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An exact prescription is given for taking reference spectrum wave functions, and deriving
correlated wave functions which properly adhere to the Pauli exclusion principle.

The reference spectrum method® is widely used
in nuclear structure studies to obtain solutions of
the Bethe-Goldstone equation:

¢o=¢o*%v¢0' (1)

The starting point is generally to replace @ in
Eq. (1) by unity:

1
VE=po+3WE, (2)

thus neglecting the effect of the Pauli exclusion
principle. It is well known that this is a poor ap-
proximation in finite nuclei. It is acceptable, how-
ever, because the exact g matrix

g=v+v%g (3)

can then be accurately determined from the refer-
ence spectrum g matrix

1
gR=v+vzgR (4)

through the relationship®:

£=8r +g<Q;l)gR- (5)

Corrections to the reference spectrum wave func-
tion y® are the subject of this paper. Let us begin
by defining the defect functions:

Q
Xo =¥ — ¥o =—ég‘po (6)
and
R_,R _1
Xo =¥o0 —¥o =2 8r%o - )
Combining Eqs. (5)=(7) one obtains:

-1
Xo =§gg¢o +%g<Q p

>gn¢o
= R Q R 8
=Qxo +5 8Q-1)x - (8)
Now consider the operator P=1 -, which can

10

be written as

P=Z|¢a>(<ﬂ4|- 9)

d

The Brueckner form of the Pauli operator prohibits
any nucleon from being scattered into an occupied
state, including those states defining ¢,. We des-
ignate all such forbidden states by d in Eq. (9).
One then has

Px5 = (0al X5)a - (10)
d
Substituting Eq. (10) into Eq. (8) we obtain:

Xo =X = 2 (@al X)os —%g > (@alx§)9a
d d

=x§ = D {Pal X5 e (11)
[

where Y, is the correlated wave function corre-
sponding to ¢,

%:(Pa"')(d:(l’a*'%vlpa- (12)

Eq. (11) can be arranged into a more compact
form:

¥s =Yo + Z (PalX5)¥a
= Z (@al o) +{Pal X520
d
= D APal ¥4 (13)

To extract §, out of Eq. (13) one must calculate
reference spectrum wave functions® in the space d

1
vi=gar 00k, (14)
so that Eq. (13) is generalized into

D IR CAL T DI (15)
d
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Then one simply solves Eq. (15) for §, by matrix
inversion. Note that the transformation matrix is
not unitary. ¥, and the y¥ form sets of functions
which are neither normalized nor orthogonal, nor
is either set complete. Equation (15) is, however,
very easy to set up and solve numerically with
modern electronic computers. In practical appli-
cations the space defined by d will be of infinite
dimension, and thus must be truncated as an ap-
proximation. The same problem is present in
Pauli correcting the g matrix elements through
Eq. (5). In most calculations on finite nuclei it is
found that retaining less than 20 functions in d
yields acceptable accuracy.*®

A fair approximation for Eq. (15) can frequently
be obtained merely by limiting the space d to one
function, ¢,. In this case one obtains

o= (@o l¥ENE, (16)
which can be rewritten
Xo = (1+(@0 [ X)) ™ (X8 = (@0 [ X5 00)- (16")

The approximation often attempted (but seldom
published®) in place of Eq. (16’) is

Xo= Xa ={@ol X020 - (16")

Equation (16’) is just as easy to calculate as Eq.
(16”), and by far superior. In particular if one is
working with a hard core potential, one should
have within the core radius

XOZX.ORE_(pO'

This condition is violated for x,. On the other
hand Eq. (15) retains all boundary conditions on x
at any order of approximation.

To illustrate the procedure we calculate the
Pauli correction appropriate for two nucleons in
the 0p shell coupled to the 'S, state, using the
Reid soft core interaction. This example is cho-
sen because the 'S, component of modern nuclear
interactions is the strongest partial wave which
does not involve any channel coupling. The needed
overlap integrals, truncated at the 0s2s configura-
tion, are displayed in Table I. One simply inserts
these into Eq. (15) and solves for $(0p?) by matrix
inversion (all states must obviously be coupled to

TABLE 1. Overlap integrals (p@eylyn,l,) 9 Ra]lin;l;
needed in the 1S, state, with %w=16 MeV and W = —30
MeV.

¥
d:\ 0p? 0s? Osls 0s2s

0p? 1.082 —0.046 0.029 0.030
0s? -0.080 1.151 0.080 0.024
Osls 0.029 0.046 1.082 0.045
0s2s 0.019 0.010 0.030 1.033

'S, so we omit that designation,.
$(0p?) =0.928y R (0p?) +0.066y *(0s?)
—0.027p%(0s1s) = 0.017YZ(0s28) ++- - .
)

Coefficients for the remaining components
(0s3s, Os4s, ...) converge quite rapidly because
the appropriate Moshinsky-Brody brackets:

Iyl Ly =y (nINEL|n,Liny L, L) | nINSL)
(18)
needed to calculate the two-body overlap integral:

(@i LL) |y R (il B L)

= > mlnmLL|nINSL) (' UNEL|n\lin L)

nin't'Ne
x(p )| (n' 1)) (19)

will force the terms {¢(0sns)|y®(0p?)) rapidly
toward zero for increasing values of n. Since only
one of the Pauli corrected wave functions given by
inversion of Eq. (15) has significance in this case
[4(0p?)] convergence should be adequate. Of
course, the actual number of terms needed will
depend on the sensitivity of any dynamical variable
to be calculated to the higher configurations. At
any rate, this convergence will offer the same dif-
ficulty in any method for correcting y&.
Previously published methods™® !° for calculat-
ing Pauli corrected correlated wave functions nor-
mally start by including some approximation for
Q directly in the Bethe-Goldstone equation, rather
than making the Pauli correction afterward. The
procedure most closely resembling the one pre-
sented here is that of Becker, MacKeller, and
Morris,? who start by setting @ =1 - P [as in Eq.
(9) of this paper]. This yields the Bethe-Goldstone
equation in the form:

(e = V)Y =eg, - Z el @al vl ¥y - (20)
d

The effect of the Pauli operator (the last term on
the right) is to change the character of the original
inhomogenous differential equation into an inhomo-
genous integrodifferential equation. Becker, Mac-
Keller, and Morris find that Eq. (20) is not too
hard to solve, however, so long as the number of
states included in d is not very large.

The procedure presented in this paper has a two-
fold advantage. First of all, it is extremely easy
to calculate the overlap integrals and reference
spectrum wave functions needed in Eq. (15). More
important is the fact that calculations for the Pauli
corrected wave functions can now be done directly
in the appropriate two-particle space. It is, there-
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fore, very easy to avoid the approximation that @
commutes with the center of mass motion for two
nucleons. We see from Eq. (19) that it is very nat-
ural to do the calculation in two-particle space
(n,l,n,1,); since one must use the Moshinsky-Brody
in either case the usual approximation, where one
assumes that @ commutes with the center of mass
motion and performs the correction in relative

coordinates, would be a nuisance.

Applications of the reference spectrum method
to finite nuclei sometimes include a modified spec-
trum of particle states (e’) as well as initial sup-
pression of the Pauli principle. In this case one
must also make a spectral correction, which is
not included in Eq. (15).
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