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On the basis of an integrodifferential equation which was derived in a previous work for
the T matrix of nuclear reaction theory, we have developed a general formalism to treat
large perturbations in both the Hamiltonian and the boundary conditions of a quantum
mechanical system. As a result of this formalism, a set of first order differential equa-
tions, in terms of any of the physical parameters of the system, is given for the widths and
poles of the collision U matrix. The technique is illustrated by the conversion of a set of
R-matrix resonance parameters into its equivalent set of U-matrix widths and poles, which
corresponds to the passage from the 8-matrix boundary conditions to the complex, momen-
tum-dependent boundary conditions associated with the Kapur-Peierls reaction formalism,
The case of large perturbations of the Hamiltonian is illustrated by the calculation of the
elastic and inelastic scattering cross sections in a strongly coupled two-channel system
which was proposed by Tobocman and has been widely used as testing grounds for reaction
theories.

I. INTRODUCTION

The physical problem most usually encountered
in quantum mechanics is that one related to per-
turbations of the interaction term in the Hamil-
tonian. However, in dealing with finite systems,
such as those found in nuclear reaction theory,
one can also face a situation in which the boundary
conditions satisfied by the interior eigenfunctions
on the nuclear surface may be markedly altered.
An example of this is afforded by the A-matrix
theory of nuclear reactions of %igner and Eisen-
bud, ' and its relationship with the Kapur-Peierls
theory. ' The former utilizes real, energy-in-
dependent boundary conditions. The corresponding
level widths and poles are then real and momen-
tum-independent. In contrast the Kapur -Peierls
formalism introduces complex energy-dependent
boundary conditions to construct directly the colli-
sion U matrix. The two techniques are of course
equivalent and can be related on the basis of a
change in the boundary conditions.

Situations in which both the boundary conditions
and the Hamiltonian of the system are perturbed
arise in the calculation of resonant cross sections
based on various nuclear reaction theories, as
discussed by Tobocman and Nagarajan, ' Qarside
and Tobocman, 4 Purcell, ' and Lejeune and Mahaux
among others. These formalisms have in common
the feature that the basic set of eigenfunctions
does not usually satisfy boundary conditions con-
sistent with the U-matrix formalism. The per-
turbation of the Hamiltonian of the system is in-
troduced when the channel residual potentials
and channel coupling potential are "turned on. "

The various techniques available to solve these
problems have been unified and thoroughly dis-
cussed by Lane and Bobson. ' '

In a previous work, Perez" has deve1oped Bn
integrodifferential equation satisfied by the transi-
tion T matrix in terms of any of the physical
parameters of the system. This equation together
with the initial conditions on the T matrix es-
tablishes an initial value problem, defining this
transition matrix at any "later" value of the phys-
ical parameter chosen to describe the system.
The advantage of this formalism is that the per-
turbations of the boundary conditions can be in-
corporated in the Hamiltonian by means of Bloch's
I. operator. " The purpose of the present work
is to develop a novel technique for the calculation
of the collision U matrix for highly perturbed
systems.

As an illustration of the present technique we
show two applications. One is concerned with a.

problem involving the change of boundary condi-
tions between the 8-matrix and collision-matrix
formalisms. The second application is related
to perturbations of the Hamiltonian, such as the
ones taking place in coupled channels potential
scattering problems.

First we discuss the classical eigenfunction ex-
pansion method, utilizing as the basic set the
8-matrix states corresponding to the unperturbed
Hamiltonian. This method leads to a. set of first
order differential equations for the widths and
poles of the collision matrix, which is then used
to perform the transformation of a set of 8-ma-
trix resonance parameters into equivalent U-ma-
tr ix parameters.
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An objectionable feature of the usual eigenfunc-
tion expansion method is the fact that level trunca-
tion effects destroy the unitarity of the collision
matrix. The main practical effect is a poor
description of the background introduced by the
"far-away" levels. Although there are several

prescriptions to estimate these effects, via the
introduction of a background A matrix, " it appears
useful to explore the direct integration of the
initial value problem. This is done in Sec. V
where some applications to a two-channeL problem
are presented.

II. GENERAL THEORY

In Ref. 10 we introduced the radial channel G';~(r) r', r), where v represents any of the physical param-
eters of the nuclear system except the channel radii a&. There it was shown that this function satisfied
the following integrodifferential equation:

a~

G'&(r(r') = g ~
— G~(r( a;) 8, 5~, G»( a&] r')+ dr"G;"~(r( r")

d E, Q» ——V„, G',z(r")r')I,
kl

Ag 0

where B;, the logarithmic boundary condition functions are given by

with

I.; =8;+iP;,

8& =level shift factor, I'; =penetration factor, M; =channel reduced mass,

&r =F- —@r

Q, =energy threshold, and V;& = channel potentials.

The Green's function was also seen to be related to the transition matrix T&& by

T;~(r( r') =iq;(r)q~(r')G;~(r(r')

while the following relation holds between the T matrix and the collision matrix U;~:

T,,(r ~
r') = e ' ~' "

U;~(r~ r ')e ' +"'l —5.

where P, (r) is the hard sphere scattering factor and

q;(r) =C;[2P;(r)/rj'~' .

Introduction of the relation (6) into Eq. (1) yields the following integrodifferentia1 equation for the transition
matr ix

T;z(r)r') = g ln(q, (r)q, (r')) T»(r( r ') ~, 5z5i[+(q)a(q)a] ' T;~(r) a~) 8, 5» T„(a,—)r').
—i dr [q~(r )q, (r")] 'T;~(r(r')

d
l 5„,——V»(r ) T,, (r"[r')

We shall use either the result Eq. (1) or Eg. (9) as
is convenient.

We also recapitulate various relations from
Ref. 10 and A-matrix theory. " To this end, call
P„;(r) the orthogonal set of radial channel eigen-
functions of an A-matrix problem, satisfying real,
energy independent logarithmic boundary condi-

tions:

Qgg r = —'
Q) a)

S

(10)

where b& is the boundary condition number of A-
matrix theory. " Then one defines the widths and
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level shifts

y = (C, /a, .")y, (a,.),
I'~( =2&&ruyvI = (I"x( I'u|)

a~„=—(S,. —5,)yuy(, .

~).v ~Xv i t
i

&~v= &~vi
i

(11)

(12)

(13)

(14)

(15)

Furthermore, we shall write the transition matrix
in the form

T;, (~l r') =f P(e~-E) 'g «&)g '(&'»

where gz,.(r) are complex width functions, and e i
the complex collision matrix poles are written in
the form

&X —PX —&i'X (17)

III. EXPANSION IN TERMS OF R-MATRIX

RADIAL EIGENF UNCTIONS

In this section the Green's function of the system
will be expanded in terms of A-matrix theory
states. The starting point is the 8-matrix self-
adjoint eigenfunction set, (j(~, (r), solution of an
uncoupled channel Schr5dinger equation, which
satisfies the boundary conditions, Eq. (10). The
Green's function in Eq. (1) can then be expanded
in the form

F(T) = f -F(7',)

(I)i, = 5m, .

d7'9(T') F (T,),
0 (23)

(24)

%whenever the parameter, 7., enters in the Ham-
iltonian only as a multiplicative constant, the
matrix elements, Q&„, become T-independent.
One can then set v equal to its "final" value and
obtain the perturbed Green's function by matrix
inversion. In other instances, for example, in
dealing with deformed nuclei, T can be considered
one of the deformation parameters in which case
the matrix Q is now dependent on the 7. parameter.
Instead of using the closed result, Eq. (23), which
involves an integration over T, and matrix inver-
sion for each value of the parameter, it is more
expedient to solve the Ricatti-matrix Eq. (20) by
other techniques such as the Bunge-Kutta'4 meth-
od or the Lie-series approach. "

The result, Eq. (20), together with the knowledge
of the initial matrix F(r,), defines an initial value
problem for the calculation of the Green's function
appropriate to the coupled channel case with the
rigorous boundary coniditions, because the Q
matrix contains the coupling potentials and the
boundary condition changes. Utilization of the
relation, Eq. (6), between the Green's function
and the transition T matrix allows the calculation
of cross sections. The formal solution of Eq. (20)
is easily obtained:

(18)

f i.(&0) = 5~.i(Ei- E),
where E& is an A-matrix pole. %e now insert
the expansion (18) into Eq. (1) for the Green's
function to obtain

(19)

I =IiQFdT— (20)

which is the degenerated case of the Ricatti-
matrix equation for the matrix (F) i„=f &„. The
matrix 0 is given by

Q ~, = Q —
&p ~;(a;) —„B, 5;, (j(„,. (a,)

+ —Ei 5;i 5z, — V;ix, , (21)
d

G,'., (r l
r', r) =p f,„(T)y„(r)4„(r'),

where the parameter, T, is left arbitrary and the
amplitudes fz„(r) satisfy the initial condition,
at T=T

IV. EQUATIONS FOR THE CALCULATION OF THE

WIDTHS AND POLES OF THE COLLISION MATRIX

The results obtained in the previous section will
now be utilized to derive a set of equations for the
complex widths and poles of the collision matrix.
Our starting point is Eq. (20), into which we in-
troduce the expansion

g Il~nP. a
)(, v

a a
(25)

in terms of the complex poles c, and the complex
modal amplitudes P), . One obtains

((( ((

)
A. v Pv vX

Haa ~ Hae +II e

( .—&(* ~.( 5
— .(( .—&) )

(28)

with

where we introduced the matrix elements V;~), „
of the radial channel potentials, i.e.,

(22)

Xv+aB ~ P )ia l yk~yhPhek ve &

yh

Hkv Hvkae ea

(27)

(28)
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1
Pkn P ( a a) nsPxs u

8&~
d

(e -E) =-I'„„,
T

(30)

where we introduced the matrix functional

&+a = Q P yn&y~P sa .
)6

The set of Eqs. (29) and (30} together with the
initial conditions

Next we perform the derivative indicated in (26)
and equate equal powers in (e —E) '. The result
ls

analytical representations of cross sections which
account for both level interference and multi-
channel effects. Such an appropriate formulation
is afforded by various versions of the collision
matrix theory like the Kapur-Peierls dispersion
theory' and the Adler-Adler formalism, "among
others. In the latter formalism, the expressions
for the resonance lines are given in a form which
preserves the main features of the single-level
Breit-signer line shape formula and at the same
time includes level interference effects via the
introduction of asymmetric terms. As an illustra-
tion, the reaction cross section for s-wave neu-
trons is given in the form

e„(r,) =E,

P~.(70) =6~ (33)

vxGx +(j x E)Hy
(g —E)2+v 2

defines an initial value problem for the computa-
tion of the model amplitudes Pz and the U-ma-
trix poles, e„. The complex widths, g„,(a, ), are
given in terms of the modal amplitudes by

g.; = p e,.[n,(;)e„;(,)i (34)

which is obtained by combination of Eqs. (6), (16},
(18), and (25).

Frequently the matrix elements Q&z are in-
dependent of the parameter, v, with the important
exception when v. describes a degree of freedom
associated with nuclear deformation. In this
case a useful alternate set of equations to the
system formed by Eqs. (29) and (30) can be easily
found. To this end take derivatives in boih sides
of Eq. (31) to obta, in

d d+s g ~ P„A, Pcs P„O,~~ Ps).
yh

(35)

next introduce Eq. (29) and the definition (31) of
the matrix elements P z to find

d I „~I'y8 I yP'y~P 8 +-C~Cf

which is a set of differential equations for the
matrix functional I'. In many instances, as we
shall illustrate with an example, it is more con-
venient to use Eqs. (36) and (30) followed by sub-
stitution in Eq. (29) rather than Eq. (29) in con-
junction with Eq. (30).

(36)

V. GENERATION OF THE COLLISION MATRIX

WIDTHS AND POLES FROM A GIVEN SET OF
R-MATRIX PARAMETERS FOR FISSILE NUCLEI

The correct parametrization of the neutron cross
sections in fissile nuclei demands the use of

where G&" and H „" define the symmetric and
asymmetric parts of the resonance line. Similar
relations are shown to apply for the resonance
contributions to the scattering and total neutron
cross sections where the symmetric coefficients
Az, G~ ', G~ and asymmetric coefficients E& and
H~„, II „" are introduced. These coefficients are
related to the widths of the poles of the collision
matrix by the rclat j.ons

A p, +jBx=2g~E ' -g

II(~) —zG(r) =2cg E '/' 'z(2ie)
x

H'"& - f d "& =(2' Z-')
X

(38)

(39)

x p (e*.—e~) '(e~.g.*.)', (40)

If '„"' —f d,*' =(2',s-")

+(ritfe &)- 0 (42)

and in view of unitarity one has the relations

C(.)+~ 6(.)
x

r

a =II&")+~ e~ ) (44)

The usual way to obtain the complex widths and
poles of the U matrix is by the inversion of
signer's level matrix. " Alternatively, Reich
and Moore" have developed a formalism for

(ev ex) (gxx8'xn8vxg'vn) p

(41)

where g),„are the level widths for the neutron
channel, gz„ the widths for one of the various
reaction channels, and g~ is the statistical spin
factor, with e=6.15x 10' (beV). The asymmetric
coefficients satisfy the sum rule
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fissile nuclei which eliminates the capture chan-
nels through the use of the random-phase approxi-
mation and replaces the inversion of signer's
level matrix by the inversion of a much smaller
matrix in channel space, comprising only the
neutron channel and a few fission channels. Hence,
the collision matrix is computed by inversion of
a small matrix at each energy point. The method
is very efficient and has been widely used for cross
section fitting in the case of various fissile nu-
clei."'" However, it does not lend itself to an
explicit cross section parametrization as in the
case of the previously discussed Kapur-Peierls
U-matrix formalism. The analytical representa-
tion given by the latter allows the calculation of
Doppler-broadening, resonance self-shielding
factors, and other functionals of the cross sec-
tions relevant to nuclear reactor calculations in
a very straightforward manner. In particular,
average reaction cross sections are easily ob-
tained, as they are proportional to Q~GI~"'. Un-
fortunately very little is known about the statistical
properties of the U-matrix widths and poles, a
fact preventing the statistical extrapolation of the
cross section to the unresolved energy region.
The opposite situation appears in the case of the
A-matrix formalism, where the statistical features
of the 9-matrix parameters can be obtained from gen-
eral considerations of the properties of the nuclear
Hamjltonjan. "~' The usual approach to this
problem is to utilize the existing relationships
between the U-matrix parameters and the R-ma-
trix parameters in order to infer the statistical
properties of the former set of parameters. In
view of the previous discussion, there is interest
in performing the conversion of a set of 8-matrix
resonance parameters into a set of equivalent
U-matrix parameters. This conversion has been
achieved in several ways. Adler and Adler, "
as well as Moldauer, "utilize techniques based
on the diagonalization of the level matrix. Harris"
obtains the U-matrix parameters by perturbation
methods (valid for small level width to level
spacing ratios}; de Saussure and Perez" based
their work on the direct partial fraction expansion
of the Reich-Moore" formalism. In most instances
the methods have been restricted to s-wave neu-
trons.

The purpose of this section is to show a general
method to perform the conversion between the two
formalisms, which applies to any value of the
angular momentum. The necessary too1s have
been developed in Sec. III. Involved in the con-
version is a change from the momentum-indepen-
dent, real boundary conditions of A-matrix theory
to the complex, energy-dependent boundary con-
dition functions B, [Eq. (2)J. The matrix elements

Q&„Eq. (21), are given now by

Ili.u P A xi(si}(Bi Bai)rivi(iii) 1 (45)

where we used the expression

Bi( T) = 7(Bi —B'a; ) + Bo; (46)

to evaluate the change in the boundary conditions
for 0 &7 &1 and defined the initial boundary con-
dition numbers S„- as

(4V)B„=—(C,'/, )5,

From Eqs. (31), (45), and (34) one obtains the
matrix elements P„a, in terms of the complex
widths

Pas P qi (Bi Boi)galAsi (48)

An equation for these complex widths is arrived
at by multiplication of Eq. (29) by q, P, (a;) and
summation over the level subindex, e. Use of
the relation (34) between widths and modal am-
plitudes yields the desired result

gni g (e8 en) Pasg Si
a&8

In connection with the fissile nuclei, one en-
counters the problem of the many participating
capture channels, which will make the set of
equations, (49}, too large to be tractable. This
is a situation in which the introduction of the
matrix-functional P, proves to be extremely
useful. One divides the channel space into two
subsets: the first with only the neutron and fis-
sion channels and the second set containing the
capture channels, i„. Equations (36) and (30) in
which the channel-dependent magnitudes do not
enter explicitly are first solved. This leads to
the determination of the matrix, P 8, and the
eigenvalues, e, from which the widths for the
neutron and fission channels can be obtained by
means of Eq. (49). The initial conditions asso-
ciated with Eqs. (36), (30), and (49) are:

(49)

c (v =0) =E„,

a, i(7 = 0}=i)i(si)4. i(iii) = r i
" (50)

(51)

p„,(~ =0) =~,„,+-,'ir, „,+-,'i P (r. ,r „)'",
&() )

(52)

where the E are the A-matrix poles and I', the
R-matrix partial level widths [see Eqs. (8), (11},
and (12)j. In order to find the initial value of the
matrix functional P, we utilize the results (2),
(8}, (12) up to (15), together with (48) and (51}to
obtain
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where ~, o and I, &
are the level shift factors

and level widths contributed by the fission and

neutron channels only, while the sum in Eq. (52)
goes over the capture channels. To treat this last
term, we make use of the random phase approxi-
mation

p(r. ,r „.}"=r.,5.,
i{y)

(53)

arriving then to the final expression

P„B(~=0)=—a, q +( ,'i)(-l, „g +I,5', ~),

where I', is the capture level width.

After the computation of the complex poles e

and the complex widths g, for neutron and fission
channels, one obtains the cross-section parame-
ters A, B„, 6' ', and H ~ for the neutron and fission
channels via the relations (38) up to (41). The
parameters 6„' and H ' for the capture cross
sections are obtained from the unitarity relations
(43) and (44).

The initial value problem„ formed by the first
order differential Eqs. (36) and {30), with the ini-
tial conditions, Eqs. (50), (51), and (54), was
solved utilizing a second order Runge-Kutta'
technique. The size of the marching step,
(0 ~ ~ ~1) is chosen on the basis of the following
condition

where D is the average level spacing. This case
corresponds to a large pertrubation of the boundary
conditions. The trajectories described by the two
complex poles are shown in Fig. 1. The point,
7 = 0, corresponds to p, , = E„p,, =E„v,= v, = 0, that
is to the real poles of 8-matrix theory. As the
value of 7 increases from zero to unity, the real
part of the two complex poles quickly approach
each other, while the widths, v, and v, go together
initia, lly and for ~ ~ 0.25 start in divergent trajec-
tories. This is characteristic of systems with a
high degree of level interference, where some of
the levels "pick up'* large widths, v, as in the
case shown here. The point T =0.25 corresponds
to the closest approach of the two pole-trajectories
yielding the maximum value for the degree of in-
terference which has been plotted in Fig. 2.

A further illustrative example of the present
method is afforded by the U-matrix parametriza-
tion of the neutron induced reactions in '- 'Cm.
Moore eI al."have analyzed the neutron cross
sections of -"'Cm and published a set of Fil-matrix

3.0

3.6

Av. ~ W Max2 ",awP,
(E 8

—C~
(55)

where 8"(-0.01) is an appropriate fixed weight, and
the denominator in Eq. (55) is the maximum abso-
lute value of the ratio 2P 8/(we —e„}, which is the
degree of level interference. The step length b,T

is adjusted after each step in the "marching" to-
wards the final U-matrix parameter set. To illus-
trate the method, we have chosen a simple s-wave
neutron two-level problem. The initial A -matrix
parameters are given in Table I. The initial de-
gree of interference is [from Eq. (54} and the pa-
rameters in Table I]:

12 012 [(f' Z )
i/ ~(Z Z ) i/:]

Z, -Z., =D D

= 4.004,

2.4

1 4

2, 8

1.6

1.2

0.8
I

TABLE I. Input R-matrix parameters for the two
level problem shown in Fig. 1.

(eV) (me V)

I ~
(eV)

0 0.2 0.4 0.6

1.0
2.0

4 Q

4 Q

Q 4
0.1

4,0
4.0

FIG. 1. Trajectories followed by the U-matrix com-
plex poles as a function of changes in the boundary con-
ditions.
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parameters with which the cross sections of this
isotope can be constructed in the range 20-60 eV.
These parameters which include two fission chan-
nels per level are given in Table II. The corre-
sponding U-matrix parameters in the Adler-Adler"
formulation obtained by the method developed in
this work are shown in Table III and the fission
and capture cross sections for neutron energies
between 20 and 60 eV are shown in Figs. 3 and 4,
respectively. Inspection of these results shows
the consistency between the A-matrix and the
U-matrix calculation with the parameters obtained
by the present method. The advantage of the latter
is, however, the fact that rather than inverting
a matrix for each energy point (the level matrix
in R-matrix theory, or a reduced channel matrix
in the Reich-Moore formalism"} one can represent
the cross sections in the more attractive and
practical form given by Eq. (37).

VI. DIRECT SOLUTION OF THE T-MATRIX

INTEGRODIFFERENTIAL EQUATION

In this section we discuss an alternate method
to the eigenfunction expansion technique. The new
method is based on the direct solution of the in-
tegrodifferential Eq. (9) for the transition matrix.
We consider for 7 =0 a coupled channel problem

in which all the coupling potentials, V„(i ej}, and

channel residual potentials, V«, are turned off.
In this initial configuration the boundary conditions
are taken to be the R-matrix boundary conditions,
B„[Eq.(47)] while the channel potentia. ls are
assumed to be square well potentials V«;. This
configuration corresponds to an uncoupled R-ma-
trix problem which can be solved exactly (Appendix
A}. The resulting initial T matrix, (T,~), is di-
agonal and is given by

T",;"(r~r') =0, c wi, ,

where a, is the channel radius, and K, has been
defined in Appendix A, along with the channel mo-
menta, k„and the functions, D,„and D, . The re-

TABLE II. Multilevel resonance parameters for the
reaction (~4'Cm+n) between 20 and 60 eV (from M. S.
Moore et al. Ref. 18).

(eV}
2gl. 0

(mV)
r,

(mV)
1y2

(mV)

T,',"(r ~r') = 'D,„'q,(r)j„(r') (r ~r') (57)
2i Pc

C C

with

&00 I I+-

20

Ct:
O

U

X

LLJ

+ 0.5

0.2

0.&

0.2 0.6 O. B

FIG. 2. Level interference as a function of changes in
the boundary conditions. )The interference factor is
defined in Eq. (56) in the text. )

21.30
24.03
25.35
26.19
28.04
30.25
30.62
32.23
36.36
37.74
37.76
39.52
39 ~ 95
40.01
41,25
41.76
43.39
44 87
45,21
47.92
48.85
50.08
50.69
51.78
52.19
53.63
55.10
56.18
59.66

0.027
0.009
0.002
0.003
0.011
0.627
0.034
0.089
0.270
0.004
0.217
0.001
0.015
0.005
0.103
0.008
0.029
0.313
0.086
0.169
0.973
0.334
0.447
0.231
0.175
0.062
0.072
0.088
2.037

(4p)
(40)
(40)
(40)
(40)
(40)
(40)
(40)
(40)
(4p}
(4p}
(40)
(40)
(40)
(4p)
(40)
(40)
(40)
(40)
(40)
(40)
(40}
(40)
(40)
(4p)

(40)
(40)
(40)
(40)

—353
-61
—25
171
30

—26
—26
—38

-252
-0.5

-206
54

—35
19

-104

6
—52

-158
35

-44
1g
-6
—3

278
38
61

—106

196
-119

—6
—138

43
-0.3

—1

494
13

-674
158
-33
-5

536
-2
31
29
42

-33
48

-13
3

-167
1

31
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TABLE III. Collision matrix parameters for (24'Gm+n) between 20 and 60 eV.

21.31
24.04
25.35
26,20
28.04
30.25
30,62
32„23
36.36
37.S7
37.76
39.50
39.89
40.59
41.25
41.72
43.39

45.20
47.92
48.85
50.0S
50.68
51.78
52.19
53.62
55.10
56.17
59.65

(ev)

0.294
0.108
0.035
0.175
0.057
0.022
0.055
0.033
0.062
0.381
0.021
0.568
0.060
0.045
0.030
0.335
0.023
0.039
0.060
0.121
0.075
0.059
0.053
0.029
0.023
0.0243
0.039
0.066
0.095

17,4
5.9
1.3
2.0
7.1

408.7
22.2
58.1

176.4
10.2

134.6
-4,9
12.9

2,9
69.9
3.2

18.8
204.3
56.2

110.8
34 4

216.3
292.3
151.5
114.4
40.0
46.6
56.4

1328.9

B
{beve~2)

3.27
0.23
0.05

-0.72
0.33
2.97

-0.03
-0.64
-1.02
-2.00

0.62
0.61
0.95

-0.59
-2.07
4.64

-0.32
-9.12
12 ~ 09
-5.14
-3.05

3,27
4.55
5.68

-3.05
3.76

-2.28
-7.78

1.36

Gp
{beV'")

16.2

0.6
1.S

38.9
14.4
23.3

119.0
9.5
7.5

-4.9
8.3
1.5

22.1
2.8
2.1

95.1
35.0
92.1

458.S
138.5
178.4
46.8
13,8
36.6
23.0
39.2

1033.9

H~
{beV~~~)

3.26
0.23
0.05

-0.72
0.33
2.75
0.03

-0.64
-1.07
-2.03

0.65
0.64
0.88

-0.58
-1.93

4,46
-0.33
-8.56
11.39
-5.24
-3.30
-3.03

4.39
5.70

-2.91
3.75
2 Q2

7 ~ 77
1.85

G

g) ev3/2)

1.2
1.1
0.74
0.23
2.5

364.1
7.8

34.8
57.0
0.6

126.5
-0.0

4.6
1.4

47.7
0.4

16.6
108.4
21.1
18.6

171.4
77.1

112.7
104.1
100.2

3.4
23.6
17.2

280.7

H. '
{beV'~')

-0 3
0.4

-0.2
-1~ 8

1.4
38.1

-36.4
-1 3

-14.4
36.0

-49 9
-31.0

64.0
-13.4

-167.0
180.9

2 ~ 3
—709, 7

716.2
-51.5
-63.7

-268.0
325.5
27.7

-14 6
29.9
-8.0

-14,8
16.3

' The values in this column are to be multiplied by 10
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FIG. 3. Comparison of the fission cross sections for 24 Cm, between 20 and 60 ev, computed by the Reich-Moore
formalism (R-matrix parameters) and by the Adler-Adler formalism, with the equivalent set of collision matrix param-
eters obtained by the method developed in this work.
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i~ 3 ~ II I I I I I I T~~ I I I I ! ~ T T T~ T ~T
+ REICH-MOORE FORMALISM

ADLER-ADLER (COLLISION MATRIX FORMALISM)

t

I

I

I

I

t

I

~ J. X z l ' J M L~ 2 L~J~ i J L J. J~ZMK J. jM ~ L
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ENERGY (eV)
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Fio. 4. Comparison of the oapture cross section for ~+Cm, between 20 and 60 eV, computed by the Reich-Moore
formalism {R-matrix parameters) and by the Adler-Adler formalism, with the equivalent set of collision matrix param-
eters obtained by the method developed in this work.

suits, Eqs. {57)and (59}, are valid for r ~r' For.
the case x «z', the same relations apply with the
exchange of primed and unprimed space variables
Vy Y ~

The next step is to "march" from the R-matrix
boundary conditions, Eq. (47), to the U-matrix
boundary conditions, Eq. (2). This is done by
computing the term dB, /dv in the general Eq. (9)
from Eq. (46) and introducing the result into (9).
One obtains

(60)

where

&c = i)c '[&, -'&o.] = — [(5.—&.) +iP, ] (61)
C

after use if made of Eqs. (2), {4), (8), and (47).
Also the subindexes f. (left), and R (right) were
introduced to describe the situation in which
r ~x', and r ~ ~', respectively. Vfe first make
x =r' =a, in Eq. (60), and make the substitution

T,,(a, I a, ) = Y, '(a,
I a, ) (62)

yielding

Y, (a, Ia, ) = —d. ; (68)

hence

1;(a, Ia, ) = Y„(a,Ia, ) —d, T

and

(64)

(oo)

s TIoo) ( I
)TI~o)(

T,",",(r I a, )T,",'(a,
I a.) '

T(IaI,
I a, ) = [1 —7'd, T I/I(a,

I a,}] 'T „(a,I a, ) .
(65)

This first step for the computation of T,,(a, I a, )

is necessary so that T ~I„(r I a, ) and T I„„(a,I r ')
can in turn be computed by Eq. (60) and again in-
troduced in this equation, now written for

(o)T „«(r I
~ ), for the final determination of the un-

coupled problem T matrix. To this end make
successively r =a, and r' =a, in Eq. (60) to obtain

Now introduce the results, Eqs. (66} and (67) into Eq. (60), integrate, and set w =1 to obtain

T R~cc (r I
r ') =(T."."(r

I r ' }+ d [T '„,' (r I a, }T,",",(a, I r ') —T„(a,I a, )T n, ,(r I
r ' ]j[ 1 —d, T,, (a, I a, )]

—'

which after utilization of the relation (57) yields

2iPc 'I Q, (r) (2iP+, /K, a, )d,Q, (a)[Q,( )j„a(r) —Q, (r)n„(r)]j„(r'}I

K,a, I [1—(2i P, /K, a, )d,Q, (a)j „(a)]D,„

(6s)
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For s-wave neutrons the relation (69) becomes

}
i cos{K,(a, —r)) + (k, /K, }sin(K, (a, —r))] sin(K, r')

cos{K,a, ) -i (k, jK,}sin(K, a, )

The Eqs. (69) and (70) illustrate once more the use of the present formalism to relate the results of two
boundary value problems with different boundary conditions. Although conceptually equivalent, it is much
easier from the numerical viewpoint to solve boundary value problems associated with constant, real
boundary conditions, rather than mith the momentum-dependent, complex boundary conditions of the colli-
sion-matrix formalism.

The final step in the calculation is to turn "on, " the coupling and residual potentials. To this end we
write

V,', (r, 7) = 7.V„(r),
where v goes again between zero and unity. In this case Eq. (9) for the T matrix becomes

where Eq. (6) was used.
To illustrate the use of the present T-matrix

formalism, embodied in Eq. (72), we have studied
the tmo coupled s-wave neutron channel problem
propounded by Tobocman, "which has been widely
used as testing grounds for various nuclear reac-
tion theories by Purcell, ' Rorno, "Schmittroth and
Tobocman, "and Fu" among others. In this model
the channel potentials as well as the interaction
potential are of the square-mell type. The second
channel has a threshold at Q =3.5 MeV. All the
channel radii are taken to be equal (a, =6 fm). The
depths of the potential wells for the first and
second channel are 32 and 39 MeV, respectively.
For s-wave neutrons, P, (r")=k,r" and taking the
values of all the reduced channel masses equal,
Eq. (72) becomes

T, {rIr') =a, (k,k )"'t, (r Ir')

which after substitution in Eq. (73} yields the
following result

(74}

x v„(r")t, ,(r" I
r'), .

(75)

(c, k, i, j=l, 2). (73)

In order to eliminate the singularities at the vari-
ous channel thresholds one makes the transforma-
tion

with

(76)

C =-iC 2 2

(& )=g vr

where we introduced the new "radial" variable

(77)

(»)

]=2r)a, —I (79)

and the Gaussian weights, g . Care has to be ex-
ercised in the handling of Eq. (76) whenever

(&
& E or P, z

& (8. Then one has to use the relation
indicated previously between the T matrix to the
right and to the left. The set of Ricatti equations,
Eq. (76), can then be solved by the Runge-Kutta
technique and the collision matrix, U, computed
from Eqs. (74) and (7).

The exact solution to this problem has been given
by Purcell' (see also Homo"). In Fig. 5 we show
the results for an interaction potential V„=1 MeV.
For the strong coupling case, Vy«, =4 MeV, the
results are shown in Fig. 6. In this instance we
show a comparison between a three-point Gaussian
integration and a 17-point Gaussian quadrature.
The latter yields results within a fraction of a
percent of the exact answer.

Table IV shoms the effect of increasing strength
of the coupling potential on the number of Gaussian
integration points to be used in the numerical
solution of Eq. (75}.

At each value of the energy of the incident parti-

where t„(r I
r') is a reduced T matrix.

The integrodifferential Eq. (75) is converted into
a set of first order differential equations of the
Ricatti-type by Gaussian integration:

d—„...(&. , &,)= .gg ., (&. &,), .(&.).,(&, &,)
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cle, the unitarity condition, Q, U„U„=1 is com-
puted at the end of the process. In a particular
instance, two calculations were performed with

the same number of Runge-Kutta steps and of
Gaussian points, but changing the interaction po-
tential from 1 to 4 MeV. For the weaker potential,
the elastic cross section was accurate to 0.02k,
and the unitarity check was good up to 36 parts
per million. For V„=4 MeV the accuracy was

only 1.0% in the elastic cross section with a cor-
responding unitarity check of 255 parts per mil-
lion.

The present method avoids the calculation of the
radial matrix elements and the diagonalization of
relatively large order matrices. On the other

Coupling T -matrix ' T -matrix
potential Exact method method

(MeU) EL c INEL " EL INEI. EL TNEL

10
0.6564 0.12720 0.6577 0.12736 0.6571 0.12736
0.2713 0.01587 0.2750 0.016 11 0.2713 0.015 81

' 17 points Gaussian quadrature.
34 points Gaussian quadrature.

c EL= (k /4m}o

INE L =- (k /4x) 0 ~,h„,,

TABLE IV. Comparison of the results obtained by the
direct integration method with the exact results for the
case of strong channel coupling.

(xIQ )

2.0

(xq0 ')

1.2

).2
OJ

-I 0.8

0.4
0.4

0—
I.Q-

).0 I

/

0
0.8 ——---

0 ' ~

0.8

0.6 L

ig

~~
pre

0.4

0.2

0 6
ENERGY (MeV)

(o)

EXACT
T- MATRIX THEORY

—0.4-I

0.2

0
0

EXACT
~ T- MATR I X THEQR Y

(17 GAUSSIAN POINTS)
——T- M AT R I X T HEQ RY

(3 GAUSSIAN POINTS)

2 4 6 8
ENERGY (MeV)

10

FIG. 5. Comparison between exact and approximate
calculations of k2/4m times the cross section for {a)
elastic scattering and (b) for inelastic scattering for
weak coupling (V&2 = 1 MeV). See text for other param-
eters.

FIG. 6. Comparison between exact and approximate
calculations of k2/4& times the cross section for (a)

elastic scattering and (b) for inelastic scattering for
strong coupling (V&2 =4 MeV). See text for other param-
eters.
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hand the solution of the initial value problem in-
volved here is performed by a step-mise proce-
dure such as the Runge-Kutta algorithm, which
for very large perturbations may require many
steps.

Hence, the final outcome of a comparison of
this method with others, from the viewpoint of
practical computational aspects, will depend on
the nature of the problem at hand.

will allow calculations pertaining to deformed nu-
clei, starting initially from spherically symmetric
configurations. In general for any physical pa-
rameter of the system, the formalism developed
here is ideally suited for parameter search pro-
cedures, since at every step in the "marching" of
the initial value one obtains the answer for a new
value of the parameter of interest.

VII. DISCUSSION

APPENDIX A: TRANSITION MATRIX FOR
THE UNCOUPLED MULTICHANNEL CASE

In Sec. III we have presented a method to com-
pute the collision matrix in terms of a set of un-
perturbed R-matrix states. This technique has
been extended in Sec. IV to determine the widths
and poles of either the R-matrix or the U-matrix
formalisms under a variety of circumstances
such as boundary condition perturbations, and de-
formed potentials among others. In particular,
identification of the parameter ~ with the channel
orbital angular momentum / would provide a set
of first order differential equations defining tra-
jectories which map the variation of widths and

poles as a function of a continuous varying angular
momentum. The points in the trajectory associated
with integer values of the parameter 7 will then de-
termine the physical values of the resonance pa-
rameters.

The introduction of the matrix functional I', to-
gether with the use of the random-phase approxi-
mation for the capture channels, forms a basis
for the treatment of fissile nuclei. The method
has been tested successfully in Sec. V for the con-
version of a given set of R-matrix parameters in-
to its equivalent U-matrix parameters set.

The method presented in Sec. VI for the calcula-
tion of the transition matrix has several interest-
ing features:
(a) One avoids the calculation of the radial matrix
elements of the channel potentials.
(b) In dealing with the T matrix directly one avoids
the singularities found in the R matrix along the
real energy axis.
(c) Unitarity is conserved within the limits of the
numerical approximations used. Keeping track
of this magnitude properly affords a useful check
on the accuracy of the calculation.

The present transition matrix theory offers
many other possibilities. For example, one can
compute the T matrix at a given energy by "march-
ing" the potential, as shown in Sec. VI, and then
identify the parameter 7 with the bombarding en-
ergy, in order to compute the transition matrix
along a given range of energies. Identification of
the parameter ~ with a deformation parameter,

fc(4+I)
G ( ~,)

&{r—r'} 2Mc

with

(Ai}

(A2)

Because of the discontinuity in the derivative of
the Green's function at r =x' one has to split this
function into a right and a left Green's function,
G,„(r~r') and G,~(r ~r'}, respectively. The values
of the derivative on both sides of the discontinuity
are related by

—C;~(r ~' — —G,~(r r')

The pertinent boundary conditions are

(A4}

where b, is a real momentum independent number
(R-matrix boundary conditions). One has then to
solve Eq. (A. l} subject to the constraints (A3),
(A4), (A5)i, and (A6). This is a straightforward
boundary value problem which can easily be
solved by the variation of constants method. One

In this instance, the off-diagonal elements of
the transition matrix vanish, while each individual
component along the diagonal is given in terms of
the Green's function by the relation (6). In a given
channel, c, of radial coordinate r, =x, the Green's
function satisfies the equation
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obtains the following results:

G,~(r ~r') = (rr')D, „'[D, j„(r') —D,„n„(r')]

where

D.„= —[rj „{r)] —b.j„(a,),d
(AS)

G,„(r~r') = (rr')D '[D, j„{r)—D,„n„(r)]
D.„=

d tm, .tr)I] —t. ..t .t, (A 10)

2M,' hZ'&"
C

r&y', and j, (r), n, (r) are the usual spherical Bessel
functions.
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