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The phenomenological single-particle Hamiltonian of Meldner is rederived as a renormalized
single-particle K matrix and is used to calculate the properties of "U on the fission path from the
ground state to scission into asymmetric fragments. Substantial radial density fluctuations or "bubble
configurations" are observed as well as a displacement of the neutron center of mass relative to that of
the protons. It is also found that the presence of a deep minimum and saddle near the touching point
can be observed for one of the paraineter sets of the interaction. The parameters of our deformation
and atomic number independent model were obtained by fitting to the experimental properties of ' 0,' Ca, "Ca, and ' 'Pb and nuclear matter. The present results illustrate the importance of using a
nonorthogonal two-oscillator basis as well as taking into account the properties of nuclear matter.

NUCLEAR STRUCTURE, FISSION 23~U; calculated fission path, shape asym-
metry, static total energy, single particle energies. Self-consistent Brueclmer-

Hartree-Fock method.

I. INTRODUCTION

The recent successes' ' of the liquid drop for-
mulas combined with the single-particle shell
model (Nilsson model, two-center model, de-
formed Woods-Saxon model, etc. }via a Strutinsky
renormalization has stimulated renewed interest
in more fundamental models which would combine
both liquid drop and shell-model effects in one
single energy operator. In such a model, the nu-
clear shape, the total energy, as well as the sin-
gle-particle properties should not, if possible, be
predetermined but be computed in a self-consistent
iterative scheme. This paper uses such a model,
based ultimately on the Brueckner-Hartree-Pock
theory of nuclei, and applies it to the calculation
of the fission of "6U.

Among the various attempts at a basic calcula-
tion of nuclear fission, the simplest is the Har-
tree-Fock (HF} model with an effective two-body
potential. This method suggests itself from its
successes in atomic and molecular physics, yet
it does not work too well in nuclear fission prob-
lems because it neglects important short-range
rearrangement effects due to the strong repulsive
core of the nucleon-nucleon interaction. Attempts
to incorporate the effects of the hard core in a HF
treatment have been made by either using an ef-
fective three-body interaction of the Skyrme type4

or by considering explicitly density dependent ef-
fective interactions and reaction matrices. ' Al-
though the reaction matrix approach is the most
fundamental, it is also the most complex. Thus
the present paper simplifies this approach by using
a semiphenomenological single-particle K-matrix
model. e' This effective deformed shell-model
Hamiltonian is used to compute the potential energy
surface near the minimum energy fission path in a
self-consistent manner. The model was first ap-
plied to spherical nuclei, ' where most of its pa-
rameters are determined. It was next shown' to
provide a good representation for the light de-
formed nuclei although all of the model parameters
are determined either from nuclear matter or for
spherical magic nuclei. Many important further
refinements are of course possible, but the impor-
tance of the heavy nucleus fission problem is such
that one should quickly establish whether or not
these models can yield reasonable representations
of the fission energy curve. As we shall see in
this work, it appears that this approach is quite
capable of yielding total energy curves which in-
clude both the liquid drop and the shell correction
energy. Some uncertainties in the results have
been found, but as we shall see, they can be traced
to the uncertainties in the nuclear matter proper-
ties used to obtain the model parameters.

Section II outlines the basic features of the mod-
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II. RENORMALIZED E MATRIX IN NUCLEAR MATTER

We shall begin with a model ' for the antisym-
metrized, momentum conserving nuclear matter
matrix elements of the Brueckner two-body reac-
tion matrix ( k„k, ~ ff(ko) ) k„k,), in the Fermi gas
model representation. We consider those matrix
elements of the form K(k„k„ko), where k, is the
Fermi momentum related to the total density p, by

3=3 2
~0 2~ Po~ (2.1)

and k, and k, denote the momenta of particles 1
and 2. One next postulates a separable expansion
of the form

Z (k„k„k,) = g G.,(k.)f.(k,)f,(k.), (2.2)

where, to be more precise, the dependence on k,

el in nuclear rnatter. There appears the rear-
rangement term so essential to the approach, as
an additional term in the single-particle Hamil-
tonian. A particularly simple special case~ is
singled out and is used in this work because of its
ease of handling and of previous experience" with
it. Section ID deals with the application of the
model to finite nuclei. Jg particular, attention is
paid to the Coulomb interaction, ' ' the isospin
properties, the spin-orbit splitting, and the kinetic
energy of the center of mass. There, one also
discusses the density formalism used to make the
transition from nuclear matter to finite nuclei,
along with such questions as the pairing algorithm
and the application of constraints.

Section IV covers important practical matters
such as the Gaussian fractionated expansion' '
and the values of the model parameters and gives
estimates for the optimum values of the number of
shells and oscillator parameters in the one- and
two-oscillator bases used in this work. Finally,
that section discusses the matter of the initializa-
tion of the density and the iterative procedure used
to obtain the self-consistent density at each point
on the fission curve.

Section V shows the results for the structure of
the potential energy curve of "U, and the corre-
sponding self-consistent densities on the fission
path. In particular we stress some of the pre-
dicted density fluctuation properties which, in
places, show up as incipient bubble structures.
The displacement of the neutron-proton centers of
mass in the fragments is noted along with bulk
octupole deformation, the asymmetric mass dis-
tribution, and the early influence of the fragment
shells in determining the mass asymmetry ratio.
The similarities and differences with molecular
clusters are also discussed before concluding.

should be replaced by a functional dependence on
the state occupation function p(k) =n(k) for spin
and isospin saturated nuclear matter. The com-
plex dependence of G„& on s(k) may be approxi-
mated to first order in n(k) by

G„()[n]= k'dk g s(k)s(k)+g'8,
0

(2.2)

W= g (a'/2m}k, 's,

+2 Q n, s, (s'/2II)K(k(, k„[s]). (2 6)

This equation will be used later to compute the
total energy and right away to obtain, after some
algebra, the single-particle energy

e(k, k)= $$'
an,

where

2k'+ Q G 8(k,)f„(k)F,(k, )
2 .8

+- g 8(k)E (k,)F~(k,),
a

(2.6)

g.(a.) f a sa y.(a)(a)

0'dk (2.7)

The last term of E(I. (2.6) is the Brueckner rear-
rangement potential, which is now dependent on

both k and k,. Unfortunately, the details of the
momentum dependence of h(k) are not well known,

although there is increasing evidence that one can-
not simultaneously obtain the correct nuclear mat-
ter compressibility and the correct shell model
level density from a local (momentum independent)

However, we shall follow, in this paper, the
current practice' ' and consider only models
where g„&(k}= g„&(k,}, e.g., where n is local.
This simplifying assumption is believed to be
mainly responsible for the fact, here as in most
calculations of this kind, that although the over-
all level density is correct, the level density in
the neighborhood of the Fermi sea is too small
by some 35%. The modele discussed in the fol-
lowing sections further simplifies the isospin
dependence of the potential (see Sec. IH). It keeps,

so that if s(k) =1 up to k„and 0 after that, we get

G„()[N]= k'dk g s(k)+g's=G s(k,). (2.4)
0

The total energy of A particles in a box of volume
0 becomes
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e(k, k, ) =g'k'/2m --.' &,[v(k)u(k )+g(k )v(k)] + h(k )

(2.8)

as the simplest possible one-term separable rep-
resentation of the single-yhrticle reaction ma-
trix e(k, ko) (so called because it includes the en-
ergy due to the Brueckner rearrangement reac-
tion), where h(ko) is the Brueckner rearrange-
ment potential at k= k„we also use

(2.9)

' [1-(k,/k, )'&]

k, [1—(k, /k, )'r] ' (2.10)

so that u(k, ) =1, where k, is the nuclear matter
equilibrium Fermi momentum. These forms lead
to the expression for 6, as

however, the essential feature of being a finite
range potential, thus extending its validity beyond
ground states to excited nuclear configurations as
occurring in nuclear fission and heavy ion scatter-
ing (fusion). Another benefit of a finite range po-
tential is the insensitivity of gross structures
against parameter variations (see Sec. V). The
special restrictions of Meldner's' model need of
course not be imposed on. Eq. (2.6) and they have
already been successfully lifted. ' A study of such
more sophisticated models for deformed and fis-
sioning configurations is in progress.

Returning to Eq. (2.6) we now continue our de-
velopment by picking an explicit model to repre-
sent that rearranged energy. %e follow Meldner'
and set

III. FINITE NUCLEI

The transition to finite nuclei is made in the
spirit of an energy density functional approach.
Thus, one can consider the total energy per unit
volume, with a volume element centered at r in-
side the nucleus, then one differentiates with re-
spect to the density at r to obtain the single-parti-
cle energy density e{k, k,(r)). Other corrections
due to the inhomogeneity of the nucleus and to iso-
spin and spin-orbit effects must also be made.
Lastly, the all-important Coulomb interaction
must be treated with great care.

A. Isospin, spin-orbit, and inhomogeneity corrections

Whereas the extreme simplicity of the present
model precludes an exact treatment of the isospin
properties, we simply follow the earlier prescrip-
tion' obtained from physical arguments. Thus we
set

T = 1 protons
&0=I~& P~

v = -1 neutrons,
(3.1)

and we define the effective density P, for particles
of kind 7 as

p, = (vo p„+p, )/(1+ ro), (3.2)

ergy (at the Fermi momentum k,}. The two values

y = —', and y = 1 were used and changed little else ex-
cept the nuclear compressibility e=ko'O'E, (ko}/
eko'. Finally the Yukawa kernel v(k) was approxi-
mated to sufficient accuracy by a three-term
Gaussian superposition' in the range 0 & 4 & 1.500.

4(k,}= -,' V, v(k, )u(k, ) -F,(k,)—, , (2.11)' ko' sko
where v.

0 is a dimensionless parameter of order
0.4; p, is the true density of protons and neutrons

A0

F (k o)=ok'dk v(k) .
0

(2.12)

The parameters V0, A„and g are determined by
choosing the nuclear matter equilibrium momen-
tum k„ the binding energy per nucleon at equilib-
rium, and h(ko) the Brueckner rearrangement en-

(3.3)

with n z the number of particles of kind r in orbit
X, and P&,(r) the single-particle wave function of
orbit A. The function u(ko) defines a function
u(p) =u(k, ). Thus the functions u(P, ) were used
throughout. The expression for d in the isospin

formalism is more elaborate and was derived as'

d, (k', )=-,'V, v(k', )u(P, )- Z, (k', )
' r, +F,(k ) [(1+ro)v'] (3.4)

The spin-orbit potential is introduced in its
semiempirical form' "

vi.;=-,'C[v(k)(r ~ (Vu, x)t)]+H.c. (3.8)

One notes that this form is quite appropriate for

nuclear fission as v T. -, goes over, in the fragmen-
tation limit, to the correct spin-orbit potentials of
the fragments; this is due mainly to the fact that
u is almost linear in p, the constant k, in Eq.
{2.10}being large.
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The inhomogeneity corrections can be performed
by using a suitable spacial average of the density
in our density functional approach. Thus we re-
place p, by

statistical approximation"

-5- 3 -'~'
E for occupied states,

VCE

1 ds&1& (&I )&-tr-r'( /et
0 for unoccupied levels,

(3 9)

k'(k, r)tt „(r)=e',y(r). (3. f)

The eigenvalues cz are used in a BCS type formal-
ism to construct the occupation number n z of the
state Qz for the next iteration. Then one uses Eq.
(3.3) to construct the new density. This iteration
is repeated until no further changes in p'(r) are
observed [usually 10 to 25 iterations will suffice,
depending on the accuracy of the initial guess for
p(r)]. This algorithm will, of course, lead to a
stable minimum in the energy-configuration space.
When one wants to obtain some other point on the
fission curve, one must impose constraints. They
will be discussed in the next section.

B. Coulomb potential

The Coulomb potential consists of two terms,
the exchange term vcE and the direct term vcn(r)
which is given by

v (r)= Jd'»' (3 6)

The first step in obtaining v~ is to expand the
Coulomb kernel as a sum of Gaussians of varying
range' and strengths. We shall see in Sec. IV that
p~(r} is also expanded in Gaussians along the Z and
r cylindrical coordinates; this allows one to per-
form the integral exactly and to obtain vcn(r) again
as a superposition of Gaussian terms with an ac-
curacy of one part in 10' up to a radius of about
25 fm.

The exchange term v«was computed using a

(3.6)

in the construction of the single-particle Hamil-
tonian. The averaging length g is of order 0.5 fm.
This corresponds to having a r.m.s. radius of
1.22 fm for the folding form factor in Eg. (3.6).
This should be a reasonable estimate of the corre-
lation distance in single-particle states of the nu-
cleus.

The self-consistent method to be followed is now

becoming clear. One picks an initial guess for
p~(r) and p„(r). This allows one to construct
e' (k, r) =k' (k, r), the single-particle Hamiltonian,
as a function of momentum and position. One then
diagonalizes h:

~here E~D is the total direct Coulomb energy.
Again we have verified that this expression will
provide a good approximation up to the scission
(touching) point, which is as far as we have gone
in this work.

C. Center-of-mass kinetic energy correction

The operator for the kinetic energy with respect
to the center of mass can be readily obtained as

&„,= g (p, '/2~)(1 —1/A) —(1/2m/) p, p, .
vsj

(3.10)

The second part of this expression is a two-body
operator whose direct term vanishes, on the aver-
age, due to the Psed position of the center of
mass. The average one-body exchange part of Eq.
(3.10}may be estimated again in the statistical,
or free Fermi gas, model to be

f,(x}=
&z f p'fx)

A. an occupied state,

0 A, a free state.
(3.11)

This last expression is particularly interesting in
that it predicts a vanishing value for the total ki-
netic energy of the center of mass. Thus essen-
tially similar results would have been obtained by
completely neglecting the kinetic energy of the
center of mass. Previous calculations' on 'Be
have in fact confirmed that no major spurious cen-
ter-of-mass excitations seem to arise from the
present combined treatment of the kinetic energy
and of the momentum dependent potential energy.

D. Constraints

As pointed out earlier, the simple iterative
process where h is repeatedly diagonalized, using
successive improvements for the density p(r),
leads to a configuration which is a local minimum
in the total energy surface. Since our aim is to
trace out the minimum energy path to fission, we
must provide some external field interaction (con-
straint) which will make one of the nonminimal
configurations a temporary minimum in the pres-
ence of the constraint field. The constraints are
introduced by assuming that the total energy Eq.
(2.11) should be modified by the external field in-
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teraction as, e.g
W„~ = W+H~, Hg = ~A(MO-M}, (3.12)

where ~ stands for a multipole moment operator,
Mp for that value of the operator at which the in-
teraction energy vanishes, and A. is the strength of
the external interaction. It can be seen that for
sufficiently large A, , any energy minimization
principle which uses 8'„„instead of 8' will tend to
favor configurations for which (M) mM„since it
is those configurations which have the smaller
values for 8"„,&. If we now vary 8', with respect
to n~, we obtain' after some algebra

k, =k+~(M, - & M))M, (3.18)

where (M) is the current expectation value of M .
We have used Eq. (3.18}with M = Q,', the mass
quadrupole operator. The normalization constant
can be picked by demanding that for a 20% devia, -
tion of (M) from M„ the net quadrupole energy
be about the same as that for the appropriate de-
formed oscillator having Ia& =41/A' '.

This type of constraint is suitable for most con-
figurations along the fission path whose greatest
difference from stationary configurations is in the
quadrupole moment value. For configurations
whose higher multipole moments are also changing
rapidly, Eq. (8.13) can exhibit substantial instabil-
ities. These instabilities are such that in order to
obtain the desired values of I, and M4, one must
clamp M, eery tightly (I large). However, large
values of A, lead to undesired oscillations in the
energy and unwanted changes in the density distri-
butions. One could, of course, use H, =+~X~(M,
-M~), but one would have to pick precise and
correlated values of Mo; however, these corre-
lated values are just the information we are seek-
ing from the calculation. There is in fact a much
easier way to provide scissioning type constraints,
which is connected with the choice of the two-os-
cillator basis. One simply selects the centers of
the two oscillators to be sufficiently far apart that
the edges of the basis (the semiclassical turning
points coordinates) trace out connected regions in
space with some necking in. As we shall see in
the next section the lack of orthogonality of the
eigenfunctions of such oscillators poses no diffi-
culties. We shall also see there that as long as
the corresponding necking in the momentum space
is small enough not to come down to momentum
values of occupied states, the tots, l energy is not
directly affected by this constraint whereas the
coordinate dependence of p(r) is biased heavily to-
wards necked, or in the extreme limit clustered,
configurations. This is just what is needed to
compute the total energy past the second minimum
and towards binary scission while injecting the

minimum bias via the constraints. This method is,
of course, similar to the one used in atomic and
molecular physics where it is called the molecular
orbitals technique. The only added complication
here is the fission instability of those molecular
configurations.

E. Pairing corrections

The pairing energy corrections play a very im-
portant role insofar as they are closely connected
with the essential question of determining the oc-
cupation numbers of the orbits from a knowledge
of the values of the single-particle energies. The
more basic approach to the pairing question con-
sists in selecting the pairing energy functional
&~(n, ) to be added to the total energy expression
(2.5). In the case of finite nuclei one then varies
W&,~ with respect to Q, (r) and n, , where p(r)
=+& ~ $0 ~' n„sub ject to the number conservation
constraint n=g, n&. These yield equations of the
BCS type for n&. Whereas the BCS formalism can
lead to sophisticated convergence difficulties ig. a
large basis we have chosen to dampen the pairing
interaction by using a state dependent gap param-
eter d (e,}as

A~(e, ) = h, e~- [(e, -X)/D, ]'j, (3.14)

Ao=—15 MeV/v A, D, =15 MeV/A' ', (3.15)

and A. the Fermi energy, from which the occupation
numbers n& can be determined in the usual BCS
fashion. The atomic number dependence of 4 p

is a little stronger than the usual 12/H because
of our somewhat low level density at the Fermi
sea. The value of Dp is in rough agreement with
the energy half-width of the more realistic pairing
matrix elements (k, —k~ V(r-r')

~ k, —k), and
was actually determined by the requirement that
the occupation number of states which are Sco in
energy above the Fermi sea be less than 10 ~. The
expression (3.14) automatically removes the pair-
ing correction for spherical nuclei and makes the
whole procedure insensitive to the size of the basis
as long as it is greater than one major shell above
and below the Fermi sea, a requirement easily
met by the present calculation.

Finally one should mention that our present as-
sumption of zero nuclear temperature gives the
absolute ground state energy surface. However,
as one goes past the second barrier one cannot be
sure that none of the fission energy goes into ther-
mal modes of excitation. "Finite temperature
pairing calculations are relatively easy to perform
and will be reported elsewhere.
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IV. SELECTED ASPECTS OF THE CALCULATION

We will discuss here only the most important of
the various practical matters connected with a
calculation of the present magnitude. First we
discuss the oscillator basis structure and the com-
panion Gaussian expansion technique. Then the in-
fluence of the parameter set on the calculation will
be studied and finally the important matter of se-
lecting the initial density will be brought up.

A. Gaussian expansion

We shall work in a basis consisting of the non-
orthogonal eigenstates of two shifted, deformed,
axially symmetric harmonic oscillators. In such
a basis it was found convenient to expand the sin-
gle-particle density of Eg. (3.3), as well as other
density dependent functions, in sums of axially
symmetric Gaussian terms'9

f(r) = Q av„exP[-A, B'-P„(Z-Z„)z], (4.1)
ll P

where 8 is the cylindrical coordinate (X'+ Y')' '
and a», A, „, and P„are coefficients to be deter-
mined by a nonlinear fitting procedure. For con-
figurations near the ground state Z„ is usually
taken to be zero, but for strongly clustered states,
where the two-oscillator features are essential to
insure reasonable convergence of the basis, three
different values of Z„were used, -namely

Z, = center of oscillator 1,
Z, = (Z,b,' —Z,b, ')/(b, '+ b,'),

Z, = center of oscillator 2,

(4.2)

where 5, and b, are the Z-direction oscillator pa-
rameters of the basis. The limit m =—7 was used
for each three values of Z„ in the fitting procedure.
The choice of these three shift points for the
Qaussians is, of course, natural since these are the
centers of the oscillator Qaussians for the compo-
nents of p(r) in oscillator 1, in the 1 x2 interfer-
ence part, and in oscil.lator 2; e.g.,

p(r) =p, (r, Z, )+p,(r, Z, )+p,(r, Z, ) (4.3)

arises naturally from the expansion (3.3). Other
functions of p(r) are easily fragmented as

f(p( ))=Qf( ), f( )=

(4.4)

This last equation is, of course, useful whenever
one wishes to expand clustered functions with non-
zero overlap. Again, attempts to fit strongly clus-
tered f 's without fractionating usually demand so
many terms in the expansion that great numerical

convergence difficulties are encountered in the de-
termination of the A, 's and the P's. But in any case
it would be less economical to use a method
centered at Z =0 in dealing with strongly clustered
functions. Thus, the present fractionating tech-
niques should also be useful in schemes where the
matrix elements are obtained by direct numerical
integration methods' such as Gauss-Laguerre or
Gauss-Hermite schemes.

B. Basis selection

2

y2(bb }2~ z2 I/2 2(~ ~ 3) (4.6)

The ellipse with the smallest value of N which does
not cut off the corner x= 1,y = 1 of the density dis-
tribution, is a circle with radius A~= W. The

Two different bases have been used in this calcu-
lation: for relatively small deformations a one-
oscillator, orthogonal, axially symmetric basis
was used in cylindrical coordinates; for large de-
formations and clustered states another similar
but shifted oscillator was added. In both cases the
number of basis states for the k = —,

' Hamiltonian
matrix was restricted to '72.

When using deformed oscillators one must be
sure to select the states to be included not accord-
ing to their major shell quantum numbers, but
rather according to their harmonic oscillator en-
ergies ff&uz(nz+-, )+km (n~+1). By equipartition of
energy this means we must include all states up to
a given cutoff kinetic energy. This, of course, re-
flects the fact that nuclei which are deformed in
coordinate space actually remain very nearly
spherical in momentum space; e.g. , their Fermi
surface is almost a sphere even in extreme cases
such as the scission point.

It is possible to derive equations relating the
values of N the major shell quantum number and
5 the oscillator parameter to be used in the calcu-
lation of a nucleus. Here we shall consider a
spherical nucleus but the argument is easily ex-
tended to deformed ones. To begin with we note
that p(r, b), the density matrix which gives the
density of particles at the point (r, b) in the phase
space of a spherical nucleus, is approximately
given as

4/(2z)', 0 & r & R,&„0& b & b„
p(r~ k) =—

0 otherwise . (4 6)

This defines a square in the two dimensional plane
of the variables z= r/B, ~, and y = b/b, . Now a
spherical harmonic oscillator with maximum ma-
jor shell quantum number N and oscillator pa-
rameter b covers, at uniform density, the region
of phase space inside the ellipse
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circular condition gives

bko = R, g, /k,

k = (R,g2/ko)' ~' .

The other equation gives

(N + a) = RI, oRiiako ~

(4 'I)

(4.8)

C. Model parameters

The model used in the present calculation allows
variation in its parameters as a means of absorb-

We note that the minimal model which can in any
way represent the nucleus is the one where one
completely fills the oscillator basis and one
chooses R»= l. In that case Eqs. (4. I) and (4.8)
give the familiar Nilsson model rules for choosing
the oscillator parameter. For our present purpose
we must use 8„&42. Using the values 8~=&2,
B~ga= 7 fm, @0=—1.35 fm, appropriate for Pb,
gives Se = 8 MeV, N = 8 which is approximately
2 Ace higher than the Fermi sea. As seen previ-
ously by Flocard, N =12 is actually necessary for
good convergence in '~Pb; this corresponds to
R~=—1.7 and indicates that one must also provide
for a good fit to the tail of the wave function both
in coordinate space and in momentum space.

Quite similar considerations have been made and
used in the case of a single deformed oscillator
except that the phase space envelopes are now four
dimensional for axial symmetry. In the case of
the two-oscillator basis the analysis can become
quite complex because one must study the inter-
section of four-dimensional surfaces. The follow-
ing prescription has been used: we keep each os-
cillator spherical (except around scission on the
fission path where both fragments are highly
stretched), selecting their oscillator parameters
according to the desired size of the region through
Eq. (4.7). We shift the oscillators until the neck
radius of the envelopes defined by the semiclassi-
cal turning point R, ~, comes within -2 fm of the
actual nuclear surface. This prescription proved
to be quite close to the optimum basis. As men-
tioned earlier, this method also had the advantage
of readily providing a smooth necking constraint.

ing into the parametrization the inaccuracies im-
plied by the approximations used. Table I gives
three typical sets of such parameters, while Table
II gives single-particle energies for sets I and III;
we now discuss the properties and merits of these
sets.

To begin with we point out that the spin-orbit pa-
rameter is fixed mainly by the experimental spin-
orbit splitting in heavy nuclei. Changing C within
a reasonable range only has minor effects on the
energy surface; thus the value given in the table
was used throughout. Similarly, the isospin pa-
rameter vo should be varied only in a relatively
small range about the value which makes the neu-
tron-proton force approximately 2 to 3 times
stronger than the neutron-neutron or proton-pro-
ton force. The value of v, also influences the sym-
metry energy and the relative depth of the neutron
and proton Fermi energies. These depths are rea-
sonable with the values chosen; however, the nu-
clear matter symmetry energy was not computed
as the highly phenomenological isospin dependence
of our model makes the extrapolation to nuclear
matter of dubious interest.

The inhomogeneity correction parameter $ was
determined by demanding optimum values for the
radii and binding energy of 'Ca and '~Pb while
remaining in a physical region for its value. We
note that the r.m. s. radius of the averaging form
factor in Eq. (3.6) is &6(. Thus the values of $
shown in Table I correspond to a smearing radius
of about 1.1 fm. This is consistent with the range
of the nuclear force. When $ is too small the cal-
culated nuclear radii decrease and the binding en-
ergies increase. These effects are reversed for
large $.

The remaining nuclear matter parameters Vp py,
and a are mainly determined by the required nu-
clear matter properties k, , Eo, sEo/sk, =0,
h(k= k, ). The final determination of the parame-
ters V„p„and a was done together with an adjust-
ment of C, g, and vo (Table I) from the binding en-
ergies, radii, and single-particle spectra of ' 0,
40Ca 'SCa and '08Pb as given i.n Tables II and III
The then corresponding nuclear matter parame-
ters are also displayed in Table I.

TABLE I. Paraxneter sets used in the calculation: Vp Ey A(ko) & in MeV, a, $ in fm, ko
in fm, p in nucleons/fm, C in MeV fm, y and 7'o are dimensionless.

Parameter
set Vo 7o E~ 4 {ko) ko

96.49 0.5124 0.2476 0.913 23.5 0.45 15.95 13.0 3 303 1.333
10797 06932 03190 0878 23 5 04 156 80 2 213 131
108.73 0.6966 0.2584 0.913 23.5 0.4 15.75 8.0 3 261 1.31
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TABLE II. Single-particle energies for sets I and III: e'(~) energies are defined by Eq. (2.8),
e'(t& fellaw by ths rsphtestnent v(k) ~ gv(k) + v(ko)]. (Sse Rsf. 7.| These energisa are negattve
unless otherwise indicated. For experixaental results, see Ref. 4.

Neutrons
I

g I(&) Exp

Protons
I III

~ i (1) ~ r (3)

1' /2

1h/2

1ds/s
2sg g

1s~/
1A/~
1h/~
1ds/s
2'�/
1de/2

2h/2
1s
1h/~
1k/R
1ds/g

2' /2

1de /g

2A/a
1fs/2

46.1
24.1
16.7
7.2
2.0

59.7
42.5
3S.O
25.6
18.2
18.0
10.7
4.2

60.3
44.8
40.6
28.3
21.1
21.5
12.9
6.6
4.2
4.7

51.9
25.0
18.4
6.1
1.7

69.2
46.5
42.3
26.1
19.3
19.5
9.5
3.9

69.1
48.1
44.7
2S.8
22.9
22.1
11.6
6.36
4.23
5.03

21.8
15.7
4.14
3.27

18.1
15.6
8.36
6.2

12.55
12.52
9.94
5.14
3.11

42.4
20.8
13.3
3.6

+1.7
51.7
35.0
30.4
18.6
11.0
10.8
8.5

55.4
40.1
36.4
24.5
16.7
17.6
9.5
1.8
0.2

48.3
21.8
15.1
2.5

+1.S
61.4
39.2
34.9
19.3
12.3
12.5
2.4

65.8
45.3
41.S
26.1
18.6
20.1
9.0
2.1

+0.1
1.3

40+8
18.4
12.1
0.6
0.1

50+11

10.9
8.3
1.4

15.3
15.7
9.6
1.9
0.0

Neutrons
I III

g ~n) ( I(3} g~o) g ~(3) Exp

Protons
III

&
&(i)

& ~(3}

1s~/2
1h/~
1h. /2
1ds /g

ld3/~

2'/~

1fs/2
2h/a

1A/a
1gv/~

2ds/2
2d3/2

1kgg/2

3sg/g
aaa/,
»~/~
1$ge/g

3~3/2
2fs/2

2&a/2

»u/~~

68.8
61.0
60.3
52.3
50.6
48.0
42.9
39.9
36.7
35.4
33.1
28.6
25.4
23.2
23.0
22.4
16.9
14.6
12.9
11.1
11.6
9.9
4.7
5.6

43.8 81.4
40.5 70.4
39.7 69.7
36.4 58.7
34.6 57.1
33.4 54.0
31.6 46.8
28.5 44.1
27.1 40.1
25.9 89.0
26.1 35.0
21.6 31.1
302 27.1
18.2 25.2
19.9 23.3
17.9 24.2
13.9 18.8
13.0 15.1
13.1 12.2
10.0 11.7
10.1 12.6
8.9 10.6
5.7 4.6
5.9 6.3

42.9
39.5
38.8
35.5
33.9
32.7
30.8
28.0
26.6
25.5
25.3
21.4
20.0
18.1
19.1
17.8
14.1
12.9
12.2
10.2
10.4
9.2
5.7
6.4

10.85
9.72
9.01
8.27
7.95
7.38
3.94
3.05

55.3
48.1
47.2
39.7
37.7
34.4
30.5
27.1
23.2
21.8
20.9
15.9
12.2
9.8

10.9
8.7
8.8
1.0
0.5

+8,0
+2.3

33.3
30.5
29.6
26.9
24.8
23.0
22.4
19.0
17.1
15.8
17.2
12.2
10.4
8.2

11.1
7.5
4.1
2.5
8.8

+0.9
+0.5

68.7 33.0
60.0 30.4
57.1 29 4
46.4 26.7
44.5 24.8
40.6 28.2
34.4 22.3
31.3 19.2
26.5 17.4
25.3 16.1
22.5 17.1
18.1 12.8
13.5 10.8
11.4 8.9
10.9 10.9
10.2 8.2
4.7 5.0
1.1 3.1

+O.S 3.6
+2.2 +0.06
+1.7 0.5

15.48
11.43
9.7
9.37
8.38
8.03
3.77
2.87
2.16
0.95
0.47
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TABLE II. (Co~inued~

Neutrons
I

q I (i) q I (3)
III

~ ~(i) ~~ (3)

Protons
I III

~ () q () g ( g Exp

1AS/2
34S /2

4si/2
2A/2
343/2

3+2
],4
0.02
1.1

+0.3

5.7 1.7
2.7 1.4
1.3 0.04
2.2 . 1.5
1.0 +0.08

5.1 2.53
3.0 2.36
1.8 1.91
2.8 1.45
1.6 1.42

Set I is distinguished by its higher values of 0,
and h(k, ); this leads directly to higher values of t&

(the compressibility) and seems to be responsible
for the fact that this set gave a considerably higher
first barrier than the other sets, as can be seen
in Table III which shows some bulk parameters for
the three sets. Set II has lower values of I{," and
lower values of the first barrier but its use of the
exponent y =2 makes it somewhat less realistic in
the context of a momentum dependent 6(k). The
low value of z is related to the higher radii ob-
tained with this set. The increased radii were
partly due to a greater reaction to the repulsive
Coulomb force. This set was not pursued further
here. Set ID was the one used to produce most of
the results discussed and will be compared further
to set I before we proceed. The binding energy
systematics of set I is better, the radius of 'Pb
and "U ground state is better, but the radii Qf

light nuclei are some~hat poorer than with set III.
The higher values of z and b(k, ) might suggest that

set I is less realistic in the nuclear matter limit
but one has to keep in mind that these values are
renormalized nuclear matter values as a conse-
quence of a momentum independent rearrangement
term 4. Again we emphasize that these arguments
are not compelling since the precise details of the
charge density distribution require such correc-
tions as the inclusion of the neutron halo contribu-
tion (via the neutron form factor") to the charge
form factor; this correction is not applied here.
Rather, we prefer to view the differences between
the two sets and their results as an indication of
the sensitivity on the parametrization in the pres-
ent model and we found that the results for the
fusion curve were quite similar except near the
touching point. Finally, Fig. 1. shows density dis-
tributions for several nuclei.

D. Construction of the initial density

The rate at which the iterations will converge to
the shape which is stationary in the presence of the

TABLE III. Some bulk properties for the three parameter sets. Binding energy BE in MeV,
charge radius ~, in fm, the P deformation parameters defined by

(r& ) = {(r„){rr){r,g)'~ exp [{5/r)'~ pcos{~&k)] {@=1,2, S).

i8p 4'Ca 4'Ca 208Pb 238U 236U + 238U' +

Set I

BE
+c
P

126.4
2.65
0.0

343.2
3.40
0.0

415.6
3.50
0.0

1623,3
5.56
0.0

1789.0
5.87
0.222

1777.0
6.04
0.391

1781.5
6.13
0.48

Set II

BE
c

P

134.6
2.7
0.0

358.2
3.46
0.0

424.8
3.56
0.0

1646.9
5.69
0.0

1811.1
5.99
0.213

1802.7
6.15
0.392

1805.2
6.25
0.472

Set III

BE
c

129.1
2.69
0.0

348.4
3.44
0.0

412.3
3.55
0.0

1620.7
5.66
0.0

1787.3
5.93
0.185

1778.5
6.11
0.389

1779.8
6.18
0.451
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0.25

0.20

160 ~0Co
I

48C

SET I

---SET III

l

208 pb

0.!5-

0.10
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0.05—

0
0 2 4 0 2 4 6 0 2 4 6 0 2 4 6
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8 10

FIG. 1. Density distributions in nucleons/fm3 vs the radius in fm for 60, 4 Ca, 4 Ca, and 2 Pb. The pairs with
central densities near 0.15 nucleons/fms represent the mass distribution while the pairs with central densities near
0.07 nucleons/fms show the calculated charge density 'Ihe .electron scattering experimental charge density for t~spb is
also shown for comparison. Table III contains other properties of these nuclei.

constraints depends strongly on the chosen initial.
density. This dependence is further enhanced by
the relatively high compressibility of the model
which makes the total energy fairly sensitive to
gross errors in the density. Two types of initial,
densities were used depending on the position on
the fission curve. The ¹ilsson model was used
for configurations treated with the one-oscillator
basis; e.g., near the ground state and second min-
imum. For two-oscillator configurations a direct

density construction scheme was followed. The
¹ilsson model was a standard deformed oscillator
model with (pseudo) I (r and I'-(i') terms in
cylindrical coordinates. This model is naturally
symmetric so it was perturbed by adding to its
density small asymmetric terms in order to allow
the iterations the option of proceeding in the asym-
metric direction. This is because of the well-
known fact that self-consistent cal.culations usually
conserve all the symmetries present in the initial

TABLE IV. S~~mexy of properties along the fission path for set III. r& is the r.m. s. radius
gf protons in fm, the multipole moxnents Q& are defined as dimensionless relative quantities by

i/2 y& ]
@~= (2~-1)I!

where I'&(x) are Legendre polynomials, and N is the particle number of kind &. r„and Q, „
are for neutrons, Ee~ is the total Coulomb energy in MeV, E~ is the pairing energy in MeV,
and ~ is the approximate distance in fm between the centers of the two clustexs.

Ground
state

Second
P =0.33 minimum

Second
barrier P =0.86 P =1.025 Scission

Vp

Q2 p

Qs, p
Q4 p

fl

@2.e
~3.n

@4,n
+et
gp~

+c

5.88
0.138

0.0
0.0267

6.00
0.137

0.0
0.0264

935
3.4

~3.5
5.93

6.00
0.25
0.0

0.058
6.10
0.235
0.0

0,053
928
4.8

M.7
6.05

6.11
0.372
0.003
0.0401
6.15

0.346
0.003
0.0311

923
3.5

~5.5
6.16

6.57
0.530
0.031
0.0957
6.61

0.510
0.028
0.0869

SSS
4.5

5
6.62

7.04
0.665
0.03
0.148
7.08
0.635
0.03
0.134

823
4.96
10

7.10

7.70
0.758
0.147
0.220
7.75
0.740
0.146
0.212
770
3.7
12

7.75

8.59
0.816
0.147
0.215
8.61

0.802
0.145
0.210

728
4.1
14

8.63

Fig. Nos. 3{a),3(b) 4(a), 4(b) 5(a), 5(b) 7(a), 7(b) 8(a), S(b)
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To& E
(us@

Total Coulomb Energy

(ve)
trial density.

The direct density construction scheme, which
was used in the two-oscillator mode, first as-
sumed a zeroth order density with a sharp surface
located at R(Z), R=(x'+y')"~', and given by

[R(Z)/C]' = [1-x+ x(Z/D Z,-) 8] [1- (Z/D) ],

l820

~Set I

840 ~

60 65
I880

35 55?5

70
1

IOQ

Setm~ -- .,
75 8P 85 &charge (fm)

l20 m appro(. two
cenler dlstarce {frn)

FIG. 2. Coulomb and total energies of 23~U as a function
of the charge radius along the path to fission, using
parameter set III and parameter set I. Other properties
of the configurations are given in Table IV, such as
multipole moments and deformation parameter P, Actual
contour drawings of the proton and. neutron density dis-
tributions are given in Figs. 3-9.

(4.9)

where D, C, x, P, and Zo are parameters of the
shape. For x=0 we have ellipses whose volume
and deformation parameters determine C and D.
When x&0, it is a measure of the fractional in-
cursion of the neck while Z, (-1 ~ Z, ~+1) gives
the position of the neck and therefore controls the
amount of asymmetry. The exponent P defines the
neck shape and the value P=1.5 was found satis-
factory in most cases. ' The initial density distri-
bution defined by Eg. (4.9) was next folded numeri-
caQy with an approximate Gaussian form factor in
order to obtain a 10-90% surface thickness of about
1.2 fm. Thus Eg. (4.9) then becomes the approxi-

I ] ] I I

2 6U GROUND STATE PROTON
to

I
l I I l

U GROUND STATE NEUTRON DENSITY

0
0

I

8 0

R' (frn)

FIG. 3. (a) Equidensity contour lines for the protons in the ground state of 238U. This figure, as all the others shown
here, is obtained using parameter set III. The density values shown on the contours are p(r)x 10, p(~) in nucleons/t'fm .
Only one quadrant of the f,Z, 8 = (x +y~)'~~] plane is shown since the density is axially symmetric about the Z axis and
reflection symmetric under the inversion Z -Z. (b) Equidensity contour lines for the neutrons in the ground state of
~3BU Otherwise same as (a).
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mate equation for the half-density point. It was
verified that the final results were insensitive to
small changes in the initial density. Of course,
large changes in p did produce completely indepen-
dent excited fission configurations which are not
reported here.

V. RESULTS AND DISCUSSION

Although we shall present detailed results mostly
for parameter set III, we again emphasize that set
I also gave reasonable results. In particular the
results for the clustering effects, the single-parti-
cle energies, and the total energies as well as the
total density distributions are quite similar for
both sets. (See Fig. 1.) The density distributions
for set I (not shown here), for example, reveal

that this set yields a slightly smaller surface
thickness and 5% higher maximum central density
than set III. These differences do not appear to be
large enough to greatly affect the properties near
the ground state. However, the differences may
lead to as much as a 10% change in the ratio of
surface to volume energy and a 5% change in the
Coulomb energy. These changes can be critical
past the second barrier and going towards the
touching point, as we shall see.

Table IV summarizes the properties of our "'U
self-consistent configurations. In particular, one
of the variables which characterizes the path is the
charge radius of the system r, -=(r~'+0.65)' '
where r~' is the mean proton point particle radius
squared. The Coulomb energies given in Table IV
are used in Fig. 2 in a plot of E, vs the charge ra-

f
I I I 1 I

'~U" 2"' eNtMuM PROTONS

)0
2360~ 2nd

0

~&5
~

875 875 800 500 100—
il t

'ii '~i
i I &

2 4 6 8
8 (fm)

P (fm)

FIG. 4. |a) Proton density contours at the second minimum. One notes a sm~&1 asymmetry and some "squaring off"
of the density distribution. The ring at Z =0, R 4 fm is still present at the second minimum, and considerable density
fluctuations continue to mark the central density contours. tb) Neutron density contours at the second mjnlmum. Only
the portion arith Z ~ 0 is shown because the asymmetry is quite small. See caption to (a).
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dius. The total binding energy is also given. As
can be seen for set III the binding energy curve ap-
pears to be smooth from the second barrier to the
touching point. This is by no means a requirement
of the model. Indeed a similar calculation done with
parameter set I, while giving similar results up
to the second barrier, yielded the values E, =1835
MeV atr, =V.V fm and E, =1811 MeV atr, =8.6 fm.
Thus set I would allow for the existence of a quasi-
molecular cluster configuration having roughly the
shape shown in Fig. 7(a} for r, ~ V.V fm. Of course,
one would need to study the dynamics in order to
obtain the lifetime. One problem connected with
Fig. 2 should be pointed out, namely that there
exist at least two mini. mum energy paths (fission
path, fusion path) coinciding around the second
barrier and further in, but separated by a barrier
outside (no internal excitation and adiabaticity as-
sumed}. Except around scission (touching point
respectively) the density shapes do not allow an
immediate classification of belonging to a fission

or fusion type configuration. Thus Fig. 6 may be-
long to either type. As compared with Fig. 8 which
is the touching configuration on the fusion path,
Fig. 7 represents a fusion type configuration also.
A further exploration of the fission path involving
highly deformed fragments (ratios of long axis to
short axis of the order of 2) will be reports else-
where.

The Figs. 3 to 9 show equidensity contours for
the neutron and proton density distribution of "'U
on the fission path. These will now be discussed.
Perhaps the most remarkable feature of those
figures is the apparent fact that the binary cluster
structure which will be finalized at scission is to
a certain extent already apparent even in the
ground state, when one looks at the density con-
tours in the range 400-900. Thus, as proposed by
Newson, " it appears that the fragment shell struc-
ture competes from the very beginning with the
liquid drop properties, in determining the asym-
metric nature of the present fissioning nucleus.

2~6U PROTONS AT SECOND BARRIER
12 'I

I

ARRl ER

lo

0
0

550M

2

500 300 $00
825

800

8 0

830
I

2

zoo 5oo ~oo ioo

, ( (
8 (fm)

FIG. 5. (a) Proton density contours near the second barrier. Because the asymxaetry is still small only the Z & 0
portion is shown. Q) Neutron density contour near the second barrier.
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In order to avoid discussing what may turn out to
be only fluctuations, one should look at structures
which are present when the total density is being
considered. One of those structures is the ring
in the Z =0 plane, with radius 8 = (x'+y')'~'= 4 fm,
which can be seen in the ground state. This ring
is present for most configurations and its radius
begins to shrink as the system starts necking in.
The ring then moves along the Z axis towards one
or the other fragment, thereby breaking the sym-
metry of the system. The presence of density
clusters is, of course, a well known property of
the density distribution of light nuclei "their
presence has been proposed recently in the heavy
nucleus '"Yb, in order to fit electron scattering
data. " The presence and motion of the "'U ring
found here also plays an important role in deter-
mining the value of the charge hexadecapole mo-
ment;-"; it also may indicate the experimental fact
that prompt a particles are emitted perpendicular
to the direction of motion of the binary fragments.

Continuing with our discussion we observe that
Figs. 7 and 8 suggest that the mass asymmetry
of the fragments is a shell effect. Namely, matter
moves up in order to form a stable spherical con-
figuration near that of the doubly magic nucleus
"'Sn while the remainder forms a deformation-
soft "Zr-type configuration. These observations
fit mell with Newson's model" where one starts
with the unperturbed single-particle spectrum of
two spherical fragments with mass 132 and 78, re-
spectively, and one builds up, by the use of sta-
tistical arguments, the fission yield curve as a
function of the mass ratio, for various excitation
energies of the system.

Another topic of considerable interest concerns
the probable excitation modes of the fragments as
they emerge from the fission process. Although
we have always occupied the levels in a manner
consistent with no "thermal" internal excitations,
we may still expect that close inspection of the
density distributions can reveal which type of ex-
citations will be predominant. For example, ex-
citations which are many-body correlations at the
beginning of the fission process will not appear
thermally at that stage but will only be converted
to statistical equilibrium at some later stage. Qn
the minimum energy fusion path the fragments ob-
served here have masses 139 and 97, respectively
(which is close to the known mass asymmetry of
fissioning "U), and are not in their ground states,
for most of the figures presented here. In par-
ticular, a small shift in the position of the proton
vs neutron center of mass has been observed. It
is a result of the Coulomb repulsion and amounts
to about 0.05 fm; it sets in as soon as asymmetry
begins; e.g., somewhere between the second mini-

mum and the second barrier. In addition to this
T =1 dipole excitation, a sizeable amount of octu-
pole polarization can be observed in the light frag-
ment. A third type of excitation appears in the
form of radial density fluctuations or "bubble
structures. " Thus, the light fragment has a cen-
tral depression of nearly 20%%uo in its total density
by the time one approaches scission. The heavy
fragment has only a 6% depression, the smaller
value possibly being due to the greater stability of
the spherical configuration adopted by that frag-
ment. These fluctuations do not appear to be very
short lived either since they are basically already
present at the second minimum as a 2&0 variation
in density over the "flat" part of the central densi-
ty. Indeed, it has been speculated that these fluc-
tuations may even be stable (present in the ground
state) in some Hg isotopes A.study of these iso-
topes in the present model is therefore indicated
and will be reported elsewhere. " We would like

U PROTONS LIGHT FRAGMENT
8&=7.I fm

R' (fm)

FIG. 6. Proton density contour of the light fragment
near x~ = 7.1 fm. The neutron one is similar and not
shown here.
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to raise the possibility that the three modes of ex-
citation discussed here, e.g., angu1ar (multipole
mode), radial (bubble modes), and isotopic (giant
T =1 dipole modes), are the main components of
the experimentally observed 25 MeV average" in-
ternal excitation energy of the fragments in a fis-
sion event. Figure 9 shows the average observed

mass ratio as a function of the internal energy of
the fragment. It can be seen that the value 139,.~97
found here is consistent with an average internal
excitation energy of 20 MeV. Again this suggests
one should compare the total energy of actual
ground states of the fragments with the total ener-
gy of the configurations at the time of scission.

I i t I

U" PROTON$ 12

l l l I l

~~6U NFUTRONS R' =7,7 fiT)C j

10

—14

e (fm)

—14
0

FIG. 7. {a) Proton density contours near r~ =7.7 fm. The heavy fragment has absorbed most of the earlier ring
structure and is already nearly spherical. The light fragment shows considerable quadrupole and octupole polarization.
{b) Neutron density contours near r~ =7.7 fm; see caption of {a).
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Since this calculation is not immediate in our pres-
ent approach, its results will be reported else-
where.

The smoothness of the fission energy curve past
the second barrier is to be contrasted with the

prediction of the Nilsson-Strutinsky model. " How-
ever, are hasten to point out that only four points
were compiled between the second barrier and the
touching point due to the time-consuming nature
of the present self -consistent constrained iterative

j l 1

I I I

U NEUTRONS, SGSSION

-14

4
e (fm)

I I I I I l I

0 2 4 6
~ (~m)

FIG. 8. (a) Proton density contours near scission. %e have defined scission for convenience to be the point on the
fission curve where the maximum density of the bridge in the neck region has been reduced to & the average central
density. The exact scission configuration is difficult to maintain because such a bridge tends to be unstable under our
constrained iterations. The light fraipnent still retains a considerable quadrupole moment and some octupole moment.
Q) Neutron density contours near scission. See (a) caption.
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scheme (1 to 3 min jiteration}. This, plus the fact
that the shell correction energy depends on the as-
sumed details of the pairing model invoked, may
have prevented us from seeiag other small fluctua-
tions in the total binding energy. Of greater in-
terest, however, is the possibility of a broad min-
imum due to the behavior of the liquid-Coulomb
combined energies. As mentioned earlier, the
existence of such a minimum may be predicated
upon a delicate balance between surface Coulomb
and bulk energies. Thus, parameter set I, which
has the best over-all liquid drop properties, ex-
hibits such a minimum, whereas it is not present
for set III. Even though parameter set I is obvi-
ously superior over set III for heavy nuclei it is
difficult to judge how good it really is. Therefore
parameter set III may be used as a measure of
how much the results can be affected, in particular
around scission (touching point respectively) by
different parameter choices. Comparing the re-
sults of sets I and III we conclude that there can be
little doubt about the existence of a molecular clus-
ter type minimum; its depth, however, is uncer-
tain. It is interesting to note that our energy dif-
ference for barrier and minimum at the touching
point of 14 to 24 MeV and the location at 14 and 12
fm, respectively, are close to non-self-consistent
molecular cluster calculations by Noerenberg. "
However, as long as the nuclear compressibility
remains high and the symmetry energy cannot re-
liably be extracted, the effects of the Coulomb
force and of the large value of N-Z cannot convinc-
ingly be extrapolated very far, although they ap-
pear to give correct results near the minimum and
the second barrier.

As a matter of completeness we show in Fig. 10
the single-particle energy level diagrams for neu-
trons and protons as a function of P, the quadru-
pole deformation parameter of the density distribu-
tion. Scission occurs near P =1.2; in that neigh-
borhood the level spectrum was extrapolated fur-
ther into the spherical configurations of the frag-
ment shells. The position of the Fermi energy is
indicated by the dotted lines. The gradual deepen-
ing of the Fermi sea is, of course, in agreement
with the less pronounced effects of the symmetry
and Coulomb energy as we approach the fragment
shells. %e also note that the Fermi sea lies in a
region of relatively low level density immediately
above the Fermi sea. This effect is, of course,
related to the self-consistent nature of the present
calculation; HF type models always tend to develop
a gap immediately above the Fermi sea or failing
that they often undergo yet another phase transi-
tion to a new deformed scheme where the gap can
develop. Although the present level scheme shows
many similarities with the Nilsson model level
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FIG. 9. Experimentally observed puef. 17}peak mass
of the heavy fragment in the fission of 2~~U, as a function
of the total fragment internal excitation energy. The
value Az=—139 observed in the present calculation is
consistent with an internal excitation of about 25 MeV.

diagrams, ' nearly as many discrepancies can be
found. This is perhaps not too surprising once it
is appreciated that the present level scheme not
only leads to the correct shell-model correction
energy, but also the correct liquid drop energies.
As an illustration of this behavior, we note that
the region near P =—0.9-1.0 shows near complete
disorder in the level spectrum, in terms of shell
effects. This is therefore the region where a
Strutinsky average would be most accurate; e.g.,
a region of nearly exclusive liquid drop behavior.
There one has the least well pronounced gap arri
the nuclear energy and motions during this period
of increasing necking are as nearly collective as
one can expect. Figure 7 near x,= 7.7 fm shows
the density in that liquid transition region. In par-
ticular, one notes that in Fig. 7 the octupole mo-
ment of the light fragment is such that the sharper
end of the egg-shaped light fragment points inward
as befits a fractioning drop, while in Figs. 3-5
the small octupole effects tend to make the joining
edges flat (tips pointing outward) as was observed'
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