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In the present paper we discuss photonuclear reactions for photon energies Ey & 50 MeV. %'e show

in detail how the different processes concerning the nucleon-nucleon interactions enter the transition

matrix. Explanations are given for the similar behavior of {y, n) and {y, p) and for a strong relative

suppression of the reactions (y, pp) and (y, nn) compared to {y, np). This solves the standing

problems of photonuclear reactions at intermediate photon energies. %'e present numerical calculations

for the reactions {y, p) and (y, n) on 'He from 50 to 140 MeV photon energy and show in detail

how the different physical processes numerically enter the total cross sections and angular distributions.

Over-all good agreement with the experiments is achieved.

NUCLEAH REACTIONS 4He{y, P), 4He{y, n) E =50-140 MeV; calculated 0,
tT {~).

I. INTRODUCTION

Several attempts have been made for years to
explain the cross sections and angular distributions
of photonuclear reactions at intermediate energies.
The description of processes like (y, n), (y, p),
(y, pn), (y, pp), and (y, nn) in the pure shell model
is very unsatisfactory. Experimentally the cross
sections for (y, n) and (y, P) as well as the angular
distributions show very similar behavior. The
cross section for (y, Pn) is relatively large while

the reactions (y, pp) and (y, nn) are not very well
known. The cross sections calculated in the shell
model (sm) for (y, n) and (y, p) are too small by
about one order of magnitude compared to the ex-
periments. "Also, the angular distribution does
not give the trend shown by the experiments;
whereas the angular distributions for (y, P) show

the observed peak in forward direction, (y, n)

shows a peak in backward direction which is in

contrast to the experiment. The reactions (y, pn),
(y, PP), and (y, nn) are not explainable at all. There
were several attempts to go beyond the shell model
calculations by introducing nucleon-nucleon corre-
lations. Several methods have been used: (i)
Jastrow type correlations, ' ' (ii) short range cor-
relations calculated in the Bethe-Goldstone for-
malism, ' to name a few of them. The reactions
(y, Pn) have been treated mainly in the quasi-
deuteron model first introduced by Levinger. '
The above mentioned calculations were only par-
tially successful. Neither Jastrow correlations
nor Bethe-Goldstone type calculations were able
to give a satisfactory description of photonuclear
reactions.

In the present paper we outline a method for the

treatment of photonuclear reactions which avoids
the shortcomings of the above mentioned methods.
In going beyong the sm calculations we have to
insure several points of consistency: (i) orthog-
onality of the wave functions, (ii) gauge invariance
of our description of the process. The problem of
gauge invariance is a very severe one as we have
shown in an earlier paper. ' Introducing correla-
tions does imply that electromagnetic interactions
coupled to the correlations also have to be con-
sidered in order to insure gauge invariance (Fig.
I).

In the present paper we start from the simplest
possible description in going beyond the shell
model. We introduce NN correlations by means of
meson exchanges. This enables us to keep track
of physical processes entering the reactions. We
shall see that the gauge contributions to the intro-
duced correlations will make up the most important
part of the processes below pion threshold. This
gives an explanation for the suppression of the
reactions (y, pp), (y, nn) compared to (y, nn). It
gives also an explanation of the success of the
quasideuteron model. Nucleon-nucleon correlations
in the usual sense are shown not to be as important
as expected from earlier calculations.

We shall present as a numerical example cross
sections and angular distributions for the reactions
(y, p) and (y, n) on ~He. We show in detail the
importance of the different contributions to these
reactions. Although the calculations are done in
the most simple way we obtain a satisfactory
description of the processes in nearly every point.
This is mostly due to the unimportance of the
short range NN correlations as only these are
not very well known.
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can be learned by discussing the different pro-
cesses which altogether make up the Siegert theo-
rem.

In the absence of an electromagnetic field we
start from a total nuclear Hamiltonian H~ in the
form

FIG. 1. Photonuclear correlations to be included to-
gether with the introduction of short-range correlations
(SBC) for gauge reasons as far as electric transitions
are concerned. For magnetic interactions these contrib-
utions do not follow from gauge arguments only.

II. TRANSITION MATRIX

with eigenvalues E, and eigenstates j4 r&:

As the many-body problem cannot be solved
exactly we choose a shell model description

The quantities of interest are the matrix elements
for absorption of a photon of momentum )'rr (energy
Er) while the nuclear system makes a transition
from the state jr') = jl ~ ~ A. ) (only bound particles)
to a state jf) = j(1 ~ ~ A —j)(j)), Here j denotes
the number of particles emitted from the nucleus
after capture of the photon. We calculate the
transition matrix

where H„=- electromagnetic interaction, in a
reference frame in which the total momentum is
zero. In the following me are going to discuss
the problems which arise in the calculation of the
transition matrix. In order to achieve a deeper
understanding of the physics of the reactions me
are dealing with, we are going to keep apart all
physical processes which enter the total transition
matrix Mf&. We shall pay special attention to the
question of how one can improve the calculations
of a pure shell model. Going beyond the shell
model treatment via inclusion of nucleon-nucleon
correlations, one has to be aware of the fact that
nucLeon-nucleon correlations also have to be taken
into account, which are coupled directly to the
electromagnetic field (compare Fig. 1). We shall
see that this type of process is of special impor-
tance for photonuclear reactions at intermediate
energies. In the following we shall develop a model
which takes into account in a consistent way nu-
cleon-nucleon correlations and photomesonic in-
teraction contributions. As the electric transitions
are clearly dom. inating the photonuclear reactions
me shall concentrate only on them. In connection
with electric transitions we have to discuss the
Siegert theorem which tells us that we do not have
to worry about mesonic corrections. In view of
this theorem one does not see immediately the
reason for discussing mesonic exchange contribu-
tions to electric interactions. However, as we
shall see in the following a much deeper under-
standing of photoreactions can be achieved by not
using Siegert's theorem explicitly. Much more

j;) jH„jA& (9)

(9a)

@f E ~ +el @g
f p

(9b)

f +el (9c)

Given the *'correct" electromagnetic interaction
H„, the transition matrix can be calculated by
Eq. (9}. How does this electromagnetic interaction
look for our system (interaction V)? Without
nucleon-nucleon interactions we knom the answer
already. In this case, H„ is a sum of one-body
operators given by

Hei = Q urer(o') ~

a=1
(10)

with

a„(a)=A p/lif.

A denotes the vector potential of the photon. We

=Irp+R; 8 = V —U, (5)

with eigenstates jC'r& of the shell model Hamiltoniar
Hp:

ff, jC, & =E; j @,& .

g denotes the residual interaction.
The exact eigenstates j@r & of H„can be rep-

resented by a perturbation expansion

je, &
= je,&+[ft/(E, -ff,)] jar&. (1)

In the following we mant to discuss only first order
effects of the nucleon-nucleon forces; i.e., we use

je,&
= je,&+[ft/(s, -e,)] je, &

(generalization to higher NN correlations is
straightforward) The t.ransition matrix Mf, ,
Eq. (1}, is then given by (A denotes the number
of particles):
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consider in the following only the electric con-
tributions to k., (a} in the approximation

(12a)

Here Q~(a} are the usual electric operators

Q (a) =] e'" (p)-', [I + r'(a)] +e~"(n)-,'[I —r'(u)] J

processes correspond to the interaction of the
photon with internal nucleon lines, exchanged
mesons, and intermediate nucleons in other than
positive energy states. These additional exchange
contributions are given [in the approximation of
Eq. (12)] by:

x 1+r —j ~(k zr) Y"z(r), . (12b)
1 d

k~ dr

Using this electromagnetic interaction (one-body
operator) our transition matrix Eq. (9) is not
gauge invariant. In Fig. 2 we show the contribu-
tions taken into account by the use of a one-body
operator ff„. Figure 2(a) corresponds to the
expression Eq. (Qa): pure shell model-no correla-
tions; Figs. 2(b) and 2(c) correspond tothe ex-
pression Eq. (Qb): final state correlations, Figs.
2(d) and 2(e) correspond to the expression Eq.
(9c): initial state correlations. In all these pro-
cesses the photon interacts only with external
nucleon lines (i.e. positive energy states). As
already mentioned, introducing correlations in
this way does not insure gauge invariance of the
transition matrix. From the requirement of
gauge invariance the additional pieces to Eq. (9)
can be obtained. We do not want to discuss this
in detail as it is already discussed in the litera-
ture. ' ' The processes required by gauge in-
variance are shown in Fig. 3. We see that these

The total transition matrix Mz& is thus given by

Mfr =M-+Mf„, +M,'„,+M, , (14)

A. Shell model

The shell model contribution is given by

(note that Q~ is a long range operator).

where M' denotes the shell model contribution,
M~„, and M,'„, denote the NN correlation con-
tributions (final and initial state), and M„, the
internal or meson exchange contributions. We
shall now discuss the different parts of the transi-
tion matrix M&& separately.

(c)

+ gauge terms M +

FIG. 2. Different contributions to the total transition
matrix M~~. T is the T matrix arising from the resid-
ual interaction R. The calculations in this paper are
performed in the approximation T = R. The total transi-
tion matrix I« is separated into the following pieces:
(a) photon interaction in the pure shell model, (b) and

(c) photon interaction with the nucleons before the
nucleon-nucleon interaction (final state correlation),
(d) and (e) photon interaction with the nucl. cons after
the nucleon-nucleon interaction occurs (initial state
correlation). The + sign in diagrams (b)-(e) denotes
positive energy solutions; i.e., shel, l model states.

(a)

M'

FIG. 3. Gauge terms to the total transition matrix
M denotes the exchanged mesons.
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B. Final state correlations C. Initial state correlations

The contribution from the final state correlation
is given by (diagram, Fig. 4):

(16)

=P 4, ~, n (s)[a„q,])4&&. (1V)

Evaluating the commutator we obtain

ef @~R @,E +HEI
(21)

Also, the contributions from initial state correla-
tions tend to zero for increasing photon energy:

In a similar way, using closure to the electric
multipole states, we obtain the following expression
for M,'„, (diagram, Fig. 5):

(18) (22)

I + ~ 4'f RQg 4 j
y

E -HEI (20)

For increasing photon energy Ez this contribution
becomes less important as

(20a)

or, with the photon energy E& =Sf and E, -=0,

I!., = p (-& ~ E "E. )&o, l»l~&&~&&&. &oi&.

(19)

The calculation of the matrix element Eq. (19) can
be considerably simplified in a good approximation
by using closure to the multipole states. This has
been done earlier by Brown in the reactions (n, y)
and (p, y) just above the dipole resonance region. "
Similar expressions have been used by Fujii and
Sugimoto. " As we are interested in the region of
photon energy E& ~ 50 MeV this is the best way to
take into account the coupling to the resonance
modes. (This should not really be considered as
an approximation; it avoids the use of effective
charges arising from the coupling to the resonance
modes )Deno.ting by n.E~ a characteristic transi-
tion energy (dipole: hE&-I&d, quadrupole: AE,
-2k«&) we obtain from Eq. (19):

We see that both contributions to the transition
matrix arising from the NN correlations —final
state as well as initial state correlations —become
less important for increasing energy E&.

D. Exchange contributions

[ y, q, ]-(7,x ~;), - r'„r, —r,-r, ,
-

(24)

which indicates that the contributions M-, are

The exchange contributions (Figs. 6 and 'l) are
given by

m, =(e, [[ V, q, ] (4, &.

A remarkable fact concerning this contribution
is that it does not show such a dramatic dependence
on the photon energy as the initial and final state
correlations [Eqs. (20) and (21)]. For energies
E& near the pion threshold these processes clearly
seem to dominate the photonuclear reactions. The
numerical example we shall consider in Sec. III
manifests these facts. We shall see in the following
that the isospin dependence of this interaction
operator explains the successful working of the
quasideuteron model. The isospin dependence
of the commutator is of the form

(a)

FIG. 4. Final state correlations in first order of the
residual interaction B.

FIG. 5. Initial state correlations in first order of the
residual interaction B.
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symmetric in effect for neutrons and protons:

(r ', r,--r,-r,') (np& =
( pn&,

(r', T,
- —T, r', -)

( pp& =0,

(r; r, —T, T,')
~

nn& = 0 .

(25)

gauge invariance of our description, the Siegert
theorem is not violated as can be seen from the
total transition matrix in the form of Eqs. (15),
(20), (21), and (23).

III. NUMERICAL EXAMPLE

Concerning the photonuclear reactions this means
that the exchange contributions to (y, n) and (y, p)
are equally important. For (y, pn) reactions M,
does contribute while for (y, pp) and (y, nn) we
obtain no contribution. For these reactions only
the initial and final state correlations are possible
(less important for increasing energies).

It is interesting to discuss the reason for the
relative suppresion of the reactions (y, pp) and

(y, nn) compared to the reaction (y, pn). Con-
sidering for simplicity the exchange of one pion
only, we show the processes contributing to
(y, pn) in Fig. 6. For charged pion exchange, only
diagrams (a) and (c) can contribute to the electric
process. Diagram Fig. 6(b) gives no contribution.
For (y, PP) and similarly for (y, nn) (Fig. 'I), both
diagrams (a) and (b) can contribute; however, be-
cause of different time ordering the contributions
cancel each other. Process diagram Fig. 1(c)
gives no contribution as a neutral particle is ex-
changed. It should be noted that according to the

In order to show the importance of the different
contributions which altogether make up (in our
description) the (y, p) and (y, n) process —shell
model, correlation contributions (initial and final
state), mesonic exchange contribution —we give
numerical results for (y, p) and (y, n) on ~He for
photon energies E & 50 MeV. [Calculations for
Ez& 50 MeV have been reported in the literature
(Refs. 13-15). In this energy region our model
is not suited for a detailed calculation, since by
using closure to the dipole and quadrupole states
one cannot expect reasonable results near the
center of the multipole states. j We know from
Eqs. (20), (21), and (23) that the treatment of
short range correlations is not of great importance
(note that Q~ is a long range operator). This

7r' +

n
il

P P

(&)

iL

P
(c)

FIG. 6. Exchange contributions to the interaction of a
photon with the neutron-proton system. Only diagrams
(a) and (c) give essential. contribution to the electric in-
teraction. Diagram (b) does not contribute.

FIG. 7. Exchange contributions to the interaction of a
photon with a proton-proton system. Both diagrams (a)
and (b) give contributions to the electric interaction of a
photon with a proton pair. However, because of differ-
ent time ordering both diagrams cancel. Diagram (c)
gives no contribution as a neutral, pion is exchanged.
The cancellation of diagrams (a) and (b) leads to a
strong suppression of the reaction (y, pp) compared to
the reaction (y, pn). The suppression of Q, n&) has an
equivalent reason.



M. QARI AND 8. HEBACH

allows us to obtain good numerical results with
the use of an effective nucleon-nucleon potential.
It should be noted also that the use of an effective
potential does not destroy our arguments about
the gauge invariance of the transition matrix.
From the above arguments we expect only the long
range part of the potential to be important. Con-
cerning the electromagnetic operators we take
into account only electric dipole and quadrupole
interactions, which is a very good limit.

In the preceding section the following expression
for the transition matrix was derived:

(26a)

(26b)

(26c}

(26d)

In our example a single nucleon (neutron or proton}
is emitted from a single particle state ~k) into
a continuum state ]a) . The transition matrix Eq.

(26) is evaluated as follows:

M„=E«( I«&, I«& (-& & && I (««(&&u(2&l&«(l, mg«&, (&&+Q,(2&&l&'(&&u(&& —u(&&«(2»

+ 1 — " a1 2 @s1 +@i2

+E& — — a UQ 0 + a Q v — ip —vi Vik'+ p U4'1 1

+ P &a(1)v(2) )[V(1,2), [Qz(1) +pl(2)]] (k(1)v(2) —v(1)I&(2)) (27}

All states in this expression are eigenstates to
our model Hamiltonian 0,. For the present cal-
culation we have chosen a fixed Hamiltonian

H, =T+U, (28)

for both neutrons and protons. This potential is
chosen to give a binding energy of 20.7 MeV for
a nucleon in the 1s state.

The states ) v), ji ), and ~k) are bound 1s states
The state ]a) denotes the continuum state of the
outgoing particle (eigenstate of the same Hamilto-
nian Ho).

The nucleon-nucleon potential V is chosen as

(30}

where the single particle potential U is taken to be
of Woods-Saxon type:

1
U(r) = —62.0 1+e p[(r 1.74)/0. 4]-

ckx
(«„,«&&= Q c«(«,'«&P«(co««&& .

X=O
(31)

Here Cz contains the transition matrix. The ex-
plicit form is given in the Appendix. Equivalently,
we can write for the angular distribution

(k&, 8) =a+I&sin 8+ccosS

+ dain'8 cosB+c sin'8 cos'8, (32)

TABLE I. Effective charges (dipole and quadrupole
case) for proton and neutron chosen in the numerical
calculation.

our calculations. We use the following values for
hE~: L, = 1, 22 MeV; I = 2, 33 MeV.

We have calculated both the angular distributions
and total cross sections for the reactions (y, p}
and (y, n). The angular distributions are evaluated
in the form (El and E2 only):

with p = 0.71 fm '. We use for V, three values:
36 MeV, "44 MeV, and 60 MeV.

The effective charges in the operator Q~ are
listed in Table I. We note here that the choice of
these effective charges is not without problem. "
This effect, however, is of minor importance in

jeff (p) eff
( )

2
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where the coefficients are given in terms of C z..

=0 in our calculation since no

spin flip occurs,
a =C, +C, +C~

b = —p C, -+C~,
c = C, + C, = 0 in our calculation,

d=-+~C, ,

e= —~8 C4 .

The ratios d/b (a measure for the asymmetry)
and e/b (equal to 5o»/&rz, ) will also be compared
with experimental data as far as available. Fur-
ther, the integrated cross section is given by

a(ky) =4vC, (k„) . (34)

IV. RESULTS AND DISCUSSION

In Fig. 8 we show our results for the total cross
section of 'He(y, p)'H. The contributions of the
different pieces (in addition to the shell model)
according to Eq. (26) are presented separately.
Curve A shows the cross section obtained from
the shell model matrix element, Eq. (26a). The

«f(mb) ~

4He(g, p) 3H

100-

101-

102-

A

10 3 -&p
40 60 80

I I I

100 120 140

E& (wev)

FIG. 8. Total cross section for the reaction (y, P) on
4He as a function of the photon energy E&. A—shell
model contribution, C—shell model plus photon-meson
exchar~'e contribution, D—shell model plus nucleon-
nucleon correlations, B—total transition matrix: shell
model plus photon-meson exchange contributions plus
nucleon-nucleon correlations. The given curves are
calculated with a potential depth V0=44 MeV. The dotted
line belongs to the total cross section calcul, ated with
Vo= 60 MeV. This indicates the dependence of the re-
sults on the nucl. eon-nucleon potential of use. Experi-
mental data are taken from Bef. 18 ($ ) and Bef. 19 (g).

shell model cross section is about one order «
magnitude smaller than the experimental one.
This agrees with the observed trend in other
nuclei.

In curve C we present the shell model contribu-
tion plus the main correction obtained from our
model, namely the meson exchange contribution,
Eq. (26d). From the discussion of Eq. (22}we

expected that for higher energies this term will
be dominant. In fact this shows up in the numerical
example. The exchange contributions alone nearly
explain the experimental data for energies above
80 Mev.

In curve D we discuss the effect of the nucleon-
nucleon correlations in addition to the shell model.
We obtain the expected trend. For higher energies
these contributions become much less important
than the gauge terms (curve C).

In curve 8 we show the integrated cross section
obtained by the use of the full transition matrix,
Eqs. (26a)-(26d). For our choice of the potential
depth V, =44 MeV the results are able to explain
the experimental findings. Varying the potential
depth gives us a feeling for the importance of
having chosen the correct nucleon-nucleon poten-
tial. The dotted line corresponds to V, =60 MeV.
We see that the change of o with the depth is not
dramatic and that easily a value of V, can be
chosen to achieve complete agreement with the
exper iments.

In Fig. 9 we present the results for the integrated
cross section of the reaction 'He(y, n)'He. We
have essentially the same behavior as for (y, p),
in Fig. 8. This is the reason for not discussing
the different contributions again. We show the
shell model contribution (curve A} and the cross
section obtained for the total transition matrix
for different values of the potential depth (B,—= 36
MeV, B, -=44 MeV, and B, =— 60MeV). The com-
parison with the experiment does not give too
much insight into the physics, as there is not
enough experimental information.

We turn now to the discussion of the angular
distributions, Figs. 10 and 11. In Fig. 10 we
compare the angular distributions of the reactions
(y, P) and (y, n) for 60 MeV photon energy. The
shell model contribution (curves A) shows a peak
in forward direction for (y, p) and a backward peak
for (y, n). The additional exchange contributions
(curves C) already give the correct trend for
both (y, p) and (y, n), namely a peak in the forward
direction. The angular distributions calculated
with the total transition matrix (shell model +

correlations+ gauge terms} are given by curves
B. We see that the nucleon-nucleon correlations
in addition enhance the forward asymmetry for
(y, n}. The results are in agreement with the
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experimental findings. The angular distribution
of (y, n) is found to be peaked less in forward
direction than the one of (y, p) which agrees too
with the experiment.

In Fig. 11 we show the angular distribution for
(y, p) and (y, n) for a photon energy of 100 MeV.
Here we discuss two potential depths. Curves

By correspond to V, = 36 MeV, curves C, and

8, correspond to V, =44 MeV (curves C, shell
model+ gauge term, curves B, total transition
matrix). An interesting fact is that the effect of
the nucleon-nucleon potential is more pronounced
in the angular distribution. This leaves a good
possibility for the determination of the nucleon-
nucleon potentials from measurements of the
angular distr ibutions.

For a more detailed discussion of the angular
distributions we present the results in the form
of Eq. (32). The ratios d/b and e/b are given
in Table II for (y, P) and in Table III for (y, n) in
comparison with experimental values as far as
available. We have seen already that besides
the total cross sections also the angular distribu-
tions are showing the main trend of the experi-
mental data.

The ratio d/b which represents the angular
asymmetry is in good agreement with the experi-
mental data. We also obtain the observed trend

30-

' da (ub~
E = 6OMeV

10-

0 20 40 60 80 100 120 140 160 180

"da'(ub)

30. 4He(I, n)~He

20.

10-

8
0 20 40 60 80 100 120 140 160 180

FIG. 10. Angular distributions of the reactions
4He(y, p)3H and 4He(y, e)3He for E =60 MeV. A—shell
model calculations, C—shell model plus photon-meson
exchange contribution, B—total transition matrix.
(Vp =36 MeV}.

~(mb) ~(

4He(I; n) 3He

E =/OOMeV

100
3-

10 2-

80' I I

0 20 40 60 80 100 120 140 160 180

"der(ub)

4He(p n) 3He

3-

10 +)'
40

I I I I

60 80 100 120 140

EI. (MeI/')

FIG. 9. Total cross section for the reaction (y, n) on
4He as a function of the photon energy E&. A—shell
model contribution, B—total transition matrix as a
function of the nucleon-nucleon potential. used in the cal-
culation (B&=36 MeV, B2=44 MeV, F3=60 MeV). Ex-
perimental data are taken from Ref. 19 (g) and Ref.
20 (CI).

0
0 20 40 60 80 100 120 140 160 180

FIG. 11. Angular distributions of the reactions
He(y, p) H and 4He(y, ) He for && =100 MeV. Same

as Fig. 10 with potential depth t/'p =36 MeV (C&, B&) and
Yp=44 MeV (C, , B,).
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TABLE II. Integrated cross sections and ratios d/b
and e/b for the reaction (y,p) on 4He as a function of the
photon energy Ey.

TABLE III. Integrated cross sections and ratios d/b
and e/b for the reaction (y,n) on 4He as a function of the
photon energy Ey.

Ey
(MeV)

d/b
eor Exp a, b

e/b =50(E2)/0(E1)
Theor Exp ~

E
(Me V)

0(y, n)
(mb)

d/b
Theor Exp ' e/b = 5o(E2)/o(E1)

Theor

50
60
80

100
120
140

5.00x 10 '

2.28x 10
7.20x 10
2.80x 10
1.32x10 '
7.1lx10 3

0.6-1.0
0.8-1.2
0.9-1.4
1.1-1.5

0.73
1.12
1.50
1.72
1.87
] 96 ~ ~

0.4-0.9
0.5-1.0
0.8-1.3

0.22
0.37
0.62
0 76
P 90 ~ ~ ~

0.98

50
60
80

100
120
140

4.85x10 i

2.16x10 '
6.55x10 2

2.47x10 '
1.15x 10-'
6.16x10 ~

p.40 0.05-0.16
0.45 0.12-0.30
0.50
0 53
0.57
0 6] e ~ ~

0.07
0.06
0.06
0.07
0.08
0,10

' Reference 18.
b Reference 19.

~ Reference 20.

of the asymmetry in dependence of the photon
energy, namely an increase of the forward asym-
metry with increasing photon energy. For (y, n)
our values of d/b appear to be somewhat larger
than the experimental values.

The ratio e/b is a measure for the quadrupole
contribution in the total cross section. Our values
show the right trend with increasing photon energy.
However, the values are somewhat too small.
The reason for this can probably be found in the
quadrupole transition energy chosen by us and
seems not to be a failure of our method.

V. CONCLUSION

In the present paper we have discussed the
dynamical aspects of photonuclear reactions. The
transition matrix has been built up from the physi-
cal processes which enter the reactions. The
contributions to the total transition matrix consist
of three pieces: shell model contribution, nucleon-
nucleon correlation parts in which the photon
interacts with external nucleon states (positive
energy states} and terms necessary to achieve
gauge invariance of the description. This pro-
cedure has an advantage over the usual treatment
via Siegert's theorem, insofar as the physical
processes can be discussed separately, and as
the contributions usua11y called short-range cor-
relations are not mixed up with the correlations
connected with the interaction of the photon with
internal nucleons (negative energy states) or with
mesons mediating the correlations.

We have shown that for energies starting below
the pion threshold the gauge contributions to the
nucleon-nucleon correlations (mostly not con-
sidered in calculations) gives the main contribu-
tion to the transition matrix. As this interaction
is symmetric for neutrons and protons it gives
the main contribution for (y, pn} and does not con-

tribute for the same reason to the reactions (y, PP)
and (y, nn). This leads to a strong suppression of
these reactions compared to (y, np). The correla-
tions usually introduced are shown to be not as
important as thought up to now.

For a numerical example we have chosen the
reactions (y, n) and (y, P) on 'He. The reason for
taking 'He in a model calculation has been for
simplicity only. For the same reason an effective
potential has been chosen. For heavier nuclei the
arguments are valid in the same way. Our results
obtained for (y, p) and (y, n) are in over-all good
agreement with the experiments. We have been
able to explain the total cross sections for (y, n)
and ( y, P) as well as the angular distributions.
The effect of the photon-meson contributions
has been shown to be dominant for photon energies
Ey&80 MeV. The short range correlations in the
usual sense are less important in this energy
region. In conclusion we remark that the presented
model is expected to explain the experimental
findings of (y, P), (y, n), and (y, pn) reactions in
heavier nuclei as well.
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APPENDIX: EXPLICIT FORM OF THE
ANGULAR DISTRIBUTION FOR

(y, p) AND (y, n) REACTIONS ON He

The single particle states )k) and ~a) entering
Eq. (2't) have the following orbital parts:

( r ( k ) = g, (r) =—A(r) y,'(r),
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(r~a) =pi (r) = g 4vi "e '
& g, (k„r)Y,' (k, }Y", (r},

a
gt2 ~ l/

(A2)

(g (k, , r) = sin(k, r ——,I, x+6( } .1

(A3)

The angular distribution is written in the form of Eq. (31). In our calculation C~(k„) is given by

(2L + 1)(2L+ 1)
Cy(kq} = —2 k, k kq Q ) 1

- - I,(2 (LOLO~ XO) (L1L —1~30) cos(6~- I)X~(k„)XI(ky)
L, I = 1

(A4)

M„, =-,'M equals the reduced mass of the outgoing nucleon and the residual nucleus. The wave number }||,
is related to E& =Ace& and the separation energy B of the emitted nucleon by

a'k, '/2m, =Z„-H.
3f (kz) is given by

Of, = e,"(Z, + n, ) +~,SC, +6„r, ,

where

(A5}

(A6)

Kl,

+1 for protons

—1 for neutrons

+-,' for protons
and

--,' for neutrons

The expressions J~, Q~, K~, and I; are defined as

J z (k &)
= 1 + (0.9 Vo —39.4) — d r rg ~(k, , r)g~(k &, r)R(r),

0 (0„)=—
(

— drrK fk, , r)U(r)g (k„)B( },1 1

I. x+6 L 0

z,(a„)=f ~~~&.(i. , )c,I~„, )st~),
0

(A'I)

(A8)

(A9)

I' ~(k„) = dr rr. l,(k, , r}H~(k„,r)R(r) .
0

(A10)

g~(kz, r} is the radial part of the operator Q~, see Eq. (12b):

g~(k &, r) = —
L (L + 1)jL, ,(k zr) —Lj ~+,(k &r)j . (A11)

For our choice of the potential V, Eq. (30), the quantities G~ and H~ are given by

1
G (k„, r) 16

5 3r, R'(r, } + v~(r, r, )g~(k„, r, )

2 6
+ v,(r, r, )g~(k„, r)

H~(kz, r) =
32 E

— dr~R'(r~}[u~(r, r~)g~(k„, r ) +v,(r, r )g~(kz, r)J .32m E, —SE, E„+aE,
vo and v~ arise from the expansion of our potential V in the form

(A12)

(A 13)

—V ' = Q v (r„r)Yq (r)Y (r).
P. 'V I2 A, K

In this special case we have

kA" (far, )i A(f ur, )
vA(r„r, ) =4vV,

i ~(& ~ri)k'A'(fur, )

(A14)

(A 15)
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