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Optical-model potential in nuclear matter from Reid's hard core interaction
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We describe a method for the calculation of the leading term of a previously proposed low-density
expansion for the self-energy of nucleons in nuclear matter. We compute the single-particle complex
potential energy, the average binding energy per nucleon, the complex symmetry potential, and the
symmetry energy. We use Reid's hard core nucleon-nucleon interaction and take a Fermi momentum
k F = 1.4 fm '. The calculated single-particle potential energy is compared with the phenomenological
values of the optical-model potential in the inner region of a nucleus. The real part of our theoretical
value is given by 56 —0.3E (MeV) below E = 150 MeV, and changes sign at 200 MeV. The
imaginary part rises from 2 MeV at low energy to about 20 MeV at E = 200 MeV. These features are
in good agreement with experimental evidence. The average binding energy B per nucleon calculated
with a self-consistent potential energy for the particle states above k~ is equal to —11 MeV. In the
standard approach, with no potential energy for intermediate particle states above k F„one finds —8.65
MeV. We also calculate the symmetry potential. At low energy, its real part is equal to 14
(N —Z)/A (MeV); it changes sign at 110 MeV. Its imaginary part is equal to 3.5 (N —Z)/A
(MeV) at low energy, and rises to 8.5 (N —Z)/A (MeV) at 200 MeV. The symmetry energy is equal
to 27.8 MeV.

NUCLEAR BEACTIONS Calculated complex optical-model potential, symmetry
potential, average binding energy and symmetry energy for nucleons in nuclear
matter, for a Fermi momentum equal to 1.4 fm ~, from Beid's hard core nucle-

on-nucleon interaction, in the frame of Brueckner's theory

I. INTRODUCTION

One of the original aims of Brueckner's theory'
of nuclear matter was to reconcile the success of
the shell-model with the strength and complexity
of the nucleon-nucleon interaction. This implies
not only the calculation of the average nuclear
field, but also an evaluation of the mean free path
of a nucleon inside the nucleus. At positive ener-
gy, this amounts to the calculation of the complex
optical-model potential (OMP) from the nucleon-
nucleon interaction. Most attempts in that direc-
tion have been limited either to the low' ' or to
the high" energy regions, or used some simpli-
fied (usually separable) form for the nucleon-
nucleon potential. '0 Recently, however, Kidwai
and Rook" performed a calculation of the real
part of the OMP in nuclear matter, starting from
the Hamada- Johnston" nucleon-nucleon potential.
Besides, several calculations were performed for
the real' -ie or imaginaryi7 2~ parts of the OMP in
finite nuclei, usually starting from an effective
nucleon-nucleon interaction. Some of these works
include features typical of finite nuclei, like col-
lective effects. However, they are usually limited
to the low energy region, and often include only
part of the absorption. Moreover, they lead to
rather complicated, nonlocal, energy dependent
OMP; these cannot be directly compared to the

phenomenological ones, which contain no essential
dependence on specific nuclear properties. There-
fore, an approach based on the study of nuclear
matter and on a realistic nucleon-nucleon inter-
action is of interest and is complementary to the
calculations pertaining to particular nuclei. This
i.s the point of view adopted in Refs. 3-5, 8-1&,
and in the present paper.

In nuclear matter, the concepts of target and of
projectile lose their meaning. However, one can
define a potential energy and a lifetime for a
quasiparticle state, i.e., for the state obtained by
creating a particle (or a hole} with momentum k
on top of the correlated ground state. This can
most conveniently be achieved in the frame of
Green's function theory. " There, a mass (or self-
energy} operator hf(r, r'; E} is introduced. In a
translationally invariant and isotropic medium
like nuclear matter, M is a function of only two
variables, namely of (r-r'( and E or, by Fou-
rier transformation, of a momentum k and an en-
ergy E. It has been shown by Bell and Squires"
that M(r, r'; E) can be identified with the OMP,
possibly after taking a suitable energy average. "
Likewise, the potential energy and lifetime of a
quasiparticle state in nuclear matter can be ob-
tained from kl(k, E), and related to the real and
imaginary parts of the OMP. ' The present pa-
per is concerned with a calculation of the leading
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term of a low density expansion which has recent-
ly been proposed for M(k, E).'»

We establish our notation and describe our nu-
merical procedure in Sec. Q. In Sec. EQ, we pre-
sent some numerical results obtained in the case
of Reid's hard core nucleon-nucleon interaction"
for A„=1.4 fm '. In Secs. IIIA and IIIB, we dis-
cuss the variation with energy of the real and

imaginary parts, respectively, of the OMP in the
inner region of a nucleus and we compare our results
with the phenomenological values. In Sec. QI C,
we study the dependence with energy of the com-
plex symmetry potential, in lowest order in the
density. Section QID is devoted to the average
binding energy per nucleon and to the symmetry
energy. Section IV contains a brief discussion.

H. BASIC EQUATIONS AND

COMPUTATIONAL PROCEDURE

We first briefly recall, in Sec. QA, the expres-
sion derived in Ref. 29 for the leading term of the
low-density expansion of the mass operator, the
corresponding expressions for the OMP, and the
average binding energy per nucleon. Then, we
describe our computational procedure in Secs.
QB and QC.

A. Basic equations

The single-particle Green function G(k, E) is re-
lated to the mass operator M(k, E) by" (g= 1)

G(k, E) =[Z-k'/2m-M(k, E)]-',
where m is the nucleon mass. It has poles at the
roots of the equation

(u»=k'/2m+M(k, ~») .
The real part of &„gives the energy of a quasi-
particle with momentum 4. Its imaginary part is
equal to half the spreading width of a single-parti-
cle state and can be identified with the imaginary
part of the OMP. "8 Let us expand ~, about the
real quantity

a»=k'/2m+ReM(k, e») =k'/2m —V».

The symbols Re and Im stand for the "rea1 part
of" and "imaginary part of," respectively. Keep-
ing only the first order term, we find

In nuclear matter, one has~

&ImM(k, E)~=~a (7)

where

& Re M(k, E)
8E

Thus, we can write

&a+ &@a @a ~a&a

with

W»= —ImM(k, e») . (10)

Equations (3), (7) and (4) show that the real part
of the OMP can be identified with

—V, = Re M( k, e»)+a»W, = —V+a»W»,

and its imaginary part with 8&. In lowest or-
der in the density, F»~ 1." This, together with
inequality (7), gives

ReOMP~- V&, ImOMP=-W, . (12)

Since the differences between V, and V, and be-
tween S& and 8& are of second order in the density, "
approximations (12) are consistent with the fact
that we calculate only the leading term of the low-
density expansion of M(k, E). We now turn to the
description of this leading term.

We introduce the notation'

n, (a) =1 —n((a) =0 if a& kz,
if a&k~ .

(13)

We denote by the nucleon-nucleon potential, and
by la, b) the product of two plane waves with mo-
menta a and b, respectively. We define a complex
reaction matrix by the integral equation

g(nt) = v+gn, (a)n, (b)v ' ' . g(w),l a, b)(a, bl

a, b

(14)
where

e(a) =a'/2m+ U(a) .
Here, U(a) is an auxiliary potential which should
be chosen such as to optimize the convergence of
the low density expansion for the mass operator,
whose leading term reads~9

G(k, E)~ (4)
Mg(k, E) = Q n((j)(k, Ilg(E+e(i})lit, ])~ . (16)

c» —iW»=e»+ip»imM(k, e»),

(6)

Here, the index A refers to antisymmetrization.
It is argued in Ref. 29 that U(d) should be taken
self-consistently

U(d) = Re M(d, Zg),
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which in lowest order reduces to

U(d) =Re&,((t, ~,) . (18)

f(P,t)=1 if P. and P '&,
=0 otherwise .

(22)

The average binding energy per nucleon B can, in
lowest order, be calculated from the relation

B=- " + Q-s, (i)n (b}(k, lite(e(b)+e(i))lk, l)~52m 2 c

j, k

(19)

Relations (16}and (18) imply that U(d} is continu-
ous at d = k&. In the recent calculations of the
average binding energy per nucleon, one uses
Eq. (19) with, however, an auxiliary potential
U(a) equal to zero in particle states (a& b(,), and
taken self-consistently for hole states (((& I((,}. In
these calculations, the auxiliary potential thus dis-
plays a gap at k~."' Auxiliary potentials without

gap (or with a very smaQ one to avoid singulari-
ties) have been used in different but related con-
texts.""

u~„(k, i)=g(~)lk, j& . (23)

It can be expanded into partial waves, provided
the quantities f (P, t) and e(a)+e(b) are replaced
by their angle averages, namely"~

p, = gp + t a 3 f(p, t)pt (24)

if ~p& kg,

f(P, t)=o & ("+'P*)""-4

=1 if t--,'p& k~

Henceforth, we consider the case of a potential v

with a hard core of radius &, which we shall treat
like a hollow core. ' The correlated two-nucleon
wave function g (k, I) is defined by

8. Method of solution

p=a+b, t=~ (i-b),
p+ =2p+~r p =Sp-~ r

(20)

(21)

Equation (14}is formally identical to the famil-
iar Bethe-Goldstone equation encountered in bind-
ing energy calculations. " Its solution involves,
however, three additional difficulties. (i) The
operator g is non-Hermitian. (ii) The kernel is
singular for (() =e((()+e(b) t5 (-iii) .The self-con-
sistent condition (18) must be fulfilled for d & b(,
as well as for d& k~. None of these difficulties is
by itself a critical one, but their simultaneous ex-
istence required a careful search for a computa-
tional procedure which combines accuracy and
sufficient rapidity. Difficulties (i) and (ii) reflect
the fact that the defect function' [Eq. (33) below]
does not vanish at large distance (no healing), so
that the convenient reference spectrum methcxP
presumably cannot be used as a starting point.
In particular, the procedure of Ref. 11 is ques-
tionable. 40 Here, we transform Eq. (14) into a
set of linear equations by discretizing the kernel.
Two main methods exist, based on a coordinate
space' and on a momentum space4' representation,
respectively. We adopt here the former one. We
follow closely the procedure of Brueckner and
Gammel' and introduce the quantities

if —,'p&k,

9+4ps -k~~~ otherwise
gp

f8+ 1ps
otherwise.

tp

We introduce the quantities

(26}

B((«' t}=2~f((&'d((&'K(p, t), (2'l)

0

+i((to~B((rr r', to)

1

x
dt[e(p, )+e(P )]

!=to
(28)

u -e(p, )-e(p ) =0 . (29)

%e denote by J, 8, E and l' the two-nucleon total
angular momentum, total spin, initial and final
orbital angular momenta, respectively. The ra-
dial parts of (t) (k, j ) are given by the integral

Here, I' denotes a principal value integral, while

&0 is the real root of the equation

equations

;;, „(rr) r(rr)() +4r I,,,f r„"=, r, .(r, r'; ) rr(r')r', ;,(rr')dr',
"C

(30)
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(31)

~(„,.„) G („„,.„) Gi(, e', ) i(., ';
, r„r„w

The defect function

(32)

where tj, ,- is the standard potential matrix, while

q=2(k- j),
does not heal for so &2 e(k„). The leading term of
the low density expansion for the mass operator
is found equal to

M~(k, E}

2'=0 S= 0

X is (p') =u &, (&) —s, (p') (33) where T refers to the two-nucleon total isospin,

Q(S, T, j, q;cu) =4m g (24+1) g ' +
&,'(qr, ) r's, „(qr) Q vP, .(r) u~f. (qr)dr (35)

C
A

O

200 pq

-40

-60

100 +~

-80

i -100

C. Computational procedure

We replace in Eq. (30) the integral by a sum of
trapezoids with the mesh points (r, r') =r„0.575,
0.6, 0.65, 0.7, 0.8, 0.9, (0.2), 1.7, (0.4), 2.9, 3.5,
4.5, and 5.4 fm, and obtain a set of complex linear
equations. The same mesh points are used in the

calculation of the integral in Eq. (35}. The sum
over j in Eq. (34) implies an integral over j and
over the angle 8 between j and k. We checked that
one can limit oneself to the two values cos & =~ v3,
as proposed in Ref. 1. Likewise, the two values
j=0.58 and 0.93 are sufficient for 0&0.9 4'~. How-
ever, caution mustbe exercisedfor k& k~. For A

close to hr, the behavior~ lfj', cc(k' —kr')' [ Eq. (43)be-
low] results from the fact that the imaginary part of
Q inEq. (34)vanishesunless jisclosetokr. Thisled
us to calculate S~ by taking seven equally spaced
values for j in the domain adhere Imp does not
vanish. We imposed the self-consistency condi-
tion (18) at eight values for k, namely h/k~ = 0.1,
0.5, 0.9, 1.2, 1.6, 2.0, 2.4, and 3.0. We shall
see in Sec. III that the omission of the imaginary
part of 6, (&, ~'; w) has only a small influence on
U(d). Therefore, this approximation was made in
the search for self-consistency, except in the last
two iterations.

As emphasized in Ref. 1, the most consuming
part of the program is the calculation of the func-
tions G, (r, r'; su), which must be performed many
times. The contribution from the values ~&~„=10
fm ' to the integral in Eq. (28) was obtained from
the asymptotic formula (91) of Ref. 1. The re-
mainder of the principal value integral is vrritten
in the form

1.0 2.0

klkF

FIG. 1. The potential energy {-Y~) and the energy
&=~& [Eq. {3)) are plotted versus &/&~. The full curve
gives {-V~)chen the imaginary part of G, tZq. {28)l is
neglected; the long dashes include the effect of this imag-
inary part. The short dashes result from the choice
U =0 fXq. Q5)j in the intermediate states. The dash and
dots {right-hand scale) showers the energy & obtained by
subtracting V& from the Idnetic energy.

'& t 2A, (r, r', t) —ta A, (r, r', t,) dP-t, '

(t'- t,')a, (r, r', t)=
u —e(p, }-e(p }

' (37)
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We compute the denominator in Eq. (37) from an-
alytical expressions fitted to the calculated values
U(d) by the least squares method. We use two poly-
nomials of the form A+Bk'+ t-"~' in the domains
0&1.2k~ and 0~&4&2.0k~, respectively, and a
Woods-Saxon form in the region 1.8k'+&4. These
regions overlap, so that the over-all function is
smooth. The Woods-Saxon shape was adopted be-
cause we observed that U(d) approaches a constant
for large values of d. The quantity A, (&, r', f,)
used in Eq. (36) may be obtained by interpolating
Eq. (37). The integral in Eq. (36) is evaluated by
Simpson's three point rule, using 41 points in the
domain 0&1&4 fm ' and 11 points in the region
4 fm '&t&t~. %'e also check and exploit the fact
that G, (r, r'; w) can be interpolated over r' and te

The accuracy of the final program was tested in
two ways. Firstly, we set U(&) = 0 and f (P, &) = 1.
Then the calcu1, ated reaction-matrix should reduce
to the free nucleon-nucleon transition matrix.
Secondly, we made the standard choice U(a) = 0
for a&k~, and compared our calculated contribu-
tions of the different partial waves to the average
binding energy with those obtained by Siemens~
from a different method. " These two checks indi-
cate that our accuracy is better than 5%.

III. NUMERICAL RESULTS

In the present section, we discuss the numerical
results which we obtained from Reid's hard core
potential, ' in the case 4'~ =1.4 fm '. Vfe include
the contributions from the S and D partial waves
with J ~ 2 and from the P partial waves.

A. Real part of the OMP

cally, the dependence of V, upon k can be fitted
with a parabola, and an effective mass m* can be
defined by

(36)

The ratio m*/m corresponding to the full curve in

Fig. 1 equals 0.68 at k&4~, and 0.9 at k = 34'~, with
an approximately linear increase between k~ and

3AF. The effective mass corresponding to the
short dashes in Fig. 1, i.e., to the case of a van-
ishing potential energy in particle states, is equal
to 0.63 m. It was noted previously"'"'" that the
suppression of the gap at &~ increases the effec-
tive mass below k'~. This increase, however, is
too small to bring the effective mass close to its
phenomenological value" m*= m in the vicinity of

It appears that higher order corrections or
collective effects play in important role for the
effective mass at and below 4~."'~'"' The ef-
fective mass for k& 4'~ is related to the energy
dependence of the OMP. We shall see below that
our results are in fair agreement with the phe-
nomenological effective mass at positive energies.

Equation (3) determines the energy of a nucleon
of momentum &. The dash and dots in Fig. 1
(right-hand scale} represent the momentum depen-
dence of this energy E, calculated from the lead-
ing term M, of the low density expansion, i.e.,
by subtracting V, from the kinetic energy. We
note that E = 0 at 4'= 1.74+ and that E = —22.8 MeV
at 4'= k+. The relation between the Latter value
and the average binding energy per nucleon is dis-
cussed in Sec. IIID.

The dependence of V, [Eq. (11)j upon k/k~ is
shown in Fig. 1. The full curve represents the
value calculated when the imaginary part of G,

[Eq. (26)] is dropped, the long dashes include the
influence of the imaginary part. As announced in

Sec. II C, the difference between the two curves is
small, except for k/k~&2. 5. The short dashes
give the values obtained for V, below 4~, when

one sets U(a) =0 for particle states (a&kz} as in

standard binding energy calculations. The sup-
pression of the gap thus increases the absolute
magnitude of the potential energy of hole states.
%'e return to this point in Sec. IG D. %'e note that
V, changes sign at k/k~=2. 4, which implies a
change of sign at the corresponding energy (200
MeV}. For large values of k, V» appears to ap-
proach a constant which is determined by the
fit to be 45 MeV for the dashed curve. This
asymptotic value is, however, not accurately
determined, since no ful, ly self-consistent cal-
culation was performed beyond k/kr=3. 0. Lo-

3p

20

CUx
0

I

-20

-40
1.0 2.0

kikF

3.0

FIG. 2. Momentum dependence of the main partial
wave contributions to the potential energy (-&&).
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60-
kF-1.40 fm"

40-
Oi
X

X

„4~

20-

I I

5 10 50 100 200
E (~ev)

I

1000

FIG. 3. The values for V& calculated with (short
dashes) and without gull curve) the imaginary part of
G f are compared with the phenomenological depths com-
piled by Passatore {Ref. 48). The origin of the data
points is specified in Sec. IIIA.

The contributions of various partial waves to
—V, are shown in Pig. 2. Below k~, the S partial
waves dominate, while the contributions of the P
and D partial waves approximately cancel each
other, as known from previous binding energy
calculations. ' When the energy increases, how-
ever, the contribution of the S partial waves and
also the depth of the OMP decrease. The potential
becomes repulsive at E = 200 MeV, in fair agree-
ment with the careful analysis performed by Elton4'
of the interaction of 180 MeV protons with ' Fe.

From the full and dash and dots curves in Fig. 1,
we obtain the dependence of V~ upon energy which
is shown in Fig 3(full. curve). The dotted curve
includes the effect of the imaginary part (long
dashes in Fig. 1). The points in Fig 3 repre. sent
the values compiled by Passatore" from previous

phenomenological analyses. The + 's refer to neu-
tron scattering with volume absorption, the ~'s
to neutrons with surface absorption, the full dots
to protons with volume absorption, the open dots
to protons with surface absorption, and the squares
to semiclassical analyses of proton scattering.
We see that our theoretical curve reproduces the
main trend of the phenomenological values which,
however, show considerable scatter. A more con-
sistent and a reliable set of phenomenological val-
ues is provided by Bowen et aL.4' and shown in
Fig. 4. These authors make special use of the
maxima and minima in the total neutron cross
sections of the nuclei indicated on top of each
point. The full curve is the same as that shown
in Fig. 3, and corresponds to the linear law

V, (E) =56.5 —0.3E (MeV),

20 MeV&E&150 MeV . (39)

This theoretical law refers to nuclear rnatter with
equal number of neutrons and protons. The dotted
line in Fig. 4 shows the theoretical values obtained
by subtracting from the full curve the symmetry
potential obtained from Fig. 9 below.

The analysis of the scattering from a particular
nucleus at different ener gies also provides a reliable
way of studying the energy dependence of the real
part of the OMP. Figure 5 shows the values ob-
tained in Refs. 50 and 51, for the scattering of
protons by "Ni (crosses) and "|„"a(full dots), re-
spectively, together with our theoretical values
(full line).

Becchetti and Greenlees" give the phenomeno-
logical values (N=Z)

V„=54 —0.32E, (E& 50 Me V)
C

KD V U D0 CL

for the depth of the real part of the OMP obtained

30-
D

6
20-

C
Ql

O~ 10

-20 5
X

-10 &

60-

e 40
X

kF 140 frn-1

10 30 SO 70 90

Energy (MeY)

110
20

FIG. 4. The calculated values for Vz (left-hand scale,
full curve in Fig. 1) and ~& (right-hand scale, full
curve in Fig. 6) are compared with the experimental
values of Ref. 49 for the real (full dots) and imaginary
gong dashes) parts of the OMP, respectively. The
short dashes are obtained by subtracting the symmetry
potential (Fig. S).

20 60 100

(~evj
140 180

FIG. 5. Comparison be@veen the calculated values for
Vz and the values obtained from the scattering of pro-
tons from Ca gull dots, Ref. 51) and 5 Ni (crosses,
Ref. 50).
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3C

e 20
X

eluded in a coupled channel calculation where this
coupling is treated explicitly. Finally, we recall
that the coefficient of E is rather accurately deter-
mined by the data, but that the constant (value at
E =0) is more sensitive to the geometry (radius,
diffuseness) adopted for the fit.

8. Imaginary part of the OMP

10 The variation with h/k~ of the quantity W, de-
fined in Eq. (10) is shown in Fig. 6 (fuli curve). At

low energy, the following asymptotic law holds'~:

m* k'2 —ham
(43)

FIG. 6. Dependence of W~ (Eu. (10)) upon S/Sr (full

curve). The dotted curve represents the asymptotic
expression (43), with N= 9.6.

for the scattering of protons and

V„=56.3-0.33E, (E&50 MeV) (41)

in the case of neutrons. Both values are in good
agreement with our results. The energy depen-
dence quoted by Percy" for 9-MeV to 22-MeV
protons is

V =53.3-0.558 .
However, the coefficient of E is reduced to 0.3
when the influence of the first inelastic channel
on the OMP is omitted. Our nuclear matter cal-
culation does not include the effect of this transi-
tion to a low-lying collective state "In o.ther
words, it yields the potential which would be in-

P,

'1p
1

The dotted curve in Fig. 6 represents Etl. (43),
with N =9.6 MeV. The latter value is in fair agree-
ment with previous estimates by Brueckner, Eden,
and Francis' (%=8.4), Shaw' (N =10.5 and 9.5),
and HGfner and Mahaux" (N = 11.8), for various
interactions. We see that the asymptotic law (43)
is justified only up to %=1.25k~, i.e., for E& 10
MeV (Fig. 1}. Figure 7 shows the contribution to
—S~ of various partial waves. At low energy the
S partial waves dominate, as expected. For E&50
MeV, however, the higher partial waves play a
significant role. This may be at the origin of the
difference between our results and those of Rei-
ner, ' who only includes S waves (and also uses a
different approach). The importance of the 'P,
and 'P, partial waves above I50 MeV is particular-
ly striking. This can be understood from the im-
pulse approximation and the fact that the corre-
sponding nucleon-nucleon phase shifts are large
and steadily increasing in absolute magnitude.
The variation of 5» with energy is shown in Fig.
8 (full curve}, together with the phenomenological
values compiled by Passatore. " The conventions
are the same as in Fig. 3 with, in addition, full

30-

D1

20-
X

10-

2

k/kF

0
1

l I

50 100 200
E (N)eV)

1000

FlG. 7. Momentum dependence of the main partial
wave contributions to the hnaginary part &z.

FIG. 8. Comparison between the calculated values
of &z {Fig. 7) and the phenomenological values com-
piled by Passatore (Ref. 48).
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triangles for values obtained from the nucleon-
nucleon total cross section and an open triangle
from P-"C scattering. The scatter of the phe-
nomenological values is even larger than in the
case of the real part. This is related to their
sensitivity to the type of analysis, for instance to
the radial shape which is assumed. The curves
marked 1, 2, and 3 in Fig. 8 refer to the value of
8', at the center of the nucleus used in Refs. 52,
55, and 56, respectively. Curve 3 is probably
artificially lowered by the assumption" that the
absorption is. predominantly surface peaked up to
about 120 MeV, while it appears to take a volume
shape already at lower energies. " The phenomeno-
logical value for the depth of the volume absorp-
tion part appearing in Ref. 52 reads, for neutron
(curve marked "1"in Fig. 8):

that the Fermi gas model is invalid, since the
latter predicts the low energy behavior (43). How-
ever, we recall that this asymptotic behavior is
not valid above 10 MeV, where the calculated in-
crease of TV, becomes smaller. Furthermore,
the scattering data at low energy are not sensitive
to the absorption in the inner region, and good fits
can also be obtained with 5', 's which increase
with energy in the inner region. " Percy" men-
tions that the analysis of inelastic cross sections
seems to imply an energy dependent 8', at low
energy. Finally, we note that Elton" finds W, =20
MeV in a detailed analysis of the interaction of
180-MeV protons with "Fe; we obtain W, =21 MeV
at that energy.

C. Symmetry potential

8', =0.22E —1.56, 10 MeV&E&50 MeV,

to be compared with our theoretical result

(44)

W, =0.19E+1.9, 10 MeV & E& 60MeV. (45)

The long dashes in Fig. 4 represent the phenom-
enological values of 8'& obtained by Bowen eI; al."
from their detailed analysis, while the full curve
represents our theoretical results, for equal num-
ber of protons and neutrons. The dotted curve is
obtained by subtracting from the full curve the
complex part of the symmetry potential calculated
below in Sec. III C.

It has been shown by Percy and Buck" and by
Wilmore and Hodgson" that the differential neutron
elastic scattering cross sections below 25 MeV
can be fitted with an OMP whose imaginary part
is independent of energy and has only a surface
component. This has been taken as an indication

(V~ —V„)+i(W~ —W„) = (Vr+iWr)
N —Z

(46)

The expression of V& and S'& can easily be ob-
tained from Eq. (34), by following the same pro-

The preceding calculations refer to nuclear mat-
ter with equal number of protons (Z) and of neu-
trons (N). In the present section, we calculate
from Eq. (34) the difference between proton and
neutron potential energies when slightly different
Fermi momenta are taken for protons and neu-
trons. We neglect the dependence of Q [Eq. (35)]
upon 4&, which gives only a small contribution. '
Thus, we compute that part of the symmetry po-
tential which arises from the occurrence of two
different integration limits in the sum over j in
Eq. (34), when N x&. We write the difference be-
tween proton and neutron potentials in the form
(A =N+Z):

cedure as in Refs. 5 and 60:

] N 1I 1

Vr+ iWr =,kr' sin&+(2T —1)g Q(S, T, k„,q; e(j )+e(&))d6,
g ~p T=p g~p

(4I)

where 8 refers to the angle between k& and k. For
k'=k'+, we find V~=31 MeV, in comparison with
the values V~ =20 MeV obtained by Brueckner and
Dabrowski and V& =36 MeV given by Azziz, ' who
used different potentials and Fermi momenta. The
calculated variations of V~ and S'~ with energy
are shown in Fig. 9. At low energy, V& equals
about 25 MeV, while most phenomenological val-
ues range from 40 to 60 MeV." This disagree-
ment is generally attributed to the rearrangements
effects"" which are of higher order in the density
and therefore fall outside the scope of the present

paper. Their contribution at k' =4~ has been esti-
mated in Refs. 5 and 60. However, no energy de-
pendence appears to have been calculated yet. Our
value for V~ changes sign at 110 MeV. Recently„
some empirical evidence has been found for such
a decrease of V~ with energy. We note that the
rearrangement contributions to the mass operator
are real" and that they influence W~ only indirect-
ly, via the self-consistent requirement. Unfortu-
nately, very little is known about the phenomeno-
logical values of 5'~, especially in the inner region
of a nucleus. "' Our results for V~ and S'~ are
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We have studied the leading term of a low density
expansion for the complex potential energy of a
nucleon, in nuclear matter with Fermi momentum
k„=1.4 fm '. We used Reid's hard core interac-
tion and did not adjust any parameter in the course
of the calculation. The real part of the calculated
potential is given by (in MeV)

V, =56 —0.3E (10 MeV&E &180 MeV). (48)

E IMevj

FIG. 9. Energy dependence of Vz (full curve, left-
hand scale) and S'& (dashes, right-hand seal. e) [Eq. {47)1.
These quantities are equal to A/(N-Z) times the dif-
ference between the depths for protons and neutrons,
and are therefore twice l.arger than the standard defini-
tion of the symmetry potentials.

similar to those obtained by Dabrowski and Sobi-
czewski, "who used the impulse approximation.

D. Binding energy and symmetry energy

The average binding energy per nucleon is given
by Eq. (19). This expression is formally identical
to the one appearing in standard calculations. '
However, we use here a different self-consistent
prescription for particle states (k &k~}. In parti-
cular, the auxiliary potential U presents no gap
at k&. From our calculation, we find B= —11 MeV
at 1.4 fm ', while the value obtained with U= 0 for
particle states equals -8.65 MeV. As expected, '
the suppression of the gap at k~ increases the
value of the two-hole line contribution [Eq. (19}j;
the fact that U is repulsive above k~ also increases
the binding. We recall that our prescription for
U has been based on the consideration of the physi-
cal single-particle potential energy. Hence, it is
not necessarily a favorable one for the binding en-
ergy. We also note that the Fermi energy ~&
= E(k~) is equal to -22.8 MeV (Fig. 1). The exact
value of the Fermi energy should be equal to the
average binding energy per nucleon, at the sat-
uration density. The difference between our cal-
culated values for e~ and B can be attributed to
the rearrangement potential" and to the fact that
the saturation density may differ from 1.4 fm '.
The rearrangement contributions decrease with
energy"'" and presumably have only little effect
on the optical potential at positive energies, ex-
cept for the symmetry and spin-spin terms. "
Finally, we compute the symmetry energy with the
same approximation as for the symmetry poten-
tial in Sec. III C and find 27.8 MeV. The empirical
value is close to 30 MeV. '

V~ = 63 —0.28E, (49}

which is remarkably close to Eq. (48).
The imaginary part of the OMP at low energy

was calculated by Shaw' on the basis of Eq. (16)
without, however, a fully self-consistent require-
ment. His approximation is probably reliable at
low energy. Using the matrix elements calculated
in Ref. 1, he finds W, =0.3E (5 MeV&E&15 MeV).
This is close to our result in this energy range.
The imaginary part 8', was also calculated in Refs.
9 and 10. Reiner' finds a maximum (W„=12.5
MeV) at 200 MeV, which is probably related to
his restriction to S waves, as mentioned in Sec.
III C. Ho-Kim a.nd Khanna' obtain 8'„=2.4 +0.009E
(MeV) from an approximation similar to that used
in Ref, 9, but a different nucleon-nucleon interac-
tion. The imaginary part of the OMP at low ener-
gy has also been evaluated from the nucleon-nu-
cleon cross sections. "'"

One may wonder whether the rather good agree-
ment between our results and the phenomenological
values will not be spoiled by the higher order
terms in the density expression. The investigation
of some of these corrections is in progress. Pre-
liminary results indicate that they appear to de-

The result is in good agreement with the phenome-
nological values. The potential depth had previous-
ly been calculated from different theoretical ap-
proaches and for various interactions. In Refs. 9
and 10, the authors used independent pair approxima-
tions derived from the Martin-Schwinger equa-
tions" connecting the one-, two-, . . . body Green
functions. They take separable interactions and
are led to expressions similar to Eqs. (14) and

(16) with, however, different prescriptions for U

and for the Pauli operator. Their calculated
values for V„are larger than the phenomenological
ones. Equation (16) was also used by Kidwai and
Rook" who, however, do not take fully self-con-
sistent potential energies and calculated only the
real part of the potential. They solve Eq. (14) by
a modified version of the reference spectrum meth-
od.' They use the Hamada-Johnston nucleon-nucle-
on interaction" and find
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crease the values of V, and V&. They become
fairly small at positive energies; this is also in
keeping with previous calculations. 65'~ As men-
tioned in Secs. IIIA and IIIC, the rearrangement

corrections are sizable at negative energies. '

We acknow'ledge useful discussions with J. Lavine
and P. J. Siemens.
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