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Channel coupling arrays and the reduction method in many-body scattering
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A diA'erential equation formulation of the multichannel coupled equations of Kouri and Levin
describing rearrangement scattering is given. The diA'erent channels are linked together in these
equations through the presence of the channel coupling array W. It is shown that the earlier results of
Hahn, derived using the reduction method, follow directly from the multichannel coupled equations by
making specific choices of the array W. These particular W's guarantee that the iterated kernels of the
coupled equations are connected in those channels which are explicitly considered, so that standard
numerical techniques can be applied to their solution.

Several years ago, one of us (Y.H. ) developed a
new technique known as the reduction method for
treating many-body scattering problems. ' It con-
sists of rewriting the Schrodinger equation in ma-
trix form, with certain interactions present in the
total Hamiltonian removed from each row or col-
umn. The method has been used, for example, to
discuss direct reactions' and distortion potentials
for many-body scattering. '

A detailed discussion of the contents of the meth-
od is given in Ref. 3 in terms of Green's functions
and their partitions, while both the Faddeev equa-
tions and the Watson scattering equations are
shown to follow rather simply from the general re-
duction procedure. The main feature of this ap-
proach from a practical point of view is of course
that the set of coupled scattering equations in the
rigorous formulations can be greatly simplified
such that the resulting set of equations can often
be solved with a reasonable amount of effort and

accuracy. By sacrificing the complete connected-
ness of the iterated kernels and by employing the
channel projection operators, we can construct a
simple framework in which the strongly coupled
direct channels may be treated.

More recently, the other hvo of us (D.J.K. and
F.S.L.) have introduced another method' for
treating many-body scattering, based on the use
of the channel coupling array W which links to-
gether the T operators describing transitions be-
tween different rearrangement channels. ' The
matrix 8', whose elements are initially undeter-
mined apart from a normalization condition, can
be chosen so as to guarantee that in an N-channel
scattering problem, the (N-1)st iterate of the
kernel of the coupled equations for the T operators

is connected. ' The resulting equations have been
used, e.g. , to study e +H scattering below the
n = 2 threshold' and to formulate optical potentials
for many-body scattering. '

Unlike the approaches of Faddeev and others to
three-body and/or many-body scattering, ' both of
the preceding methods are based on the explicit
use of the channel interactions (and/or ancillary
distorting potentials) occurring in the many-body
Hamiltonian describing the system under consid-
eration. Because the starting point of these two
methods is the same (i.e., use of channel inter-
actions), they must be closely related. The pur-
pose of this note is to show that the equations of
Hahn, ' for both the cases of %=2 and X=3 as ex-
amples, follow from particular choices of the
channel array elements S';,. used in the new equa-
tions of Kouri and Levin, ' for the two-channel and
three-channel problems. The method of Kouri
and Levin may thus be regarded as another means
for realizing the equations of the reduction meth-
od ' and also as a means for providing further
justification' for using the approach of the reduc-
tion method.

The procedure we follow here is to derive the
equations of Refs. 4 and 6 using the exact formal
solution to the usual Lippmann-Schwinger equa-
tion, rather than starting with the T operator
equations4'~; next we show that the transposed ma-
trix operator may be used to generate solutions to
the many-body scattering problem, and then, by
specific choice of the elements W, &, we derive the
results of Hahn. We close with a brief discussion
of choices of W for N&3.

Let H be the total Hamiltonian for the system,
and let 0, be the channel Hamiltonian in channel i .
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II, describes the internal states of the subsystems
(or clusters of particles) forming channel i, and

also their relative motion. We also introduce dis-
tortion potentials Y, in channel i, so that the rel-
ative motion could be distorted wave, rather than
plane wave. If Y,. =0, then V, =H-H; is the chan-
nel perturbation, while if Y, wO, then V, —Y, is
the channel perturbation, as in Refs. 1 and 3.

Assuming Y; WO, the states of H, are denoted

i)&,'(i)&:

(H, + Y; ) ( )«,') (i)&
= E [ X&;)(i)&,

where E is the sum of the kinetic energy in the
channel plus the internal energies of the clusters.
Scattering amplitudes for transitions between
channels k and j are determined from

&»=()«e)(j ) I T,„(E+i0)~)&&s)(k))

+(4 i Y i)«')(k)) 6

where the T» are operators derived below.
The full scattering state generated from

~ )&e(k)&

is
~
e(e'(k)&:

I ge'(k)& =
I Xe) (k)&+ G"(V» —Y») I Xe'(k)&, (3)

where G&' =(E+ie —H) ' is the full, outgoing-
wave Green's function. To derive an integral equa-
tion for (

)ke(') (k)), one usually expresses G "via

a Lippmann-Schwinger equation involving a partic-
ular channel Green's function GI') =(E+ie —H;) '.

G (+) —G(+) + G(+)
( V Y )G(+) (4)

g W„=l or P W&, ——1,

where i and / run over all N channel labels.
We multiply both sides of (4) by W«and sum

on i to give

G ~ = O'„G&'~+G", V, —Y,. G&'~, 6

which partitions G
' over all the channels by

means of the parameters W„. The index I is free
to be chosen as is convenient.

Straightforward substitution of (4) into (3) leads,
as is well known, to difficulties involving homoge-
neous equations when i+ k. The resulting equation
is not connected, nor is the dependence on the
channels other than i included except via the con-
tinuum states in G&'. (The argument of the
Green's functions will be suppressed in the re-
mainder of this work. }

We finesse these problems by coupling all chan-
nels together using the channel coupling array W,
whose elements S',

&
are initially restricted only by

the normalization condition

Substitution of (6} into (3}gives

(~)& = I&(' (&)&+/»' G)+ () —&j+&' —&'~)lg ()')& Y )&'; G (); —);) (»+ ()')&.

The product G(')[V» —V, + Y,. —1'»] ))«s)(k}&, in lim-
it e -0', apart from the distortion potentials, has
been shown by Lippmann" to be equal to
—6;» ~)&&e)(k)), where 6,»=1 —5;». If I', and Y» de-
pend only on relative coordinates between clusters,
then Lippmann's result still holds:

lim G&')(V„- V, + Y& —Y»)= —5&»,~ Q+

when acting on states
~ )&s (k)) .

We now assume that (8}holds in ('I}, which be-
comes

(8)

I
4'&')(k)& = W„ I

X&,"(k)&

+g W„.G&')(V, —Y, ) )+ )(k)&. (9)
S

Use of the limiting procedure has not led to a ho-
mogeneous equation, and it can be shown' that the
solution to (9) in limit e -0 is just Eq. (3).

Let us now define channel scattering states
I ee" (k)& by

[ e&+)(k)& = g W» (
&)&,»(k)&. (10)

Substituting (10) into (9) and noting that the W„are
ar'bitrary immediately leads to

I q~" (k)) =
I

)&&e)(k)& 6~»+ G~'(V~ —Y)) Q W); I
y(e" (k}&

as a set of coupled equations for the channel scat-
tering states. In differential form, the set (11)
reads (lim e -0'):

(E —Hq —Yq) ~
(})(e))(k))=(V, —Y,) Q W(, )(j)&&)(k)&.

(12)

If we consider the cases N=2 and N=3, and sub-
stitute the values of W, &

given below [Eqs. (36)
and (41)] into Eq. (12}, we find that the result is
simply the transpose of Hahn's equations. While
these transposed equations are valid ones, it is
also possible to obtain precisely Hahn's equations.
What we need in place of the term (V, —Y&}W„ in
Eq. (12) is its transpose, viz. , W&, (V; —Y;). An
equation involving the term W„(V, —Y, ) can be de-
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rived from the Green's function, ' or directly from
the Schrodinger framework. ' However, we will
derive it here" using the equations for the T op-
erators, thus showing the interrelationship be-
tween the two formulations. (See also the following
paper. }

The operator T» describing transitions between
channel k and channel j is defined by

to T» of (15) is the "prior" form, given by

T»=(V» —Y.}+(V~- Y&}G'(V.—Y,). (24)

(25)

We have also used this equation as a starting point
to derive alternate coupled equations, similar to
(14). In matrix form, these latter equations are4

T='U +'0 @T

T ) g~+l(k)) = (V, —Y ) [ 4"~+l(k)) . (13) or in detail,

T)~= (V~ —Y~)W,q+(V) —Y~) Q W, ( G%'l T». (14)

This is the same set of integral equations for the
T» derived from the definition of the transition
amplitude':

T~„= (V~ —Y))+ (V~ —Y~)G~+l(V~ —Y~}. (15)

On multiplying both sides of (9) by (V& —Y&) from
the left, and using (13), we find a set of coupled
integral equations for the T» ..

T»=W»(Va —Ya}+War g (V& —Y&)GI T» ~ (26)

Matrix elements of T,„defined by (26) agree with
those of T» defined by (14) when both are taken on
the energy shell. ' Hence, one can use either the
set (25) or the set (16) to compute scattering am-
plitudes.

Defining an alternate matrix of Mgller wave op-
erators Q using

T=U 0
On the energy shell, matrix elements of the solu-
tion to (14) are equal to those of (15).

We may reexpress (14) in matrix form:

and substituting into (25}, we get

0=1+@'0 0
or

(2't)

T=V +V@T,

where

&» —(V~ —Yg)W»

and

(16)
(28}II» =6»+ Q G,'Wq, (V~ —Y))0(„.

t

Operating on [ }(&zl(k}with both sides of (28) de-
fines a new set of scattering states

~
Ps»(k)& obey-

ing

ega= Gg' &ga
(+}

The formal solution to (16) is

T=+%) Q%3,

(18)

(19)

I {I~s'l(k)& =
I

X~s'(k)& 6»+G,"W, (

x g(V, —Y,. ) ~
j&'~(k)&. (29)

where

and 9 obeys

(20}

(21)

Equation (29) is the desired result. Multiplying
both sides of (29) by (G~' ) ' and taking limit e -0'
gives

(Z-H, Y,) ~
q&,»(k)& =W„g (V,. - Y, ) ~

q&,'&(k)&.

which leads, via (16) to

0 = 1+Ob'QQ; (23)

Eq. (23), when acting on
~
&~zl(k)&, gives (11).

Equations (16}-(23}werepreviously derived'from
Eq. (15), the "post" form of the T operator. How-
ever, it is well known that an equivalent operator

Hence, it follows from (20) and (21) that T also
obeys a left-handed equation,

(22)

The set of equations given by (11) is recovered
from (16) by defining a Mgf lier wave operator ma-
trix 0 by

(30)

It is this form from which the equations of Hahn'
can be easily derived. We stress that both sets of
equations, (11) and (30}, are valid means of com-
puting scattering parameters; their only difference
is in the channel coupling interactions.

Up to this point, the parameters W» (or W, ~) are
merely arbitrary elements in a scheme for cou-
pling all the channels together. While any W»
satisfying Q& W» = 1 are in principle valid choices,
in fact the requirement that the iterated kernels of
Eqs. (25), (28), or (29) be connected, places quite
rigid limitations on the choices of the W», and
thus reduces their apparent arbitrariness. A gen-
eral class of W's for the N-channel problem, de-
noted the channel permuting arrays, has been dis-
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The choice l =i is allowed since l is free to be
chosen as we wish. Substituting (31) into (30) and
suppressing the initial channel label A then leads to

and

(ff, + y, —E) I j(,"& = -( V, —v, ) I
y(2»

(32)

cussed elsewhere' and shown to lead to the (N-1)st
iterate of the kernels of the above mentioned equa-
tions being connected. In addition, we have also
shown that for the case N=3, there is a choice of
8' leading to the first iterate of the kernel being
connected. " %e now use this latter choice for
N=3, and the channel permuting choice for K=2,
in Eq. (36) and show that they give the equations of
Ref. 1.

For ¹2,the channel permuting array is ob-
tained by setting l =i for each term of the sum,
and then choosing

Written out as a matrix equation, (37) is

V23

V3 H2 —E V, 3

(~ jj(')))

I
q(2)& —0

l I
q(&)&

(38)

which is the desired equation. This is the differ-
ential form of the Faddeev equations in which only
bound-pair channels appear.

Notice that both the choices of W, ~ given by Eqs.
(31) and (36) obey Q&IV~„=1. Furthermore, we can
use each of these choices in the set of equations
(12), to give results quite similar to those derived
above. In the N=2 case, we would find the right-
hand sides of Eq. (32) interchanged, while in the
N=3 case, the matrix operator of (38) would be
replaced by its transpose. Both of these equations
resulting from the use of (12) are of course also
valid starting points for computations.

In addition to the use of (36) in the %=3 case, we
could also have employed a channel permuting ar-
ray. There are two such, '" which are transposes
of each other, one of them being

which are Hahn's equations for N=2, which he ob-
tained via the reduction method.

For N=3, we shall first specify the notation in
more detail. Assuming only pairwise interactions,
we have

0 1 0)
001

ll o of
(39)

H,. =H, + V„=-H, + V~'~, (33)
Use of (39) in (30), with I; =0, leads to (L=f)

where H, is the sum of kinetic energies. Thus, we
find

V,. =H-H, . = V~~~+ V~'~,

0 H, —E V, ~ I
(I)(s2)& =0,

V, 0 H3 —E

(40)

and using the quantity 5,.&, we may write
3

v& "~e,„.
n=1

(34)

For simplicity, we set the distortion potentials
F& =0, and then consider a typical term from the
right-hand side in Eq. (30):

(35)

(36)

With this choice, Eq. (30) becomes

3

W, g V,. =W„V~"~a,„.
n=1

To obtain the N=3 (Faddeev) equation, ' and also
an integral equation [such as (29)] whose first
iterated kernel is connected, we set l=n for each
n in the sum in (35) and then choose"

g (ff, -E) I(((,*»+g v, I j(,')& =o.
i=1 i

We then make use of Eqs. (33) and (34) to write
(41) as

(41)

3 3

(ff E) P I
y(()&+ + v(()

I
j(&)&

+ Q 6;, V(')
', g(~()& = 0, (42)

where we recall from (34) that V, = V(~) + V(~).

This is yet another valid starting point for compu-
tations in the N=3 problem. Furthermore, we can
easily show that the components

I )t)s & satisfy the
same basic relation that is the "touchstone" of
Hahn's approach. To establish this result, we
simply add up the three equations summarized in
the matrix equation (40):

where the initial channel index k is again sup-
pressed.

(3'I)
or finally

(e, + v E) p I
j(')& = o. (43)
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From this we conclude that the total wave function

~ g) is given by
equation

H, —E V 0 ~ ~ ~

3

t=1
(44)

H= 0 H

(V, O H,

are identical to those of the ordinary Schrodinger
Hamiltonian H Hp+ V Theme axe no spurious
solutions.

Analogous to (40) in the N-channel case is the

This is Hahn's starting expression, and shows
rigorously that for the %=3 case, the basic equa-
tion of the reduction method is recovered using
any of the W arrays that lead to connected iterated
kernels (i.e., either channel permuting arrays or
the array that leads to Faddeev-like T equa-
tions. '" It also shows, incidentally, that the
eigenstates of H given by

0 H, -E V,

H, —E

0 0

0 ~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

0 ~ ~ ~

)
q(2))

0

(NJ)

(45)

=0

In the N-channel case, there are (N I)! cha-nnel

permuting arrays'; Eq. (45) is just one example
of the (N- I). resulting equations, distinguished
by permutations of the labels of the channels.

Both (40) and (45) may be regarded as alternate
realizations of the equations of the reduction meth-
od for arbitrary ¹ The flexibility of the channel
coupling array technique is evident from these ex-
amples. As shown elsewhere, ' the ability of these
equations to produce accurate numerical results
has been demonstrated for the case of l=0, e +H
scattering in the approximation of retaining only
the ground state of hydrogen in expanding the chan-
nel Green's function. Further calculations to test
the accuracy and thus the potential applicability to
other scattering systems are underway.

*A. P. Sloan Foundation Fellow, 1972-74; Alexander
von Humboldt Senior U. S. Fellow, 1973-74. Perma-
nant address: Departments of Physics and Chemistry,
University of Houston, Houston, Texas, 77004.

~Work supported in part by the U. S. Atomic Energy
Corn. mission.

Y. Hahn, Phys. Rev. 169, 794 (1968).
Y. Hahn, Nucl. Phys. A132, 353 (1969).

3Y. Hahn and K. M. Watson, Phys. Rev. A 5, 1718
(1972).

4D. J. Kouri and F. S. Levin, unpublished; Bull. Am.
Phys. Soc. ~19 489 (1974).

~M. Baer and D. J. Kouri, J. Math. Phys. 14, 1637
(1973).

D. J. Kouri and F. S. Levin, Phys. Lett. 50B, 421
(1974); see also %. Tobocman, Phys. Rev. C 9, 2466
(1974), whose prescription for specifying a W leading
to connected iterated kernels is an example of a
channel permuting array.

~D. J. Kouri, M. Craigie, and D. Secrest, J. Chem.

Phys. 60, 1851 (1974); D. J. Kouri, F. S. Levin,
M. Craigie, and D. Secrest, ibid. 61, 17 (1974);
D. J. Kouri, F. S. Levin, M. Craigie, and D. Secrest,
unpublished; Y. Hahn, unpublished e + H calculations.
We note that the singlet S-wave e + H phase shifts in
the 1s approximation obtained by Hahn using Eq. (32)
and by Kouri, Craigie, and Secrest using Eq. (14),
each with F; =0, were identical. This shows that the
contents of these two equations, which are the trans-
pose of each other, are the same.

D. J. Kouri and J-L. Lin, J. Chem. Phys. 60, 303
(1974); D. J. Kouri, J-L. Lin, and F. S. Levin, un-
published; D. J. Kouri and F. S. Levin, unpublished.
L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459
(1960) [transl. : Sov. Phys. —JETP 12, 1014 (1961)];
for further references see, e.g. , G. Bencze, Nucl.
Phys, A210, 568 (1973}; E. Redish, to be published,
B. A. Lippmann, Phys. Rev. 102, 264 (1956); see also
Faddeev, Ref. 9.

~~D. J. Kouri and F. S. Levin, unpublished.


