}
describes compression effects, since it lowers the
binding energy if the nuclear density p(r) differs
from the saturation density po in infinite nuclea. r

matter. The Yukawa energy has essentially sur-
face character. It is followed by the Coulomb and
the symmetry energy. No pairing term is included
since we restrict ourselves to even-even nuclei.

From the ansatz (3}we obtain for the ion-ion po-
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tential'

V =E.tp] E—.[p, ] E-.[p.l, (4)
V o

=—lim —,[ Y(r, v, p„p, ) —z Y(r, v, p„p,}],comp

where p denotes the density distribution of the sys-
tem consisting of the two ions with the relative dis-
tance

~ r~; p, and p, are the densities of the individ-
ual nuclei. For simplicity we assume the density
of the system as the sum of the single densities
("sudden approximation"), i.e.

p = p, (r, )+ p. (r, )

p, and p, are measured from the centers of the nu-
clei. Inserting Eq. (5) into Eq. (4) and using the
expression (3) for the binding energy Es, the ion-
ion potential can be derived. It is of the form

G Z, Z2 1
V = —2 —' —1 2 —' —1 lim —Y(r v p p).

p A A v

Here we have introduced the basic Yukawa integral

e- I r, -r2+r I

Y(r, ),p„p.) =4—, «,«, p, (r, )
~

-, ;,;~ p, (r.)

(6c)

which can be solved after a Fourier transforma-
tion by the same method as described in Ref. 9.
If we assume a sharp nuclear surface given by

where

~Cotll + &uk + comp+ ~sym y

4mZ, Z2e2

V~ mo

(6a)

R((Q;) =Ro; 1+ Q a',"Y,*m(Q;), i =1,2
l, m

and a homogeneaus density distribution

V„„„=V, Y(r, p. , p„p, ) —p,
' lim —,Y(r, v, p„p, )

3A;
Pl( l) Pot 4 R 37

01
i =1,2 (8)

(6b) we obtain up to terms linear in the surface

variables n '

Y(r, p, , p„,p»)=4p„p»R„'R„' F(p, , r, R,»Roo)+R„g (-I)'n'P Yf (Q)G, (p, r, R„,R)»
1, m

+Ro, Q u, ' Y, „(Q)G,(p, r, R„,A„)
l, m

(9a}

In Eq. (9a) the following abbreviations have been
used

+ oo 1
F(p. , x, y, z) = dk. . .j,(kx)j, (ky)j, (kz),

+ oo

G, (p., yx, z) =
~ dk. . .j,(kx)j, (ky)j, (kz),

where j, denotes the spherical Bessel function of
order l. The integration over the momentum
space in Eq. (9b) can be done in a rather lengthy,
but straightforward way by means of the theory of
residues. 'o Combining Eqs. (6a), (6b), and (9a)
we write the ion-ion potential in the farm

=U(r)+ Q [S,(r)(-1)' I" n+T, (r)a, ' ]Y,' (Q).

(10)

The elastic potential U(r) as well as the vibration-
al coupling potentials for projectile and target nu-

cleus, S,(r) and T, (r), consist of a Coulomb, Yu-

kawa, compression, and symmetry part. For U(r)
these various parts are given by:

U(r)c,„, =— ' ' limF(v, r, R», R»),
9 Z,Z2e'
7r 0102 v

9 A1A2
4s R R01 02
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1
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~
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The expressions for S, (r) and T, (r) are very sim-
ilar to those in Eq. (11).

As mentioned above we apply the theory to the
scattering of ' 0 on ' Ni. Since the ' Q nucleus is
an extremely stiff vibrator it will be hardly excit-
ed during the collision, i.e. o',"=0. Furthere-
more it is known from Coulomb excitation" that
the target nucleus is predominantly excited by the
quadrupole part of the interaction. We can there-
fore simplify the collective potential, Eq. (10), to
be

V(r, o, ') =U(r)+T, (r) Q o.~3" Y;" (0). (12}

Figure 1(a) shows the various contributions to the

elastic potential for the system "O-"Ni. From
Eq. (11) it is immediately clear that the symmetry
potential U(r),„vanishes in this case since for the
"0 nucleus Z, =-, A, . The entire potential U(r)
= U(r)c,„,+U(r)„„„+U(r,'„~ resembles a molecular
one; it is drawn in Fig. 1(b). If the two nuclei are
far apart only the Coulomb forces are acting. At

smaller distances the short-range Yukawa forces
counteract them and cause a maximum in the po-
tential U(r) at about 9 fm. The height of this max-
imum corresponds to the interaction barrier. For
projectile energies above the barrier the nuclei
begin to overlap. In the overlap region the density
of the nuclear matter is heightened [see Eq. (5)]
and hence a repulsive compression potential
arises. The resulting increase of the elastic po-
tential is even enhanced by the Yukawa part U(r)„„„
which also becomes repulsive for small values
of r.

The Coulomb-nuclear interference effect be-
comes quite transparent by looking at the corre-
sponding coupling potentials, Figs. 2(a) and 2(b).

3. SEMICLASSICAL THEORY OF
HEA VY-ION SCATTER'ING

Because of the large masses of the considered
nuclei a semiclassical description of the scatter-
ing process seems to be suitable. We first calcu-
late the classical trajectory r(t) in the elastic po-
tential U(r) Ther.efore the classical equations of
motion for the Hamiltonian function

L2
X= ,'mr'+, „+U(r}-2mr' (13)

are solved numerically by the Runge-Kutta method.
Here, the reduced mass is denoted by m =A,A, /
(A, +A, )M. Figure 3 shows that slightly above the
Coulomb barrier the orbital path differs consider-

When the nuclei reach a distance less than 12 fm
during the scattering process, the Coulomb exci-
tation —caused by T,(r)c,„,—is diminished by the
Yukawa part T,(r}v„„. At R„=10.4 fm, Coulomb
and nuclear excitation totally interfere: T,(R„)=0.
It is important to realize that the interference
takes place even before the nuclei touch (Ro) +R»
=8.3 fm). If r &9 fm, the Yukawa and compres-
sion part of the coupling potential are clearly
dominant.

At this point we should mention how the various
constants contained in the binding energy formula
(3) are determined. Some of these are known from
nuclear matter calculations~: 5', =-15.85 MeV,

p, 0 2 fm '. The remaining constants V„C, and

G can be calculated as a function of the range jLf,

of the Yukawa force by the method outlined in Refs.
8 and 13. Assuming JLj. =1.0 fm we obtain for the
system "0-"Ni: Vo 259 9 MeVfm, C =25.8
MeV, G =109.6 MeV.
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FIG. 1. (a) The el,astic potential U(x) for the system
0-5 Ni consists of a Coulomb, Yukawa, and compres-

sion part. The symmetry term vanishes in this system.
(b) The total potential U(x) has quasimolecular structure.

FIG. 2. (a) The various contributions to the quadru-
pole part T~(r) of the coupling potential for surface
vibrations. (b) The coupling potential T2(r). The zero
in && at R„=10.4 fm causes the Coulomb-nuclear inter-
ference minimum in the inelastic excitation function.
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ably from the Rutherford hyperbola. At 3, = 90'
the potential U(r) gives an unique connection be-
tween impact parameters and scattering angle.

The excitation cross section of the target nucle-
us can then be obtained from the time dependent
Schrodinger equation P, (~) =

I n, (~)I, (17)

In order to solve Eq. (16) numerically, the Win-
ther-de Boer program" has been extended. Since
the excitation probability for the state Ir& is given
by

[d, +H'(f)]
I y&

= Ia —„I y&, (14a)
we finally obtain for the corresponding cross sec-
tion

where do„(
)
p(6, ) dp(e, )

~

~

~

~ (18)

Ho =H„~

and

[v I 23 @v Pzj] I 03 + t ~gC [~l 23 g /23]Lo j
2

(14b)

H'(t) =T,[r(f)] g @I,"„[n(f)]. (14c)

If we expand the wave function I tit& in terms of the
eigenstates p, (g, t) of the unperturbed Hamiltonian
H0

I k(h ~)& = Q a (~) I vt, ($ I)& (15)

we get the following set of linear coupled differen-
tial equations for the excitation amplitudes a„(t):

a„(t) =.
& g a,(t)(rIH'(f)!s) exp @(E,—E,)t . (16)

S

Here p denotes the impact parameter and 3, the
scattering angle in the center-of-mass system.

4. RESULTS

Within the theory developed above we have calcu-
lated the excitation functions for the system "O-
"Ni. In Fig. 4(a) the ratio between the elastic and
Rutherford cross section is plotted for 8„~=75';
Fig. 4(b) shows the corresponding excitation func-
tion for the first 2' state (1.453 MeV) in "Ni. The
experimental data are taken from Refs. 1 and 3.

The elastic cross section behaves as usual: If
the projectile energies are sufficiently below the
Coulomb barrier Ec,„, (=46 MeV) one has essen-
tially Rutherford scattering, while for E &Ec,„, the
cross section drops exponentially because of the
strong absorption in the elastic channel. This ab-
sorption is taken into account by adding an imagi-
nary potential iW(t') in Eq. (14c), which has been
constructed in the following way:

16 580- Ni orbital motion
y (tm)

E, = 36.8 Mev
20 8 QQ

15-

0, r &R, +8
W(r) =

-IV~(Eot+&oo —&)" & - ftot+&oo.

The best fit to the scattering data was obtained
with the parameter set S' =4.5 MeV, n =10.

(19)
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FIG. 3. Classical trajectory in the elastic potential
0'(&). For an incident energy near the Coulomb barrier
the orbital path (solid line) differs considerably from the
Rutherford hyperbol, a (dashed line).

FIG. 4. (a) Cross section for elastic scattering of 0
on Ni at 75' lab. The solid curve has been calculated
with, the dashed curve without an imaginary potential.
Experimental data are taken from Refs. 1 and 3. (b)
The excitation function of the 1.453 MeV 2+ state in ¹i.
Curves and data as in Fig, 4(a).
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The inelastic cross section first rises with in-
creasing energy as expected from Coulomb exci-
tation. Then it drops due to the Coulomb-nuclear
interference to the minimum at about 44 MeV. If
the beam energy is increased further, do, +/dQ
rises again since now the nuclear forces are prev-
alent ("Yukawa excitation"). For still higher ener-
gies the cross section falls monotonically because
of the dominance of absorption processes. At other
scattering angles the excitation functions are quite
similar (Fig. 5).

Although our semiclassical results show good
agreement with experimental data, it seems that
a quantum mechanical description is more appro-
priate, if the projectile energies exceed the inter-
action barrier. ' The main reason is that the imag-
inary potential is only used in the coupled equations
(16) for the excitation amplitudes, but neglected in
the classical. calculation of' the orbital motion.

In the present work a model has been developed
to calculate the real part of the heavy-ion coupling
potentials. Until now the model only could be test-
ed in the region of the Coulomb barrier. It would
be very interesting to see whether the transitions
predicted by the compression and symmetry part
of our coupling potential also agree with experi-
ment or not. A decision about this can be made by
extending the heavy-ion inelastic scattering exper-
iments to higher energies.

FIG. 5. Same as Fig. 4, but for 60' lab.
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