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A method for constructing energy-dependent separable potentials of the form V = X(E) vie
i

from

(complex) elastic scattering phase shifts is presented. The energy-dependent coupling constant X(E) is
shown to satisfy a dispersion relation as a consequence of the requirement of multichannel unitarity. It
is this knowledge of the analytic properties of X(E) which makes it possible to solve the inverse
problem. It is further demonstrated that in some cases the inverse problem can still be solved

analytically even when the phase shift changes sign below the inelastic threshold.

I. INTRODUCTION

Separable potentials have been widely used to
represent basic interactions, '~ in part because
their use generally provides great simplification
in calculation and in part because separable po-
tentials permit simple analytic solutions of the
inverse-scattering problem. '~

A rank-one separable potential leads to an off-
shell transition matrix which is just a function
of the on-shell T matrix and the separable form
factor. In the momentum representation the fully
off-shell T matrix for a separable potential,
T(P, q;E(k)), is given by

T(p, q; E(k)) =
)

T(k, k; E(k)), (1.1)

where p and q are the off-shell momenta and 0
the momentum corresponding to the parametric
energy E, c(p) is the separable potential form
factor in momentum space, and T(k, k; E(k)) is the
on-shell elastic scattering transition matrix. In
this paper, we suppress the spin and isospin in-
dices, so that Eq. (1.1) actually represents a
separate equation for each angular momentum
and isospin state.

Separable form factors v(p) can be readily con-
structed from the elastic phase shifts as solutions
of the standard inverse problem. "However,
when inelastic channels are open, the elastic
phase shift becomes complex and the separable
form factors u(p) become complex, even below
the threshold for inelastic scattering. Although

the form factors still reproduce the on-shell scat-
tering amplitude, they can lead to an unphysical
off-shell T matrix. Calculations of pion-nucleon
separable potentials" have sometimes produced
off-shell T matrices which showed unphysically
rapid off-shell variation, and it has been shown' "
that such behavior is correlated with strong ab-
sorption from the elastic channel.

As is well known, "the presence of inelastic
channels requires an explicitly energy -dePendent
effective one-channel potential. In order to take
into account the energy dependence resulting from
the coupling to inelastic channels while still re-
taining the simplicity of a rank-one separable
form factor, Londergan and Monize used an ef-
fective one-channel potential of the form

i'. (E) =& a(E) l~)( I =~(E) iu&( i, (1.2)

where X(E) —= X»y(E) was taken to be an energy-de-
pendent coupling constant obtained by formal elim-
ination of the coupled inelastic channels and All de-
noted the sign of the interaction, i.e. , &11 +1 It
is the purpose of this paper to show that an energy-
dependent rank-one separable potential of the
form of Eq. (1.2) can be constructed under much
more general circumstances than were assumed
in Ref. 9.

In this section, we briefly outline our results
for the inverse-scattering problem. The validity
of the assumptions, and the physical conditions
under which this solution can be applied, are dis-
cussed in detail in the body of the paper. If the
effective one-channel potential is of the form
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given by Eq. (1.2), the elastic scattering matrix
can then be written as

T( . E) „(P) (e)
cP(E )+

where

d t U'(f)
( )=[r( )] '- „(2„),E E(f) ~ (1.4)

The second term of Eq. (1.4) is analytic on the
first sheet of the E plane cut above the elastic
threshold energy E,. If [y(E)] ' is also analytic in
the cut E plane, then we can write a dispersion re-
lation for ln5)(E'), viz.

1 "dE'Im[ln&(E')]
E+

0

Since v(k) is a real form factor, Eq. (1.3) gives
the relation

1m [lug)(E') ]= -6(E), (1.6)

where 5(E) is the (real) phase of the on-shell elas-
tic scattering amplitude, defined through

T(k, k; E(k)) =+
~
T(E) ~

e'~'", (1.7)

with the sign in Eq. (1.7) chosen such that 6(E)
=6(E) below inelastic threshold. These considera-
tions lead to the result

In order to use the inversion procedure described
above, the phase 5(E) must satisfy certain con-
ditions which are listed in Eq. (2.28). If 6(E)
satisfies these conditions, then the inversion pro-
cedure of Eq. (1.8) will produce a unique rank-one
separable form factor v(k), which will exactly
reproduce the elastic phase shift at all energies
and which is consistent with the requirements of
off-shell unitarity. From the prescription given
above, we can also construct the energy-depen-
dent coupling constant y(E). We observe that the
coupling constant y(E) can exhibit structure even
when the absorption from the elastic channel is
relatively weak. For example, in Fig. 1 we plot
y(E) for the P»vN partial wave. The phase shifts
used were those which were used in Ref. 10.

In Sec. II of this paper we review in detail the
assumptions and conditions which lead to the solu-
tion of the inverse problem for separable poten-
tials. In Sec. III we present some illustrative
examples to show the wide range of coupled-chan-
nel problems for which this method is applicable.
In Sec. IV we show how the solution presented can
be generalized by removing some of the restric-
tions on the phase shifts 5(E); the technical de-
tails of this extension are further described in
an Appendix.

II. INVERSE SCATTERING PROBLEM

Z„v '(k) = ~
~
T(E)

~
exp—

"
5(x)dx

8 0

(1.8)
We begin by assuming the existence of an under-

lying Hermitian Hamiltonian IJ and a corresponding

+0.2—

+0.t—
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600
P (MeV/c)

I

800 oooo

FIG. 1. The energy-dependent coupling parameter y(E) for the effective potential which produces tee experimental

phase shifts for elastic pion-nucleon scattering in the Ps& channel. The phase shifts used in the inverse problem and the

resulting v(k) are given in Ref. 1o.
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T= V+ VG ( iT, (2.1}

in which T is the transition operator, V is the
interaction potential operator, and G'+' is the
many-body propagator corresponding to outgoing
flux in each open channel.

We now define both a projection operator P,
with the property that P projects onto the elastic
channel only, and the conjugate projection oper-
ator" Q =1-P. Then, we may easily obtain from
Eq. (2.1}a Lippmann-Bchwinger equation for the
elastic channel alone, viz.

PTP =P'Q,ffP+P'g, gPG'+ PTP, (2.2)

where

Hermitian potential V. This Hamiltonian is as-
sumed to be capable of describing the interaction
in all channels of the system under discussion.
We further assume that the motion of the system
is completely described by a Lippmann-Schwinger
operator equation of the form

formal elimination of the coupled channels. In
order to retain the separability of the effective
interaction, we insist that

'U.fr(E) =&„y(E}Iv&&v I, (2.5)

PVQ=P lv&&w IQ,

QVP =Qlw)&vlP, (2.6)

where lw) is a vector in the space defined by Q.
In the usual channel notation, this implies a Her-
mitian potential of the form

that is, we completely absorb the energy depen-
dence of 1&,« into the coupling constant y(E). If
we like, we can simply take as an ansatz that the
effective one-channel potential has the form of Eq.
(2.5), with no reference to the explicit form of the
many-channel interaction which led to that equa-
tion. However, it is clear that Eq. (2.5) will fol-
low from any many-channel potential of the form

1&.„(z)= v+ VQg "&Qv

8'"(E)=QG"'0[1—QVQ~ "&Q] 'o

=Q[E- QrfQ]-"Q .

(2.3)

(2 4)

V33

a„lv, &&v, l a Iv, &&v I x, Iv, &&v, l
~ ~

~12 I v2&&vl I V22 V23

~12 Iv3&&vl I V32

The superscript -I in Eq. (2.4) refers to an in-
verse in the Q space. In Eq. (2.4) the Green's
function 9'" is specified for outgoing-wave bound-

ary conditions in all open channels.
It is clear from Eqs. (2.3}-(2.4} that g,«will

have an explicit energy dependence resulting from

7m z

(2.7}

where V», V», etc. , are completely unrestricted
potentials. Under this restriction, Eq. (2.3) may
be written as

v,«(E}= Iv, )&v, l[X„+&wlQQ"'Qlw)]. (2.6)

Comparison of Eq. (2.8) with Eq. (2.5) leads to the
identifications

and

Iv, &&v, l=- Iv)&vl (2.9)

r rr r r rrrrrr
Rez

y(E) =1+ &wl Qg—'"Q lw& .
~11

The vector Iw& is then

Iw& = Qx,*, Iv, &,

(2.10)

(2.11)

and we have made no assumption about the form
of the v&) which make up Iw&.

If & w Q9'(E}Q lw) exists for all values of E, then
for large IEI

FIG. 2. The cut z plane and the contour used to derive
the dispersion relation for 1/y(z).

&wIQQ"'Qlw&
( g(~~

(2.12)

faster than IEI '. This ensures that y(E)-1 for
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large values of E. From Eq. (2.4) we see that we

can analytically continue y(z) off the real energy
axis into the complex E plane. From the boundary
conditions on QS("(E)Q, we see that Imy(E) =0 for
real energies below the first inelastic threshold
energy a, . Thus the function y(z) can be analyt-
ically continued into the complex E plane, cut
along the real axis extending from e, to ~. 8
y(z} can be analytically continued into the cut E
plane, then so can 1/y(z}. Further, as Iz I

[I/y(z}]-1-0 faster than IzI '. However, a
pole of 1/y(z) occurs wherever y(z) has a zero.
We will return later to the question of zeroes of
y(z), and confine ourselves to the case where y(z)
has no zeroes in the first sheet of the z plane, cut
along the real axis from inelastic threshold ~, to

By Cauchy's theorem, we can write

[1/y(z }-1]dz' (2.13)

Choosing the path of integration to be the infinite
circle with a detour about the branch cut, as shown
in Fig. 2, we can neglect the contribution from
the circle since [1/y(z)]- 1 vanishes at Iz I=~, so
that E(I. (2.13) yields the result

where C '+' indicates the outgoing-wave prescrip-
tion for the Green's function. On the energy shell,
we can solve for 1/](.(E) to obtain1,1 " ]Jkz.[u(kzi)]mdE'

] (E) [ ( }] T(E) 2 2[E+ —E
0

(2.16)

In E(I. (2.16) p is the reduced massu in the elastic
channel, A, ~ is the momentum corresponding to
energy E, T(E) represents the fully on-shell T
matrix T(kz, kz; E), and E, denotes the elastic
threshold energy. The imaginary part of Eq.
(2.16) then gives1, 1 i]kz[]](kz)]'

rm
( )

=[v(kz)]'Im
( )—

(2.17)

Substituting this relation into E(I. (2.14), we ob-
tain

1 "[e(k )]'(1m[1/]]T(E')]- 'i]k ]dE'
y(E) ", E+ f~ E'-

0

(2.18)

1 1 " Im[1/y(E')] dE'
y(E} ]], E'- E- f~

(2.14) Substitution of E(I. (2.18) into E(I. (2.15) then gives

that is, 1/y(E) satisfies an unsubtracted dispersion
relation.

We demonstrate the implications of E(I. (2.14)
for the inverse-scattering problem by examining
the transition operator in the elastic channel,
which takes the form

(2.19)

for the on-shell T matrix. After multiplication of
both sides of Eq. (2.19) by Im[2v/]], kzT(E)] we ob-
tain

Iv&&vI

I/](.(E) —&~ I
G"'(E)

I ~&
' (2.15) (2.20)

50—

0, 40-

X
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20
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FIG. 3. The separable potential e& (p} given in Eq. (3.7}. For different:couplings to the inelastic channels, this poten-
tial produces phase shifts as depicted in Figs. 4-6, 13.
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where in Eq. (2.20) we define
I

T(E) = T(E) Im (2.21)

to get

z»[v(ks)]' = T(E) exp — . . (2.27)
6(»)d»-

-' So

[g(k )]'-=[a(k )]'Im
gks E (2.22)

The conditions, which the phase shift must satis-
fy in order that the inversion procedure described
above apply are:

As has been noted previously, Eq. (2.20) is a
one-channel equation, since T(E) satisfies elastic
unitarity, i.e. , Im[l/T(e)] = p, ks/2v. We can then
easily obtain g(k) from the usual prescription' for
solving the inverse problem for separable poten-
tials, which is repeated here for completeness.
We can write Eq. (2.20) as

T(E) ~11[8(kB)]
O"&E)

where

(2.23}

D'"(E) =- 1 —~„(g IG"(E}lg}
Since T(E) satisfies elastic unitarity, we may
write T(E) in terms of a real phase shift 5(E}de-
fined by

(2.24)

T(E) = exp-[i6(E)] sin[6(E)],
p, kg

so that, provided 6(E) is "well-behaved, "D"'(E)
can be constructed from the formula

(2.25}

~(,)(E)
1 "

Fi(»)d»

g E+zf -x-
0

(2.26)

From Eq. (2.25) and (2.26), we can calculate g(ks),
and we can then solve for v(ks) from Eq. (2.22),

(i) 6(E)-0 as E

(ii) 6(E,) =0;

(iii) sin6(E) cannot change sign below
inelastic threshold.

(2.28}

If 6(E) satisfies conditions (i)-(iii), then the in-
version procedure of Eq. (2.27) will produce a
unique rank-one separable potential with an ener-
gy-dependent coupling constant y(E), defined
through Eq. (2.16). Such a potential will reproduce
the elastic phase shift at aQ energies and will be
consistent with the requirements of multichannel
unitarity. Further, the coupling constant y(E},
which accompanies the separable potential v(k}
wi11 have no zeroes on the first, or physical, sheet
of the complex E surface and hence I/y(E) will
satisfy the unsubtracted dispersion relation given
by Eq. (2.14).

In the parametrization we have chosen, all of
the information about the coupled inelastic chan-
nels goes into the coupling constant y(E). Changes
in y(E) can produce dramatic changes in the elastic
scattering amplitude, even when the form factor
v( p) remains constant. Pion-nucleon separable
form factors constructed by the method described
above were foundzo to be smooth functions of the

60,-

50-

40-

20

IO

I

500

p ( MeV/c )

E

Iooo

FIG. 4. The phase shift generated by the separable potential -v~p)&&(IE}') with o&(II)) given by Eq. (3.7) and depicted in
Fig. 3.
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c.m. momentum, even when the energy dependence
of the on-sheO T matrix was quite pronounced.

III. SOME ILLUSTRATIVE EXAMPLES

where

X~ cm 1 Q~cz (a~ as)
X„[k,+ ia,]' [0,+ ia, ]'(a, + a,)'

We can illustrate the effects of changing y(E) by
examining a two-channel model problem with
separable s-wave potentials in each channel, where
we keep v,(p) fixed and vary y(E). In the momen-
tum representation, the potential matrix has the
form

x 1 — Qmc3

(0, + ia,)'

In Eq. (3.4), we define

a, -=~ a, (i 23).

(3.5)

(3 5)

&„vi(P)v (q) &~2v (P)v~(q)
(pl) l~& = . (3.1)

&~v&(P)v, (e) &»v, (P)v,(e)

Nonrelativistic kinematics was used throughout
these examples, with the momentum in each chan-
nel defined through the relation

In all cases the same potential v,(p) was used,
with

a, =~=250 MeV/c

c, =200 MeV/c,

Q2 $2+~ 2
l 2 2 (3.2)

The potentials v, (p) were chosen to have Yama-
guchi form factors

P +~&
(3.3)

(3 4)

Formal elimination of the coupled channels yields
an effective one-channel potential

200
I(P)

p
2 + (250)2 (3 7)

In Fig. 3, v, is plotted as a function of c.m. mo-
mentum and is shown to be quite smoothly varying.
In Fig. 4 is plotted the phase shift corresponding
to absence of channel coupling (A.~ = 0), and X» = 1,
which corresponds to an attractive interaction in
channel I. In Fig. 5, the parameters used are"

A~ =1,

c, =300 MeV/c, a, =400 MeV/c.

30-

20- - 0.8

- 0.6

IO - 04

- 0.2

I

500
I

1000

p ( IVI e V / c )

FIG. 5. The phase shift and inelasticity parameter, defined as one-half the phase and the magnitude of the S matrix,
S(k) =q(k) expf3i&(k)], for the model coupled channel problem given in Eq. (3.1). The potential v&(p) is given in Eq. (3.7)

and the remaining parameters are &fg +23=0, &(2=1, &2=300 MeV/&, n& =400 MeV/&. The arrow indicates the inelas-
tic threshoM.
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In Fig. 5, the direct coupling is absent in both
channel 1 and 2, and only the channel coupling
term remains. This term always produces an
attractive effective potential in channel 1 below
inelastic threshold, and produces a phase shift
with a pronounced spike at the opening of the in-
elastic channel. In Fig. 6, the parameters are

X~~ —Q2 —-1, A. j2 —1,

c, = 150 MeV/c, a, = 400 MeV/c,

c, = 300 MeV/c, a, = 250 MeV/c,

These parameters correspond to a "virtual bound
state" resonance; the coupling in channel 2 is
strong enough to produce a bound state in channel
2, in the absence of coupling to channel 1. The
channel coupling produces a sharp resonance in
channel 1 below inelastic threshold. We have
tested the inversion procedure numerically for
the T matrices given in Figs. 3-6. In all these
cases the separable potential of Eq. (3. 7), given
in Fig. 3, is reProduced.

Another application of this technique might be
to nucleon-nucleon scattering. Here, the phase
shifts are known accurately only up to about 350
MeV (laboratory energy); which is just below the
energy at which pion production begins to become
appreciable. Consequently, when the phase shift

analyses are extended to higher energy, one will
have to include absorptive effects in employing
the additional information as a constraint of the
off-shell nucleon-nucleon T matrix. %e have com-
puted the energy-dependent potential for the 'D,
partial wave, assuming the absorption is given
correctly by Amaldi's peripheral model calcula-
tion. '~ The input phase shifts are shown in Fig.
7, and the potential in Fig. 8. In order to il-
lustrate the importance of including the absorption,
we display two additional potentials (normalized
to unity at 350 MeV/c). The dashed line is the
potential obtained with the same phase shift 5 but
with the inelasticity parameter g set equal to
unity at all energies, the dash-dot curve is the
Tabakin potential. " The latter is not obtained as
the solution of an inverse scattering solution but
is simply an analytic form which approximately
reproduces the 'D, phase shift below 350 MeV/c.
Because of the normalization, Fig. 8 effectively
represents [cf. Eq. (1.1)] the half-off-shell extrap-
olation of the partial wave T matrix for k &350
MeV/c. The three extrapolations are substantial-
ly different for large off-shell momenta.

IV. GENERALIZATION OF THE
INVERSE SCATTERING SOLUTION

In this section we examine the conditions on b(E)
necessary to perform the inversion procedure.

I80—

j20

4P

90—
- 0.8

- 0.6

- 0.4

- 0.2

I

500 l000

p ( MeV/c)

FIG. 6. The same as Fig. (5) except the parameters used are A~~= A, &2=-1, A&&=1, et=150 MeV/c, +2=400 MeV/c,
c3 300 MeV/c, u 3

= 250 MeV/c . W'ith these parameters the inelastic channel, if it were uncoupled to the elastic chan-
nel, would have a bound state just below the inelastic threshold. In the coupled c~ne) problem, this produces a virtu-
al bound state resonance just bel, ow the inel, astic threshold.
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We shall see that some of the restrictions given
in Eq. (2.26) can be removed by an alteration of
the procedure for constructing the function D"'(E)
[Eq. (2.26)]. The first condition is that 6(E) -0
as E-~. When using experimental phase shifts,
which are supplied only up to some maximum ex-
perimental energy, we can satisfy this criterion
by choosing a high-energy extrapolation for the
phase shift which insures 6(E) -0. Relaxation of
the other restrictions on the phase shift requires
changes in the procedure for constructing D'"(E).
Equation (2.26) gives the relation

D'"(E}= -~»&~
I
~'"(E)

I ~)
y(E)

" 6(»)d»= exp- &+it- x
0

(4 I)

and this relation requires that D'+'(E) have no
zeroes and no poles on the first sheet of the cut
E plane. If 8(E,) =w, there is a pole of T(E), and
hence a zero of D' "(E), at negative energy E =- Es.
A zero of the T matrix corresponds to a zero of
y(E} [and hence a pole of 1/y(E}]. If this occurs,
then 1/y(E) will no longer satisfy an unsubtracted
dispersion relation and in this case Eq. (4.1) will
not obtain.

The many-channel potential given in Eq. (2.V}

can lead to phase shifts in the elastic channel
which are considerably more varied than would
be allowed by the above conditions. We now dem-
onstrate how the inverse problem may be solved
for any set of phase shifts which could have arisen

from a many-channel potential V of the form of
Eq. (2. 1). First, however, we must discuss the
limitations on the elastic channel phase shifts
implied by the existence of a many channel po-
tential of the form of V.

The general structure of an elastic channel T
matrix which arises from a potential of the form
of V will be quite complicated. These complica-
tions are a result of the possible permutations of
signs and the occurrence of poles and zeroes.
There are, nonetheless, some general systematics
in the structure of the elastic channel T matrix,
which can indicate whether a given on-shell T
matrix is compatible with the existence of a po-
tential of the form of V.

We recall Eq. (2.10), which we write as

~„y(E}=~„+(wIqst'(E)qI~). (4.2)

(4 2)

where the pole terms clearly arise from those
bound states of QHQ which lie below the inelastic
threshold c,. Since the inverse problem requires
a dispersion relation for 1/y(E), we must as-
certain the number and the location of the zeroes
of y(E). As a function of complex energy, z =»+ fy,

If a complete set of eigenstates of QHQ is inserted
into the definition of 9'"(E), Eq. (2.4), the general
form of X»y(E) is given by

If(E') I
dE'

&»y(E) =&»+ Q ' +E-E, Z-E'+sq '

I.O

0.8

I5
0)o

0.6

6Q
lO 0.4

0.2

200 400

T)b(Mev)
600 800

FIG. 7. The phase shift & and the inelasticity paraxneter g for nucl. eon-nucleon scattering in the D2 state. The inelas-
ticity is calculated according to the peripheral model of Amaldi (Ref. 14),
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the imaginary part of X»y(z) is given by

If(E') I'«'
Ily( ) S P j E [2

J
Eg f2

(4 4)

Thus y(z}=0 implies y=lmz =0, so that all of the
zeroes of y(z) must lie on the real axis. From
Eq. (4.2), we see that y(E) has a negative definite
imaginary part for E above inelastic threshold.
Thus, all of the zeroes of y(E} must lie on the
real axis below the inelastic threshold. "

At this point it is helpful to classify A.»y(E) into
four different classes and examine each class in-
dividually. The first is for A, » =+1 (i.e. , a re-
pulsive potential in the elastic channel) and y(c, )
& 0. The behavior of A.„y(E) in this case is de-
picted in Fig. 9. We see that the number of
zeroes of y(E) is exactly equal to the number of
poles of y(E) Azer. o of y(E) implies that the
energy-dependent potential g,«(E) and the elastic
T matrix both pass through zero, thus the position
of the zeroes of y(E) for energies above elastic
threshold are determined by the experimental
points where 5(E}passes through nv From F. ig.
9, we see that for the case under consideration
each zero of the T matrix is accompanied by a
bound state pole of QHQ.

The second case we consider is again a repulsive
interaction in the elastic channel (X» =+1), but

- lf(E') I'«'
E-E'+ig (4.5)

is always negative. Thus the effect of virtual
excitations to inelastic continuum states is to
produce an "attractive" effective potential below
the inelastic threshold. If this "attractive" ef-
fective potential is strong enough to override the
elastic channel repulsive potential, then the total
potential may change from "repulsive" to "at-
tractive" as the energy is increased.

The third case is for an attractive potential
(X» =-1) in the elastic channel with a»y(e, ) & 0.
We have plotted X»y(E) for this case in Fig. 11.
As for the first case, each zero of y(E) (and
hence of the T matrix) is accompanied by a bound
state of QBQ.

The fourth and final possibility is A, » =-1 and

p»y(e&) & 0. For this case, A»y(E) is depicted
in Fig. 12. In this case the number of zeroes
in y(E) is one less than the number of poles.
Actual phase shifts for the case of one pole in

with y(e, ) & 0. The behavior of y(E) for this case
is depicted in Fig. 10. We see that in this case
the number of zeroes of y(E) (and of the T matrix)
is one greater than the number of poles of y(E).
In particular, we may have a zero in the T matrix
wiihout any additional singularities in y(E). This
is possible because below threshold the integral
I given by

).2

I,O-
O

4)

0.8—
O
LA
tO

0.6—
a.

0.4

0.2

I

200

T) b (MeV)

400 600
I I

I

400

Pc ~ (IVleV/c )
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FIG. 8. The nucleon-nucleon separable potential in the ~D2 state. The unbroken curve is calculated according to Eq.
(2.27), while only the real phase shift & is used to obtain the dashed curve. The dash-dot curve is the potential of
Tabakin Qef. 15).
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E =(vl G'"(E)lv& .
A,„y E (4.6)

These points correspond to physical bound states

X„y(E) vs E
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y(E) and no zeroes have been given already in

Fig. 5. For this case, even though y(E) had a
pole, 1/y(E) had no poles and the procedure for
the inverse problem which we have previously
outlined was applicable.

We shall now see that the construction of v(k)
requires the knowledge of both the poles and
zeroes of T(E). The zeroes of T(E) are the re-
sult of y(E) passing through zero, the location
of which we have just discussed. The structure
of T(E) is such that the off-shell T matrix
(kl T(E) lk') is everywhere zero if E=E, , where

E& is the location of the zero of y(E) Th. e poles of
T(E), however, result from zeroes of the demoni-
nator D'+'(E), where

of the system and are marked by x in the lower
part of Figs, 9-12.

From Figs. 9-12, we have seen that the zeroes
of T(E) between elastic and inelastic threshold
generally are associated with poles in y(E) due to
the bound states of QHQ. The exception to this is
depicted in Fig. 10 where one might have a single
zero in y(E) [and hence T(E)] without a bound state
of QBQ. One can further note from Figs. 9-12
that a bound state of QHQ below elastic threshold
will generally lead to a zero of D'"(E) [a pole of
T(E)]. The exception to this can be seen in Fig.
10 where a bound state of QHQ [a pole in y(E) and

a. zero in 1/y(E)] is near the elastic threshold and

does not result in a zero of D"'(E).
The location of the zeroes of T(E) below elastic

threshold have no special physical significance
and cannot be determined from experiment. From
Figs. 9-12, one sees that one zero occurs between
neighboring bound states. There may be a zero
above the last bound state and below the elastic
threshold as depicted in Fig. 10, or this zero may
occur above the elastic threshold as depicted in
Fig. 11, where its location would be observable. As
the location of these zeroes in T below elastic
threshold is not observable, the inverse problem
loses its uniqueness in this case." These required
zeroes may be inserted at any location consistent
with their occurrence in Figs. 9-12, but the result
of the inverse problem will depend on their pre-

XII y(E) vs E I
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FIG. 9. In the upper graph ~ff(E) is depicted for A. ff
=+1, and for y(e~) & 0, with ~& the inelastic threshold.
The case where y(E) has three poles at the energies Ef,
E2, and E& is depicted. These poles are a result of
bound states of the Hamiltonian QHQ. For this case,
these poles lead to zeroes of y (E), and hence of T(E),
which are marked by "O." The corresponding f,&ffy(E)]
is plotted in the lower graph. The dot-dash line repre-
sents (vlt ~(E)lv) for energies below elastic threshold
Eo, where (vent~(E)lv) is real. The zero of D+~(E)
fa bound state pole of T{E)] is marked by an "x." The
energies required for the inverse problem are the loca-
tions of the poles of [iffy(E)] (here labeled Ef"'S&
and marked by "O" in the upper graph) and the energy of
the bound state (marked by "x").
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FIG. 10. The same as Fig. 9 except here the case
where A, ff =+1 and y(e;) & 0 is depicted. Notice that in
this case the number of zeroes of y(E) [and T(E)] is
one more than the number of poles of y(E).
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Xi( y(E) vs E
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FIG. 11. The same as Fig. 9 except here the case
where A=-1 and A&&yg~) & 0 is depicted.

cise location.
The above discussion may be seen to be con-

sistent with Levinson's theorem. For the separable
energy-dependent potential under present con-
sideration, Levinson's theorem"' is

5(E,)- 5( ) =(N- m) v, (4.7)

where N is the number of poles in the elastic chan-
nel T matrix [zeroes of D'+'(E)] and M is the num-
ber of zeroes of the T matrix [and of y(E) j. If
the phase shifts from elastic threshold to infinity
are known, the Levinson's theorem indicates the
number of zeroes of T(E) which occur below elastic
threshold. This number must always be equal to,
or one greater than or one less than, the number
of bound states.

A phase shift which begins at zero, is first posi-
tive, and then changes sign and remains negative
(such as the nucleon-nucleon singlet-S phase) is
an example of a phase shift which is not compatible
with an underlying potential of the form of Eq.
(2.7). The modified Levinson's theorem of Eq.
(4.7) states that for a single zero in T(E) with no
bound states, the phase at elastic threshold is
-x. Thus one cannot have 5(E,) start at zero,
change sign, and return to zero (or ns either)
without a bound state. The addition of bound states,
however, will necessarily add additional zeroes
in T(E) and thus even the addition of bound states
cannot produce these phase shifts.

We now consider the modification of the inver-
sion procedure which is required for the case
where D"'(E) has zeroes below elastic threshold,

E=E, &Eo, and poles at the real energies E=E&.
In the Appendix we show that D"'(E) can be con-
structed according to the prescription

1 " 5(x)dxx,exp-' ~ E-x+iEo
(4.8)

x exp — . . (4.9)
1 " 5(x)dx

, m @ E —x+if
0

In Fig. 13 we display the phase shift for a two-
channel model problem with separable potentials
in the form of Eci. (3.1). The potential c,(p) is
again given by Eq. (3.6), with

X„=L2 =-1, A. ~ =0.6,

c, = c, = 750 MeV/c, a, = n, =400 MeV/c.

These parameters produce a zero of D'"(E) at

~(Iy(E) vs E
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FIG. 12. The same as Fig. 9 except here the case
where &&& =-1 and ~&@ (e~) & 0 is depicted. Notice that
in this case, one has one less zero in y(E) [and hence
T(E)] than poles. Also, in this case, T(E) has two

bound states poles arked by "&")while &&p(E) has
only one pole below elastic threshold Eo.

where D'+'(E) has a series of zeroes at the N ener-
gies E=E„and a series of poles at the M energies
E=E~. The separable form factor will then have
the form
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FIG. 13. The same as Fig. (5) except the parameters used are ~&, =A»=-1. A„=0.6, c,=c,=750 MeV/c, 0.'2=0.3=
400 MeV/c. Notice that the phase shiR changes sign below the inelastic threshold. The inverse procedure presented
here has been tested numerically to recover v~(P) depicted in Fig. (3) from the phases presented in Figs. 4-6, 13.

k =310f MeV/c, and a zero of the T matrix at
k =150 MeV/c. Consequently, v, (k) was given by

the equation

k'+ (310)'
Z„[v,(k)]' = T(E,), (1 ),

(4.10)

We repeat that the position of both the poles and

zeroes of T(E) must be specified in order to con-
struct a unique separable potential which exactly
reproduces the elastic phase shift. This is analo-
gous to fixing the Castillejo, Dalitz, and Dyson
ambiguity" in the solution of partial wave disper-
sion relations.

V. SUMMARY

In summary, we have seen that the existence of
a many-channel potential of the form of Eq. (2.'I)
leads to an effective elastic channel potential
X(E) v(k) v(k'}. For any elastic channel T matrix
which is compatible with this underlying many-
channel potential, one is able to construct
A.(E) v(k) v(k') analytically from Eq. (4.9). The
T matrices may be quite varied, as can be seen
from the examples presented. There are, how-

ever, limitations on the T matrices which can
arise from a potential such as that given in Eq.
(2.7). For T matrices which are inconsistent
with this form of the coupled channel problem,
one obviously cannot use the procedure presented

here to generate an effective potential. There are
certain cases where the T matrix has zeroes (i.e. ,
the phase shifts change sign or pass through nv)

that can be treated by this approach. In these
cases, the zero of the T matrix is a consequence
of a zero in the energy-dependent effective cou-
pling constant y(E). For the case where T(E) has
no zeroes and 5(EO) = 5(~), the construction of

v(k} is identical to that of Ref. 9, although the
conditions under which this construction has been
shown to hold are not so restricted as in Ref. 9.

APPENDIX

xigl v)&v l

D"'(E)
(Al)

where

D"'(E}= —~„&v IG"'(E) lv&
1

y(E)
and

l
(,)( ) l )

1 "k"dk'[v(k')]'
E+&~- EI ~

(A2)

The fully on-shell T matrix T(E) is defined by

z„[v(kz}]'
D"'(E}

For complex energy z, the poles of T(z) arise

In this appendix we derive the procedure [given
in Eq. (4.8)] for constructing D'+'(E) in the case
where D'"(E) has zeroes and poles. We write the

elastic scattering operator in terms of the function
D'"(E)



1720 ERNST, LONDERGAN, MONIZ, AND THALER 10

from zeroes of D(z) [where D"'(E) -=D(E+iz)],
and the zeroes of T(z) arise from zeroes of y(z)
and hence from poles ' of D(z). The distribution
of poles and zeroes of D(z) has been discussed
extensively in the text. Briefly, the zeroes of
D(z) (which are marked by "x"in Figs. 9-12),
occur for real energies below elastic threshold.
The poles of D(z) [which are zeroes of y(z) and

are marked by "0"in Figs. 9-12], occur for real
energies below the inelastic threshold. It will

prove to be convenient to work in the momentum

variable k~ rather than the energy variable E. We

may consider D as a function of complex momen-
tum z. The zeroes and poles" of D(2) clearly con-
sist of bound state zeroes for Z' pure imaginary
and poles which can occur for either S pure real
or z pure imaginary. Since Dfz) is a function of
Z', the zeroes and poles will occur in pairs which

are symmetric about the origin.
Consider the case where D(X') has a zero at

z = + ik& and a pole at Z'=+ k,. Then we can con-
struct a new function S(z) which is analytic in the

upper half Z plane, viz.

z+o. z2-k02'" — ' (- ~)(- )"'". (A4)

(Ae)

where z is in the upper half plane. This leads to

[ („)]) P "dkdim{in[6(ks)])
n' „k'-k

(A7)

In Eq. (A4), a, ]3, and y are arbitrary complex
numbers with positive imaginary parts, hence
Qz) has no pole and no zero in the upper half
of the z plane. Further, if D(Z') -1 as ~Z'~-~,
then B(z) -1 as ~z ~-~, also.

Also, we have"

(k —kRR)D(+](E) =
~
(k —k R)D +'(E)

~ z '~ Rz,

(A5)

where 5(kz) has been defined in Eq. (2.25).
From the properties of 5)(z) we can see that

In[&(z)] will have no singularities in the upper
half z plane, hence by Cauchy's theorem

From Eqs. (A4) and (A5) we have

lln[ln[B(k}]]=—.ln( )
~ 1 ( ) ~ (n( )+(n( ) —k(k). (AS)

Substituting this into Eq. (A7) we obtain

Re[(n[B(k}]]= J, „(n(, . ) iln, ) (n(, )
~ (n(, )

——J

The integrals in Eq. (AQ) are of the form
(A9)

(A10)

which we can rewrite as

2mi, 0+ „k'- k k'+is k'+ o.* (All)

The first term inside the square brackets in Eq. (All) has no singularities in the upper half of the plane,
and the second term has no singularities in the lower half plane. We can thus replace the principal value

integral by adding or subtracting an imaginary term, viz.

j
" dk '(n[(k '+n)/(k ' ~ is)] k ~ n dk'n[(k'- s's]i'(k '+a*)] . k- is

2zi, , ] „k'-k+ iz k+is k'- k —ia k+0.*

(A12)

The first integral in Eq. (A12) has no singularities in the upper half plane, so closing the contour in the

upper half plane gives zero. Similarly, closing the second contour in the lower half plane gives zero.
Taking the limit s -0 we find

(k+(]. J

k
(A13)



ENERGY-DEPENDENT SEPARABLE POTENTIALS 1721

so that E(l. (AV) becomes

R,(,„(~(»(&,„(I&+ a, I I & ~ a( k' a
Ik+Pl Ik+yl t

" 6(k')dk'
k'- k

(A14)

Combining this with E((l. (A9), we find that

(k+iks)(k+ a) ks 1 6(k')dk'
(k+P)(k+y) s „k+is-k (A15)

Substituting this into E(l. (A4) and solving for D(k),
we obtain

~(» (&'+& ')
(

&'

)
& t (((x)ch

k + kp it can obviously be extended to the case
of N zeroes at k = ik, (i =1, . . . , iV) and M poles
at k = a k& (j = 1, . . . , M) through the formula

(A16)

E(luation (A16) was derived for the case of one
zero of D(k) at k =iks and a pair of poles at

1 " f((x)dx
„i+i~-x (A1V)
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