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Various distorted-wave Born approximation (DWBA) theories which take only approximate
account of recoil are assessed by comparing numerically their predictions to exact DWBA
calculations of cross sections for heavy ion trnasfer. Of these the most successful for single
nucl, eon transfer appears to be that of Baltz which treats recoil exactly through second
order in the mass of the transferred particle. Also rather accurate are the first order
theories of Baltz and Kahana and of Reisdorf. The theory of Buttle and Goldfarb which
incorporates their approximate correction for recoil is useful near and below the Coulomb
barrier, especially when there is good "Q matching. " Theories which completely neglect
recoil are distinctly less reliable. None of the approximate theories here considered
appear adequate for an example of G. particle transfer.

NUCLEAR REACTIONS BSr( 0 ~ N), 3 Si( 0 N), Ca( 60 C). Calculated
o'(~), comparison of exact and approximate finite range DWBA.

I. INTRODUCTION

A bewildering variety of calculations employing
the distorted wave Born approximation (DWBA)
have been made recently for the analysis of trans-
fer reactions induced by heavy ions. Since exact
DWBA calculations can be time consuming and

costly, it is worthwhile to inquire how reliable are
those calculations which introduce additional ap-
proximations. The leading diff erence between the
exact and approximate calculations concerns the
treatment of so-called "recoil effects"; it already
has been established that in some instances the
cross sections predicted when the recoil terms
are neglected differ substantially from those which
result when recoil is treated exactly. '

The purpose of this paper is to compare numer-
ically exact DWBA calculations to several other
more approximate DWBA calculations in order to
discover their limits of accuracy and regions of
applicability. Specifically, we will consider that
the calculations of De&ries, ' which treat finite
range and recoil effects exactly, define the stan-
dard. Following are the other treatments con-
sidered here: (1) the finite range but no recoil
procedure of Sawaguri and Tobocman, ' as pro-
grammed by Schmittroth, Tobocman, and Golesta-
neh' (referred to hereafter as STSG); (2) the exact

treatment of so-called first order recoil effects
by Baltz and Kahana' (BK), building upon SI'SG as
the exact zeroth order theory; (3) the extension of
this to second order by Baltz' (B); (4) the method
of Buttle and Qoldfarb, "with and without their
recoil corrections (referred to as BG); (5) an ex-
tension of this method by Reisdorf' (R) which in-
cludes exactly first order recoil corrections within
the BG framework; and (6) an analytic approxima-
tion' to the Buttle-Goldfarb expressions, relevant
only to sub-Coulomb reactions, which will be
termed the Ter-Martirosyan-Sommerfeld (TMS)
Inethod. In addition some comments will be added
about calculations, presumably equivalent to those
of DeVries, recently reported by Tamura and
Low." In Sec. II we briefly summarize the key
features of the various procedures listed above.

Theories which also take some account of recoil
have been developed by Nagarajan" and by Braun-
Munzinger and Harney. " These are more approx-
imate than those of BK, B, and R in that they use
a "local momentum" approximation when introduc-
ing recoil corrections into the distorted waves; on
the other hand, the procedure of Ref. 12 incorpo-
rates recoil corrections to arbitrarily high order
in the mass of the transferred particle. We have
made no comparisons to the predictions of these
theories.
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10 RECOIL CORRECTIONS IN DISTORTED-WAVE BORN. . . 1857

As test cases we have considered the following
reactions: The proton transfer reactions "Sr-
("0,"N)"Y(g.s.) and "Sr("0,"N)"Y(0.91 MeV)
are meant to typify single nucleon transfer to a
moderately heavy target in situations where the
values of Q are favorable. The transfer to the
ground state (,'- ) involves only small angular mo-
mentum quantum numbers while those for transfer
to the first excited state at 0.91 MeV (+') are fair-
ly large. Further, the ground state is aj, state
for which the total angular momentum of the trans-
ferred proton around the "Sr target (~) is a half
unit less than the orbital angular momentum l,
while the 0.91 MeV first excited state is a j, state
with corresponding angular momenta ~2 and 4, re-
spectively. The proton transfer reactions "Si-
("0,"N)"P (g.s.) and "Si("0,"N)"P (1.26 Me V)
are intended to typify reactions on lighter targets
in situations where the values of Q are less favor-
able. Here the ground state is a j, state (s, &,}
while the excited state is aj, state (d, ~,). As a
final example we consider transfer of an a particle
in the reaction "Ca("0, "C)'~Ti(g.s.); because the
mass transferred is large, we here expect the re-
coil effects to be very important.

For the first two sets of reactions, cross sec-
tions will be calculated for a range of bombarding
energies extending from below the Coulomb barrier
to well above that barrier. Experimental excita-
tion functions' and angular distributions' "are
available in this range but the objective of this pa-
per will not be a critique of the confrontation be-
tween calculations and these data.

II. SUMMARY OF D%BA THEORIES

A. "Exact" DWBA

A DWBA theory which includes finite range and
recoil effects exactly has been formulated by
Austern et al." The program LOLA uses this for-
mulation and is discussed in detail in Ref. 2. The
DWBA amplitude in the post representation for a
transfer reaction A(a, b)B where B=2+x and

a = b +x is given by

that the full perturbing potential ~ V has been re-
placed by V, (r,„), the shell model nuclear potential
of x relative to the core b.

In order to simplify the six-dimensional integral
demanded in the above equation, approximations
have been developed as discussed below.

B. Method of Sawaguri, Tobocman, Schmittroth,

and Golestaneh

In this method the form factor is evaluated exact-
ly as a function of r, by means of the Sawaguri-
Tobocman modified harmonic oscillator expansion'
but a no-recoil approximation is made for the dis-
torted wave function X(~ )*(r~): considered as a
function of r, and rb„ the coordinate r, is identical-
ly

r, =Pr, +yrb»

where P:-(m„jms) and y—=m, (ms+~n, )/(mern, ); in
the no-recoil approximation the argument of the
distorted wave r, is replaced by jer, . The computer
code HD~C is used to evaluate' the cross sections.

C. First order recoil correction of Baltz and Kahana

One may improve upon the above no-recoil ap-
proximation by expanding X(, '*(r,) about pr, in
powers of y:

X' "(r ) =X' "(Pr )+- r & X' '*()1r )+

The method of Baltz and Kahana' consists of re-
taining only the zeroth and first order terms above.
In cases where second and higher order terms be-
come small, this method then approaches the ex-
act result.

One may perform a check on the convergence of
the first order result by writing

X(-)w(r ) X(-)w((rr ) p (P —~) - y-
b b b a

L & a + b»r+—r

X(-)w((rr )

T= dr, dr X, rbEr„r, X,
' r, ,

where the form factor E(r„r,) is defined by

E(r„r,) =((I) (r )~ V, (r,„}~/,(r,„)).

Here X represents a distorted wave and g a bound
state wave function. The spatial vectors involved
are shown in Fig. 1. In this expression the only
approximations made beyond the DWBA itself are
that g, and g~ are taken to be single particle wave
functions in a spherically symmetric potential and

I'IG. 1. Vector diagram for coordinates which enter
the DWBA integral for the transfer reaction A(a, b)B
where a —=b+x and B =4+x.



BLAIR, De VRIES, NAIR, BA LT Z, AND REISDORF 10

and allowing n to take some value other than P
[such as the Buttle-Goldfarb prescription for longi-
tudinal recoil as used in this paper, Eq. (9)]. If
the cross section is relatively independent of the
expansion parameter n, then the indication is that
the calculation is relatively well converged. In
this paper, however, tabulated cross sections are
for the conventional choice n =P. The computer
code generated to perform these calculations is
an extension of HDH. C.

D. Second order recoil correction of Baltz

In a straightforward manner the method of BK
may be extended to treat recoil through second or-
der in y exactly. ' One keeps the next term in the
Taylor expansion of lI, '*(r,), namely

(6)

and adds this to the zeroth and first order terms
of Eq. (4). Again convergence may be checked by
expanding about some er, where a cP.

E. Method of Buttle and Goldfarb

This method rests on two approximations: (a)
The radial part of the bound state wave function g~
is represented by a spherical Hankel function of
the first kind. When the transferred particle is a
neutron this replacement is exact in the asymptotic
region; when the transferred particle is a proton,
as it is for the present test cases, this replace-
ment can still be rather accurate. "" (b) Concern-
ing recoil, either of two recipes can be followed.
The exact expressions for r, and r, in terms of R
and rb„are

m ~ ~ m mr =R-~r r = "R+ 'r
a m bx& b m br '

a B 8

For the no-recoil approximation in the post repre-
sentation one sets'

On the other hand, some account ean be taken of
recoil through the prescription'

Here 8, is taken to be radius of the potential V, .
For incident energies below the Coulomb barrier,
d is set equal to 8,&, the average of the classical
distances of closest approach in the entrance and

exit channels for head-on Coulomb collisions. For
energies above the Coulomb barrier, d is taken to
be R,~ at the Coulomb barrier.

Approximation (a) permits use of a powerful ad-
dition theorem for the wave function t)ts(r„,). Com-

bining this theorem with either the no-recoil ap-
proximation or the approximate recoil correction,
one can reduce the original six-dimensional inte-
gral to products of two three-dimensional inte-
grals, one of which, denoted as T«, has the fa-
miliar form of the conventional zero-range approx-
imation.

To carry through this procedure a code entitled
THANspEg" optimizes the fit between the radial
part of g~ and a spherical Hankel function in a re-
gion around a "match center" radius defined as
[A,

' '/(A, ' '+A, ' ')]d and also calculates an over-
lap integral, denoted as A, , by Buttle and Qoldfarb.
The integral T, ~ is evaluated through a modified
version of the computer code DWUCK. "

F. First order recoil correction of Reisdorf

Here one retains the spherical Hankel function
approximation of BG but gives an exact first order
treatment of recoil. Specifically one adopts the
approximations'

(10a.)

(1.0b)

where R' —= (m „/m s)R. This approximation for re-
coil is nearly, but not quite, equivalent to that of

BK, since one is expanding both the incident and
final distorted waves about R and R', respectively.

G. Ter-Martirosyan-Sommerfeld method

For incident energies below the Coulomb barrier
an approximate analytic expression for the Buttle-
Goldfarb cross section has been derived by those
authors' using relations given by Ter-Martiros-
yan' and Sommerfeld. " This method rests on
three further assumptions: (1) The radial part of
the form factor entering the integral T», which is
a spherical Hankel function of order l, may be re-
placed by the product of a constant times a spher-
ical Hankel function of order zero. (2) The angu-
lar-dependent term in the form factor Yz*~(R) may
be replaced by Yz*~(R„,), where'„. is the recoil
direction along which the contribution to the inte-
gral is expected to be a maximum. (3) The Cou-
lomb parameters in the incident and final channels,

q, and g&, are much larger than unity. The result-
ing cross section is given in Eqs. (2.11), (2.13),
(2.15), and (2.16) of Ref. 8. For the no-recoil ap-
proximation, the wave numbers involved in the post
form of the cross section are k, and kz = (m„/m zz)k~;

for the approximate recoil correction of Buttle and
Goldfarb, k, is replaced by [ 1 —(m „/m ) (R,/d)] k,
and kz = [m „/ms+ (m„/ms)(zzl, /d)] kz.
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Given a plot of the bound state radial wave func-
tions, one may evaluate the above cross section,
if need be, using graph paper and a desk calcula-
tor. In the present instance, though, the code
TRANSFER ' carries out the necessary matching of
radial functions and evaluates the cross section.

III. PARAMETERS AND DETAILS
OF THE CALCULATIONS

Potentials of the Woods-Saxon form are used to
generate both bound states and distorted waves.
For the "S('M, "N)"Y reactions, we have used the
parameters chosen by Anantaraman, Katori, and
Korner' although, for energies near the Coulomb
barrier, these do not give the best fit to elastic
scattering cross sections. The proton separation
energy in 'O is 12.130 MeV; that of Y is 7.073
MeV. The central potential for 'Q has radius
equal to 2.9595 fm and diffuseness 0.6 fm; that for
"Yhas radius 5.338 fm and diffuseness 0.65 fm.
The charge radii are taken equal to those of the
central potentials. Spin orbit potentials of the
standard form were adopted with radii and diffuse-
nesses equal to those of the central potentials and

depth equal to 7 MeV. For the distorted waves we
use V=-100 MeV, 8'=-25 MeV, a=0.50 fm,
R;„, =8.431 fm, and Rf; =8.456 fm.

The bound state parameters for the reaction "Si-
("0, "N)"P are for "0: R =8.0828 and a =0.65 fm,
and for "P: R =3.8840 and a =0.65 fm. The proton
separation energy in "P is 7.29 MeV. The spin
orbit potentials were set equal to zero. Here the
distorted waves have the parameters V= —100
MeV, W=-40 MeV, R. .=6.8651 fm, a. , =0.49
fm, Rf~ =6.8413, a,nd afin =0.60 fm.

For the reaction OCa('60, "C)44Ti, the param-
eters chosen are those used previously in an exact
DWBA calculation" which gave an adequate fit to
the observed angular distribution at a bombarding

energy of 42 MeV. The separation energy of the
3s o.-particle orbital in "O is 7.160 MeV, while
the separation energy of the 7s n-particle orbital
in "Ti is 5.235 MeV. The radius parameter r,
for the central potentials is taken to be 1.25 fm,
while for the Coulomb potential it is 1.0 fm.
[Here R r-=, (4'~'+A„,„,"'!so that, for example, the
radius of the potential in '60 is 1.25(4'~'+l2'~')
=4.846 fm. j The diffuseness parameter is 0.65
fm. The parameters for the optical potentials are
V=-100 MeV, W'= —40 MeV, r, =1.22 fm, a, =0.8
fm, and a&=0.7 fm.

In all calculations, masses were set equal to
mass numbers in units of amu. The spectroscopic
factor for the proton in "O was taken to be 2.0
while those for the states in 'Y and in "P are
chosen to be 1.0. For the a-particle transfer re-
action, both spectroscopic factors are set equal to
1.0.

For the Sr and Si calculations the step size of
numerical integrations for the code LOLA was
chosen to be 0.10 fm; reducing this to 0.075 fm led
to changes of less than a percent in the peak cross
sections. The BG calculations used a step size of
0.05 fm; doubling this produced changes of about
1/p in the cross sections. The integrations in the
BK calculations were carried out with step sizes
such that on doubling the step sizes the peak cross
sections changed by less than 0.2/p.

In calculations which approximate the bound state
wave function with a spherical Hankel function
(BG, R, and TMS) there is inevitably some uncer-
tainty accruing to the precise manner in which the
match is made. In the present calculations of pro-
ton transfer these uncertainties do not appear to
exceed ll@ except at the higher energies for the
reaction "Si("0,"N)"P (1.26 MeV), a case of poor
Q match, where the uncertainty appears to be about
2(Pp. Further, cross sections calculated for bom-
barding energies above the Coulomb barrier with

TABLE I. Peak cross sections for the reaction 8 Sr(' 0, N)
' Y(g.s.), For all entries but r.oLA. , the table shows the

ratio of the calculated cross section to that of LOLA . By convention, at energies below the Coulomb barrier we have

given the cross sections at 170' rather than 180', the true peak location.

0
E i,b Peak

(MeV) (deg)

LOLA

0(8)
(mb) BK

STSG
No Rec.

BG
With Rec.

BG 7MS TMS
No Rec With Rec No Rec

42.5
44
46
48
50
52
56
59

170
170
170
135
115
100

80
70

0.0493
0.1017
0.222
0.311
0.395
0.475
0.621
0.717

1.010
1.009
1.014
1.019
1.018
1.021
1 ~ 021
1.017

1.010
1.013
1.018
1.026
1.027
1.036
1.043
1.049

0.682
0.70
0.72
0.72
0.71
0.71
0.69
0.68

1.01

1.00

0.98

0.99

0.99
1.01
1.01
1.04
1.05
1.06
1.07
1.09

0.85
0.87
0.92
0.92
0.92
0.91
0.94
0.88

1 ~ 06
1.05
1.14

0.86
0.87
0.97
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the BG method become increasingly inaccurate if
d, which enters the definition of the "match center"
radius, is taken to be the Coulomb distance of
closest approach corresponding to these bombard-
ing energies. We believe the procedure stated in
Sec. II E and followed in this work, that d be equat-
ed to Rd at the energy corresponding to the Cou-
lomb barrier, is much more reliable since we find
that the over-all quality of the wave function fit
rapidly deteriorates as d is decreased below this
value.

IV. RESULTS AND DISCUSSION

sSS (16P 15N)89@

Angular distributions have been calculated for
this reaction from energies well below the Coulomb
barrier to energies well above it. (In the entrance
channel, the barrier farmed by the Coulomb poten-
tial and the real part of the optical potential is
classically surmounted at an energy of 47.5 MeV in
the laboratory frame. ) The predicted shapes of the
different theoretical angular distributions are in
very good agreement with each other and with the
experimental data'4; therefore, we have not shown
them here. The magnitudes of the different theo-
retical predictions at the peak angle are given in
Tables I and II relative to the exact recoil (LQLA)
predictions. At low energies, where the angular
distributions peak at 180', we actually quote the
cross sections at 170', the largest angle where
data have been obtained. Only the "normal" /-
transfer value cross sections are shown; the crass
sections for "nonnormal" / transfer are very small
except for transfer to the py/p state at the highest
energies. The TMS results are shown only at low
energies where there is some hope that a sub-Cou-
lomb theory is relevant.

It is clear that, of all the approximate calcula-
tions, those that use the no-recoil approximation
are the least satisfactory. On the other hand, all
the calculations which take some account of recoil

are in fairly good accord with the exact DWBA
calculations; only in one instance do the deviations
of the BG cross sections from LOLA exceed 10%
and, for the BK and R calculations, they never ex-
ceed F/0. The Baltz second order recoil calcula-
tions are practically equivalent to exact finite-
range calculations for this case; here the maxi-
mum deviation from LOLA is 2.1/0. TMS approx-
imation with the inclusion of recoil is useful at the
two lowest energies but by 46 MeV it is starting to
break away from the exact calculations; not sur-
prisingly, the TMS approximation appears more
accurate for the ground state transitian, where the
angular momentum transfer is only 1, than for the
excited state transition, where it is 5.

The energy dependence of the ratio of approxi-
mate to exact peak cross sections is worth special
comment. For the ground state transition, the
STSG and BG no-recoil calculations show only a
small energy variation while, for the transition to
the g,~, excited state, the ratio increases by over
35% between 42.5 and 59 MeV. (Parenthetically we
note that there is a sizable discrepancy between
the magnitude of the STSG and BG no-recoil cross
sections for the ground state transition; we must
remember that the recoil approximations of these
two theories are not the same even though both
bear the same appellation, "no recoil. " Also STSG
specifies a unique "exact no-recoil" calculation
while all methods based on BG use further the
Hankel function approximation, which involves non-
unique matching prescriptions. ) In previous pa-
pers" "the hope was expressed that some ob-
served energy variations of spectroscopic factors
for the ground state transition, deduced by fitting
experiment to the no-recoil calculations, could be
explained by exact DWBA calculations; but since
the energy dependence of the exact and the no-re-
coil ground state cross sections are so similar, it
appears that other explanations must be sought for
any apparent energy dependence of the spectro-
scopic factors.

TABLE II. Peak cross sections for the reaction Sr(' 0, 'SN) BY(0.91 MeV). The format is similar to that of Table I.

8

Egb Peak
(MeV) (deg)

LOLA

~(~)
(mb) B BK

STSG
No Rec.

BG BG
With Rec. No Rec.

TMS TMS
With Rec. No Rec.

42, 5
44
46
48
50
52
56
59

170
170
170
155
120
105

85
75

0.0713
0.1724
0.477
0.811
1.061
1.292
1,631
1.854

0.993 0.97
0.998 0.98
1.008 0.99
1.011 1.00
1.011 1.02
1.012 1.03
1.021 1.06
1.013 1.07

0.64
0.66
0.69
0.71
0.76
0.80
0.85
0.88

1.07

1.03

0.98

0.93

1.06
1.06
1.06
1.08
1.08
1.08
1.14
1,08

0.81
0.83
0.86
0.91
0.98
1.02
1.12
1 ' 09

1.15
1.14
1.18

0.86
0.87
0.92
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For the ground state transition, the energy de-
pendence of the ratio is slight for the two calcula-
tions which inctude recoil exactly to first order;
for BG with recoil it increases by 1(@ in the ener-
gy span between 44 and 59 MeV. For the excited
state transition, there are differences: for BK
there is an increase of 10%%up, for BG with recoil the
increase is not as great, while for R the ratio de-
creases by 13%. The ratio is practically energy-
independent when second order recoil is included;
there is an increase of P~ for the ground state and

2% for the excited state.
Calculations which make no approximation for

recoil have been performed by Tamura and Low"
and applied to the data of Anantaraman et al." We
were disturbed to find that their average spectro-
scopic factors differed substantially from those
made using the exact DWBA cross sections listed
in Tables I and II. The authors of Ref. 10 have re-
cently informed us, however, that their param-
eters differ from those given in Ref. 14; conse-
quently the comparison between the two calcula-
tions is not meaningful.

a. "s("0 "N)"p

This reaction differs from the preceding one in
that the target is much lighter and, more impor-
tant, the Q-matching conditions are not as well
satisfied. The barrier in the entrance channel,
formed by the Coulomb and the real part of the
nuclear potentials, is classically surmounted at
an energy of 16.69 MeV in the center of mass sys-
tem, corresponding to an incident energy of 25.59
MeV in the laboratory, while in the exit channel
the barrier height equals 14.75 MeV. The differ-
ence in barrier heights, -1.94 MeV, is nearly 3
MeV larger than the Q value for the ground state

transition, -4.84 MeV, and consequently the re-
action is inhibited. This is in contrast to the pre-
ceding 'Sr ('5G, "N)89Y(g.s.) reaction for which the
entrance barrier height equals 40.19 MeV and the
exit barrier equals 35.80 MeV. There, the Q val-
ue, -5.06 MeV, nearly matches the difference in
barrier heights, -4.39 MeV, and thus that reac-
tion is favored.

Angular distributions for the reaction on "Si
have been computed at four energies, the lowest of
which (25 MeV) lies just below the classical barrier
height. For the transition to the s, i, ground state
only the normal l =1 angular momentum transfer is
permitted. For the transition to the excited d3/2
state at 1.26 MeV, the cross sections for non-nor-
mal l =2 transfer at the higher bombarding ener-
gies are not negligible compared to those for nor-
mal l =1 transfer. Consequently, we consider
separately the cross sections for the normal and
nonnormal l transfer leading to the d, i, state.
Again the predicted shapes of the different theoret-
ical angular distributions are essentially indistin-
guishable for the normal E transfers and are in
good agreement with experimental data. " At the
two higher energies the normal cross sections de-
velop a forward peak as well as the usual peak
corresponding to a grazing collision. The peak
cross sections for the nonnormal l transfer and
the cross sections for the normal / transfer at the
"grazing collision peak" are listed in Table III.

It will be seen that the calculations which neglect
recoil give cross sections which are far too small
at almost all energies. The TMS calculations are
in poor agreement with the BG calculations they
are meant to approximate. The BQ calculations
which correct for recoil are tolerable for the
ground state transition near the barrier but rapidly

TABLE III. Peak cross sections for the reaction Si('80, 'SN)3'P. The format is similar to that of Table I.

8

E» Peak
(Me V) (deg)

LOLA

0 (8)
(mb) BK

STSQ
No Rec.

BG BG TMS
With Rec. No Rec. With Rec.

25
30
42
60

25
30
42
60

25
30
42
60

170
105
45
25

170
115
45
25

120
90
45
20

0.0082
0.1345
1.256
3.125

3.80(10 )
0.004 00
0.2216
1.447

2.60(10 )
1.002(10-')
0.018 73
0.2746

1,01 0.94
0.99 0.90
1.00 1.01
1.03 1.09

0.97 0.84
0.94 0.83
1.02 0.88
1.05 0.88

1.01 0.63
0.85 0.57
1.03 0.69
1.15 0.71

0.50
0.54
0.67
0.74

0.32
0.31
0.28
0.22

0.97
0.92
0.99
1.07

0.84
0.81
0.89
0.85

0.85
0.75
0.84
0.83

1.07
1,14
1.48
1.83

0.78
0.67
0.64
0.59

0.61
0.69
0.85
0.95

0.41
0.38
0.35
0.29

1.06

g.s.
S1/2

I —1

d3/2
I =1
Normal

d'3 / p

I =2
Non-normal
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get worse as the energy is increased. Of course,
neither the BG nor STSG method is capable of cal-
culating the nonnormal component which, accord-
ing to the exact recoil calculations, has a peak
cross section at 60 MeV that is about & the peak
cross section of the normal component.

In contrast to this, the BK and R calculations
for the normal component are not too distant from
the corresponding exact calculations at all four
energies. The BK calculations of the cross sec-
tions for nonnormal l transfer, however, appear
to be not as reliable while the R calculations for
nonnormal and normal l transfer are of comparable
quality. The B second order calculations of non-
normal I transfer agree rather well with I.OLA
except at 30 and 60 MeV. More important, second
order normal l-transfer cross sections are quite
well converged at all energies.

C. Ca( 0, C} Ti

For this example of a multinucleon transfer,
none of the approximate methods yield cross sec-
tions whose magnitudes at an incident energy of 42
MeV agree with those of the exact calculation.
The BG method fails because a fit of the highly
oscillatory Vs orbital in "Ti to a spherical Hankel
function cannot be made at those values of r~
which contribute most to the reaction amplitude.
A satisfactory match can be made at rather large
values of r~; the resulting angular distributions
then approximate those of the exact calculation but
the cross sections are a factor of 20 larger in mag-
nitude.

When the cross sections are computed with the
BK or B methods, they are still much larger than
those of the exact calculation, as is shown in Fig.
2. Although the problem of fitting a bound state
wave function to a spherical Hankel function does
not arise, the BK method too is unsatisfactory for
this case of large mass transfer since it discards
terms beyond first order in the mass of the trans-
ferred particle. But even when the second order
terms are included, method B, the large discrep-
ancy yet remains.

Calculations have also been performed with less
extended n-particle orbitals; specifically, the
radii of the central potentials of 'W and ~ Ti were
changed to 1.25(12' ') = 2.862 fm and 1.25(40' ')
=4.275 fm, respectively. The deviations between
the approximate and exact calculations are then
diminished but the agreement is still quite unsatis-
factory. The second order calculations of B and
the exact calculations again yield very similar
angular distributions but at 40', where both calcu-
lations give a grazing peak, the second order cal-
culations are 2-,' times larger than the exact cal-

culations; a.t smaller angles this fa,ctor is some-
what reduced. Similarly, the BG calculations are
now only twice as large at the grazing peak as are
the exact calculations but this grazing peak is dis-
placed, occurring at an angle slightly larger than
50', and further, the forward angle structure is
much more damped than is the case for the exact
calculations.

V. CONCLUSIONS

Co( 0, (-) Ti~, E.
,
=42 MeV

I ORDER
/I

IQ

' 5 (
2" ORDER

b

IQ

p R

IP 3Q 5Q 7Q 9Q I IQ

FIG. 2. Calculated differential cross sections for the
reaction Ca(~~O, C} 4Ti~, at an incident energy of 42
MeV as given by the exact calculation (I.o&A} and the
exact first order and second order theories of BK and
B, respectively.

Since DWBA calculations which exactly include
recoil are frequently expensive, a number of ap-
proximate recoil methods have been developed.
We have compared several approximate DWBA
codes with exact recoil calculations to determine
the regions of applicability of the approximate
methods.

For single nucleon transfer reactions we find that
the calculated angular distributions are all nearly
identical, but sizable variations are often found in
the predicted magnitudes, particularly as a func-
tion of incident energy. We conclude:
(a) DWBA calculations which completely neglect
recoil are distinctly less reliable than those that
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do take some account of recoil. When the Q-match-
ing conditions are well satisfied, some of the "no-
recoil" cross sections are close to the exact values
but others show discrepancies well over 1(P&.
When the Q-matching conditions are poorly satis-
fied, the cross sections tend to be very much less
than the exact results.
(b) The semiclassical TMS method with the BG type
recoil correction is only safely applied when the
incident energy is well below the Coulomb barrier
and when there are good Q-matching conditions.
(c) The BG method incorporating their approximate
correction for recoil is useful below and near the
Coulomb barrier, particularly for reactions with
good Q-matching conditions.
(d) The methods of BK and R, which treat recoil
exactly to first order in the mass of the transferred
particle, may be applied over a broad range of
single nucleon transfer reactions provided that the
ratio of nonnormal to normal components is small.
The near equivalence of the BK and R calculations
argues that even for energies well above the bar-

rier the spherical Hankel function approximation
of BG is fairly accurate when care is taken in
matching that function to the radial part of the
bound state wave function g~.
(e) For cases of reasonably well Q-matched single
nucleon transfer which we have examined the sec-
ond order method of J3 deviates from the exact
DWBA calculations by only a percent or two. The
deviations for both the normal and nonnormal com-
ponents are somewhat larger in a situation with
poorer Q matching but these deviations are dis-
tinctly less than is the case for the first order
method of BK.

We do add the caveat that for the examples here
considered the bombarding energies are near the
Coulomb barrier or exceed it by only a few tens
of MeV. We have seen indications that the reli-
ability of the approximate calculations worsens
for higher bombarding energies.

For an ~-particle transfer reaction, none of
these approximate methods reliably predicted the
magnitude of the cross section.
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