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a-a scattering in the generator-coordinate formalism
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In the generator-coordinate formalism ee calculate the phase shifts for a-a scattering by solving the
Hill-%'heeler equation in the continuum. The Pauli principle is exactly taken into account for the
nuclear potential term. The Coulomb interaction is introduced under a long-range assumption. The
results are compared to the experimental values.

NUCLEAR REACTIONS n-n elastic, scattering. Calculated phase shifts.

I. INTRODUCTION

One can easily describe the ground state and
the low-energy excited states of nuclei by use of
the shell model. This model may then be refined
by enlarging the configuration space in order to
include particle-hole excitations. This procedure
leads to large dimension problems, but the major
objection is that our knowledge of the nucleon-
nucleon force is still incomplete.

Other models are presented as alternatives to
the shell model and in particular the a-particle
model. This model —in fact anterior to the shell
model —was proposed in 1937 by Wefelmeier' and
is founded on the exceptional stability of the a
particles. Indeed, the e particles being very
stable, one can assume that this stability persists
when they are in groups in the nuclei, above all
the light nuclei where the LS scheme seems to
be valid and is well adapted to a conservation of
the e particles. For each light N=Z nucleus whose
mass is four times that of the nucleon mass, it
is then possible to use the e-particle model.

The generator coordinate method (GCM) is a
very powerful tool for the study of this model.
The method originated by Hill, Wheeler, and
Griffin' for the purpose of fission has been suc-
cessful in the study of nuclear rotations' and
collective motion in the light nuclei. 4 Recent
studies by Brink, ' Brink and Weiguny, ' and C. W.
Wong' have revived the question, and the formal-
ism has been extended to deal with scattering
phenomena. ' This extension which was done with
the aid of a schematic model (dineutron) is taken
up again here in the realistic case of e-a elastic
scattering. We have chosen this case on one hand
for its simplicity because there are only two in-
teracting fragments and, on the other hand, be-
cause a great deal of experimental work is
available to test the consistency of the generator
coordinate method.

Two problems arise when working with QCM:
ho'w to choose the generator coordinates and how

to solve the equations obtained. In Sec. II briefly
we describe the generator coordinate method and
the choice of our generator coordinate while in
Sec. III we show how to solve the Hill-Wheeler
equation in the case of scattering. Finally, in
Sec. IV we present and discuss the results ob-
tained.

II. GENERATOR COORDINATE METHOD APPLIED

TO THE n-0. SYSTEM

In this section we follow the development given
in Ref. (8). In order to simplify the calculations
all the nucleons are assumed to move on the OS

orbitals of an harmonic oscillator and no deforma-
tion of the e particles during the collision is taken
into account.

A. Choice of base and Hill-Wheeler equation

In a collision problem, the relative distance
between the interacting nuclei is the most impor-
tant degree of freedom. This will fix our generator
coordinate. Let us consider two a particles (A)
and (B), centered a +-,'r and ——,

' r with respect to
an arbitrary origin 0. The coordinates (of space,
spin, and isospin) of (A) are labeled r„r„r„
and ~, with respect to this origin. Those of the
nucleons of (B) are labeled r„r„r„and r, . The
antisymmetrized wave function for the total sys-
tem is thus written as

4;= Q{q(r, ——,
" r)(p(r, ——,

' r)y(r, ——,
' r)y(r, —,' r)—

x y(r, + 2 r) y(re + ~ r)y(r, + 2 r)y(r, + —,
' r)}
(I)

with

(p(x) = w-"'b-'~2exp[-(~)2/2b']y, 7, ,

where 8 represents the antisymmetrization
operator, b the harmonic oscillator parameter,
X; and v& the spin and isospin variables. The
values taken on by X; and 7., are +-,' and ——,'.

In other words we represent the system of two
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e particles by Slater determinants. But these
determinants are not entirely satisfactory as
they fix the mean positions of the centers of the
clusters and consequently do not allow the true
dynamical behavior of the structure to occur.
Moreover, they are not eigenstates of the total
angular momentum. One can obtain a more
satisfactory wave function by taking linear com-
binations of all the Slater determinants, which,
in the frame of the present problem, amounts to
taking a coherent sum over all the positions that
one can obtain by allowing r to vary.

The set of the base functions 4 „- when r takes
all the possible values generates the wave function

dr r 4r (2)

8 r, r' —EN r, r'' r' dr' = 0,

where

In this expression f(r) is the amplitude of the
mixing of configurations which depend on a con-
tinuous vector labeled r. This amplitude is closely
related to the scattering wave function. As we
shall see presently the explicit determination of

f (rg is not necessary but this amplitude will lead
us to the phase shifts describing the collision.

Let us call X the N-body Hamiltonian of the
problem. The wave function P is an approximate
solution of the Schrodinger equation

Rit) =Eg .

One determines the best wave function g possible
by solving the Hill-%heeler integral equation

Let us consider only the nonantisymmetrized
spatial part of the base functions 4„-:

-s/~&-s/2 -(., -~ ~~'/2o'

f 3/Q 3/2 ( f+ f ) /

(I) —=[v 3/4(t)/2~P ) 3/2e 4gcan. / ]()

xI (F, A)y, (A)(l)h, (B),

where P ((A) and P ( (B) are the internal wave
functions for the a clusters (A) and (B), and

I'(F, 8) =s '/'(b/)/2 ) '/' exp[-(F —2)'/b'].

Ne notice that the center-of-mass motion is
factorized. Since the formalism is invariant by
Galilean transformation, we shall ignore this
center-of-mass motion in the remainder of the
discussion. By inserting Eq. (7) in Eq. (2) the
a-e system wave function now reads

where

(9)

we can express 4„—in the coordinate system where
the center-of-mass coordinate, the relative
coordinate, and the internal coordinates of the
0. particles appear.

By performing a change of coordinate in 4„-,
calling'„= ,'Q; )r, a-nd 8, = ,'Q', ,r„ -the

center of mass of the a particles (A) and (B),
=-,'(FY„+F7~) the total center-of-mass coordi-

nate, and A=A& -B~ the relative coordinate, we
obtain

and

8. Relation with the resonating group formalism

(5b)
g'()))= w

'~ ()I&2 ) '~' I exp[-(r —)))'/b']f(r)dP.

(10)

As originated by %'heeler, ' the resonating group
method (HGM) has been the starting point of a-
cluster model calculations. For a composite sys-
tem one writes the total wave function as a combi-
nation of antisymmetrized partial wave functions
corresponding to the different possibilities of the
neutron and proton distributions in the composite
system in groups such as dineutrons, e particles,
lighter nuclei, etc. By using a variational pro-
cedure one determines the dependence of the total
wave function with respect to the relative distances
between the substructures, and this procedure
leads to the resolution of an integro-differential
equation.

The RGM is formally equivalent to the GCM.

The expression given in Eq. (9) is precisely
the expression of the wave function used in the
resonating group method where the unknown func-
tion is g(B). As Eq (9) also .represents the wave
function used in QCN where the unknown function
is f(r), the connection between the two methods
becomes evident and we may write the fundamental
Eq. (10) formally

(10')

where the symbol 43 denotes a convolution product.

C. Hill-%Reeler equation in coordinate space

It is easier to obtain the kernels of the Hi|1-
Wheeler integral if one expresses 4„- [Eq. (1)J in
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second quantization:

~
4 „-)=a J(-,' F)at (-,' r)aJ (- —,

'
ega~~ (- —,

' F)at(-,' F)a „-(-', F)a„(-,'F—)a~t(- —,'F)( 0}2
P

where j 0} represents the vacuum, a~t (a&t) the
creation operator for a proton of spin +2 (- &)

and a„(a„-) the creation operator for a neutron
of spin + ,' (--—,'). These operators obey ordinary
commutation rules and allow the use of the
I owdin's technique. '0

The Hamiltonian X of the system contains: (a}
The kinetic energy of all the nucleons

where M is the nucleon mass; (b) a iwo body
potential energy term of general form

&,, =V,e i'& 's» ~" (A+BP, +CP„+&P,P, },
(12)

where V, represents the depth and p. the range of
'he potential, P and P, are the spin and isospin
exchange operators, and A, B, C, and D are the
coefficients of the mixture; (c}a Coulomb inter-
action term which is discussed in Sec. III F. %e
can now calculate the quantities useful for the
problem. For the overlap N(F, F') we obtain

N(F, F') = (exp[- (F F')'/S—b' j —exp[ —(F+F')'/Sb'] J'.
(13)

Asymptotically (r or r' large) we notice that

N=F I',
where I" is the operator defined by Eq. (S). This
result will be used later.

The interesting quantity in our problem is the
relative energy between the e particles. Ne must
therefore take into account (i) the kinetic energy
of the center-of-mass motion T, =Sacs/4, (ii)
the internal kinetic energy of each e cluster T,.„,
=3(3k~/4) where 1(4}= ff'/Mb', and (iii) the internal
potential energy of the two cg particles,

4u'(~ —G) V.V' (=
(2b2 2)2/2+p. )

Once we have subtracted

(2T, +T, +V, )N(F, F')

from H(F, F'), we get the kernel of a Hill-Wheeler
equation related to the relative motion of two
e particles of relative kinetic energy at infinity:

8'k'/2»n,

where m = 2M is the reduced mass, and the wave
number k is the asymptotic wave number of the
relative motion. Hence we obtain a kinetic and

a potential energy kernel

)

~3 r'+r" Fr' rr'
VF, ')=, '„, , xp —,ex, +exp —,—2

+p, )

(14}

r2 rl2
x 2 Q-S ex 42b +

+ xp 42b'+ —1

~Iy2 / g%2 I

4(22' ~ 2'} 22' 4(24'+ '} 24' ) (15}

with 6 =A+2JP+2C+4D and 8=4A+28+2C+D.

III. RESOLUTION OF HILL-WHEELER EQUATION

A. Difficulties in solving the equation in coordinate space

We write Eq. (4) in operator form:

(H —EN)f =0 .

%e can reduce it to a diagonalization problem
by multiplying it on the left by N 'I' (provided

N ' ' exists}

(N ' 'HN ' ' —E)(N} 'f) =0,
and solve this eigenvalue problem for an integra-
tion mesh q&, correctly chosen.

There is, however, a problem which renders
the use of this method difficult: the values ob-
tained at the points q& do not generate a stable
function f(q, ) when we change the integration
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mesh. The closer the points, the more violently
the function f(q&) oscillates. These oscillations
can be explained if we look at F(if, q'), the Fourier
transform of F(F, 8) defined at Eq. (8):

r(q, iP) =(2v)'~'b'~'e "' ~'[5(q- iP) +5(q+q' }]

(16)

violent oscillations of f(F) when the mesh points
become closer.

8. Representation in momentum space

For solving the Hill-Wheeler equation for the
continuous spectrum it is convenient to take g
as the unknown function obeying the equation

which, when we call f(q) and g(q) the Fourier
transforms of f(r} and g(F), leads to

F '(H —EN) I' ' g = 0 (18)

f(q) =(») "b "e' "'*g(V)

The function g(q) is a scattering function which
decreases to 0 when q tends to infinity. However,
this decrease is not in general fast enough to
compensate for the quadratic exponential which
figures in Eq. (1V}. Consequently, the inverse
Fourier transform which leads from f(if} to f(F)
diverges at high frequency and this explains the

and to solve it in momentum space.
We shall see later that this equation is a

Schrodinger equation or more exactly a Lippmann-
Schwinger equation, as it is solved in momentum
space representation. As a matter of fact, the
inversion of F in coordinate space is not an opera-
tion as easy as it is in momentum space. How-
ever, the divergence of I' ' at high frequency is
compensated by the fast exponential decrease of
the kernels N, T, and V as one can see on the

Fourier transforms

N(q, q') =(2v)"'b'em(- 'b'q')[6(q-—0 ) +6(q+ V )]+6b'exp[- -'b'(q'+q *)]

32 6 2b 2, 2 2b, 2b'
,I, b'exp — (q'+q") exp qif' +exp — qlI'

I

r(q, F)=I~I(2~)'*[()'q'ezy[-l&'e'I[()(v+()')+()(e —F)1-[&'~x)[-l&'(e' ~ e"))[3—&'(e*'e")I

23
6

2b3 ~,~, 4b 2
+ ~~2 b exp — (q +q' +lrjf') 3 — (q +q' +i(i@)

(20)+ 3,2 b exp — (q +q' —qq') 3 — (q +q' —qq')s 2b' . , a --, 4b'

The corresponding expression for V(q, q ) is easily obtained. As it is rather cumbersome, we present
it in Appendix A [Eq. (Al}].

C. Treatment of the divergences

After the application of the operator f' '(q, q') no exponential divergences remain in the kernels s
= I' 'NF ', f=F 'TF ', and v=t' 'VF '. One finds for n and t [the corresponding formula for v is given
in Appendix A, E[l. (A2)]:

s(q, q') = a[5(q+q') +5(q —q')] +,s, exp[- ,'b'(q'+q")]-
(2 v)8 2

16b 5b', , 2b, 2b
exp — (q'+q") exp 3

qq' +exp —
3

qq'
'I

(21)

~(q, q') = f(@~b'}q'[6(q- q')+6(q+q')]

+, ,
~

—-', b'exp[- —,'b'(q'+ q")][ 3 —b'(q'+ q")]

4b' Sb, , ~ 4b', , 2b, 2b'
+ „-, exp — (q'+q") 3 — (q'+q") exp qq' +exp — qq'

+ qq' exp qq' -exp — qq' . 22
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D. Projection onto even waves

It now remains to project e, t, and v onto even waves, as the Pauli principle excludes the odd waves.
Denoting l the partial wave index, we find

(22)

q, (q, q')= — qqq (i zqq—(q'+q "}q, , — q„, qxq —
(q

(q* q'*) i,
q qq')I, (qq)

A2
&&(q, q')=4M 6(q —q')+sq(q q') (26)

I/2 I2 ( Qf} |)}2
6((qqq )= „Af ~- 4 exp -4 (q +q )

I

45 552
+ 2~2 exp 12

(q'+q")

3/3 b'
6, , + (q'+q")exp ——(q'+q") 6), ,

I

Bb 3 . 2b
6 —

q
(q' ~ q"} i,

q qq')

Sb 25 2b'
2(2f 1) qq f 2$ 1 2 qq (f 1)2)+1 2 qq

i

(26)

where i, (x) represents the modified sp(herical
Bessel function.

The e(fuivalent expression for v, (q, q') is given
in Appendix A [Etl. (AS)] . Since the phase space
in partial waves is q'dq, the equation

(fi+&i -«qhq
contains in particular a term (q2-E)g, (q) which
is nothing but the characteristic term of a Lipp-
mann-Schwinger equation. This justifies what
has previously been stated about the reduction of
a Hill-Wheeler equation to a Schrodinger equation.

K. Role of the Pauli principe

Not only are the odd waves not present in the
system, as the e particles behave as bosons at
long raage, but, moreover, it is mell known that
at short range the Pauli principle imposes a change
of four S orbits in P orbits (see Ref. 6).

The result is that the relative motion g, (q) or
g, (r) in the S wave cannot contain any component
on the 08 and 1S wave. In the same way, the
relative motion in the D wave cannot contain any
compoaeak on the OD wave. In fact, due to the
numerical approximations that we shall allow,
some spurious mixing of these GS, 1S, and 1D
states can be present. Since they do not change
the wave function at long range, they do not change
in principle the phase shifts. We shall verify
after calculations that the numerical solutions are
not perturbed by the eventual presence of these
spurious comyonents.

F. Treatment of the Couloiab interaction

For the Coulomb interaction we make an ap-
proximation related to the longe range of this

potential. In fact, when the two e particles are
far enough from each other, that is to say when
the Pauli principle does not play an important
role, the leading terms are those of the direct
term and total exchange terfn.

We directly introduce the Coulomb potential
in momentum representation. For this purpose we
restrict ourselves for the moment to the case of
the Coulomb potential v, =z2e2/R. Following,
for instance, Ref. 11 we write

2 2

2q(q)=
q

q(q) ~ J q. (q-q')q(q')qq',

v (q —q')= e"' "&"2 (R)dR,c (22)2 c

which after projection on partial waves leads to

(&'-q')gq(q) = „- Z2 fq(q, q')q"gq(q')dq'22m
0

(28)

I (q, q') = i (qR)i (q'R)~, (R)R'dR, (28)
0

where j, (x) is the spherical Bessel function of
order /.

There is no closed formula for the integral
f, (q, q') if v, (R) is truncated, and this will be
the case, Due to the presence of the Bessel func-
tions it cannot be calculated by general integration
methods. In order to obtain it numerically we
establish in Appendix 8 some of its properties
and in particular a recursion formula which

l, (q, q') obeys.
We now come back to the complete equation
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which contains the Coulomb term as well as the
other terms deduced above from the transforma-
tion of the Hill-%heeler equation:

(&'-q')a(q} =
gn W|(q, q'}a(q')q"dq'.4e

(3o)

It looks like a Fredholm equation for the kernel

W, (q, q') = 8, (q, q'} + a, (q, q') —Ev, (q, q')

the phase shift then reads:

Im [D,(E+i e)]
Re[D,(E+ ie)]

By using the identity between operators

detA=exp tr lnA

we obtain the following development for D,(z ):

D (z)-1 z-E,

(33)

2+-Ig(q, q'), (31)
1 " " dE,dE,3(, , (z-E,)(z-E,)

R 1 22

which plays the role of a nonlocal pseudopotential.

G. Method for calculating the phase shifts

We are only interested in the phase shifts gen-
erated by the equation shown above. To calculate
the phase shifts we have thus chosen the Fredholm
method as it was developed by schwinger" and
Baiter." The determinant D(z}=det[1 —Go(z)W],
where Go(z) =(z —T) ', is the Green function of
the free particle, and contains all the information
about the scattering. For a given partial wave L,

(34)

where the S',~ are the matrix elements of the
pseudopotential (31) in energy representation. In

our case we only have to calculate the integral of
(qq')'~'W, (q, q') to return to momentum represen-
tation.

When we calculate within Im[D, (z)] and Re[D,(z)]
the integrals (which are principal part values) by
use of an N-point q, Gauss-Legendre quadrature
method, we obtain the following expressions, in
which +, represents the weights associated with

the q, points:

2~'oiiq~ 2~0~~~
00 & ka q

2 k2 q
2

I

Im[D, (E+f~)]=-x I
I
I

I

I-~'So '
I

Re[D,(E+iz)]
(35a)

Re[D, (E+jz)] =

2~»~.q,
k -q, k-q2

25'2~(a ~q, ) 2g 22~2
k' —q,

' lt'- q'

29",~~ q
ka- q~a

(35b)

2@'si~q&
k -q, k -q~2

The Fredholm method has already been em-
ployed in particular by J'ost and Pais'4 and by
Reinhardt and Slabo" for calculations on phase
shifts of a particle by a potential.

IV. RESULTS AND DISCUSSION

A. Parameters of the problem

One of the aspects of this problem lies in the
general absence of parametrization. The only

(36)

numerical constants present are the value of the
harmonic oscillator parameter which is related
to the e-particle radius, and the mixture defining
a nucleon-nucleon force.

Harmonic osciLLator Parameter. This param-
eter is obtained from the r.m.s. radius of an e
particle of which the center of mass is fixed:

(,} J«'p(x)dx

f«*p(x)dx 8



10 n- o. SCATTERING lN THE GENERATOR-COORDINATE FORMALISM 1277

Q
I I

0 10 20 30
cm ~~e"j

40 50
I i I ( I ) ( I ( ) i I I (

FIG. 3. The l =4 phase shift obtained with the Volkov
potential. The experimental points (+) are those listed
in B,ef. 16.

and of Brink and Boeker" g,

V(z) =-140.ee '*""(0.51+0.49P„)

+389.5e " 7 (1.53 —0.53P,) . (33)

~IL

FIG. 1. Thel =0 phase shift. The full line curve
represents the values obtained with the Volkov potential
[Eq. (37)], the dashed curve represents the values ob-
tained with the Brink81 potential tEq. (38)). The ex-
perimental points (Q are those listed in Ref. 16. v,(R) =z'e'/R if R ~R, , (39)

Coulomb Potential/. The determinantal method
described above holds only if the radial part of
the potentials tends to 0 faster than 1/r when

%'e have adopted the truncated Coulomb po-
tential

=0 if 8 &Ro.
where

4

(&x)=I Q(dx, le *'"'
I )(((i-i )() gi).

5 z-1 f=1

This leads to b = 1.36 fm for the value'e g =1 44
fm of the e-particle radius.

Xhoo-body potential. %'e have used the soft re-
pulsive core potentials of Volkov"

V(z) =(O 44+O 55P )(-eOs-&"'-&'+eOe-&*" "& )

(37)

We replace„after g„ the Coulomb potential by
the correction

y in(3nR, ),
where

y =z'e'/ ffv

and v is the velocity of the incident particle.
We choose A, =30 fm and we have checked that

the Coulomb phase shifts 0, obtained by resolution
of the equations containing only the Coulomb term

0
0 10 20 30

Ec~t"'"~
CQ

0 ) I I I + I+@A

0 10 20 30
E „fvev)

CQ 50

FIG. 2. The L =2 phase shift obtained with the Volkov
potential. The experimental points (+) are those listed
in Ref. 16.

FIG. 4. The l =6 phase shift obtained with the Volkov
potential. The experimental points {+) are those listed
in Ref. 16.
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gives the well-known result

(40)

Z 8
2x &R «R,a (41)

=0 R &Rp.

The results for the 5, phase shifts have not been
significantly modified.

Integration mesh. We use a Gauss-Legendre
method in order to perform the integrals in the
determinants defined in Eqs. (35a) and (35b). The
mesh is the following: a 12 point method between
0 and 1 fm, a 12 point method between 1 and 2 fm,
and an 8 point method between 2 and 30 fm. "

We have also used a 32 point method preceded
by the change of variable

q, = k tan[-,'w(1+ x,)),
the x, denoting the Gauss-Legendre points. The
two methods give the same results.

B. Results

We have represented in Fig. 1 the results of the
phase shifts obtained for the 8 wave with a Volkov
[Eg. (37)] and Brink B1 [Eq. (3S)] interaction.
Both the two forces give correct results but the
Volkov one is closer to the experimental results.
We have also used all the other B and C forces
listed in the Brink and Boeker" paper. All the
results are distributed around J31 and are not
shown here. In Figs. 2, 3, and 4 are given the
/=2, 4, and 6 phase shifts, respectively. The
agreement with experiment is rather good.

where F represents here the Euler function and
/ is the 3th partial wave.

Finally, in order to take into account the gross
features of the exchange effects, we have also re-
placed the expression given in Eq. (39) by the fol-
lowing one:

Z2e2
c,(ft) =

2
3-, 0~a &2x,

The same results have already been reported
by several authors, namely Okai and Park" and
Federsel et a). , ' by use of the resonating group
method. All these calculations show the equiva-
lence between the RGM and GCM. The flexibility
of the GCM in particular could be useful to calcu-
late an effective a-a potential.

There is, however, another method due to
de Takacsy ' to obtain the phase shifts. Essential-
ly in this method the Hill-Wheeler integral is
solved in coordinate space and the integral from
0 to ~ is replaced by an integral from 0 to an
arbitrary cutoff Sp. The part from Sp to infinity
of the integral is replaced by something else where
the unknown function f(r) is replaced by the asymp-
totic scattering function. de Takacsy with less
integration points shows nuclear phase shifts.

The drawback of this method is that this arbi-
trary cutoff in the Hill-Wheeler integral intro-
duces an additional parameter, and there is no

proof that if $p is increased the solution remains
stable. This objection has already been pointed
out by Horiuchi" in his calculations in coordinate
space, since he was obliged to define for each
partial wave a different "channel radius" in order
to fit the experimental results.

To conclude, we note that our microscopic theory
is free of parametrization. Except for the Cou-
lomb interaction, the Pauli principle is correctly
taken into account and the Coulomb force is intro-
duced without use of the usual parametrizations,
leading to a rather good description of n-a scat-
tering. This theory could be extended to heavier
nuclei such as "0-"0or "0-"C scattering, but
then requires some additional approximations.
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APPENDIX A: DIFFERENT EXPRESSIONS FOR THE NUCLEAR POTENTIAL TERM

A. Fourier transform of V(rf ')

4 252, 252, 2b
V(ig, q') = 16''O'V, (G —$) —,~. ..~ exp — (q'+q") exp gq' +exp — qq

4
S

(552 + 2p 2)$2q i y(4252 + 2~2)$2q2
(Sb~+ 3@s)3 852+ 3p2

(552 + 2p2)$2q2 + (452 + 2g2)$2qt 2

+exp 8++ 3p2

(45'+2p')b'q ig' (45'+ 2p')b'q q' I

j
P S52 +3p2 S52 + 3p2
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2s/a baqa 2ba + +a
(Sba + 2 isa)s+ 2 ~ 5ba 4- 2iaa

bmq 12 2ba + p
2

2 P 5b2+2~2 & + 2b2+~2»

3 '6 ba(5ba + 2iaa)(qa + qI a)

(12b +3 ) /a 12ba+3 a

2b2+2@~ 2b2+2p2
exP, 2b2 3 gb'if' +e~ -12b2

x exp, 2, b qg +exp —6», b gg
b2 b

1 b'(5b'+2 pa) a „6b'+2i/, a a, Sb'+2@,a

2P b V G
(Sba 3 a) /a exP Sba 3 a q

' + q ") exP Sba 3, b'if'' + exP —S, 3, b'if q'

+4gsbaV43 a a~exp — (q'+q") exp qq' +exp—1 5b'+2isa „3b'+2ga, 3ba+2isa

with 6 =A+2B+2C+4D and S =4A+2B+2C+D.

B. Treatment of the dNergences

Si/, 'b'V, (G —S) I 4 b' 12b'+5g' O' Sb'+ 5p, a

(33)'" ((85' 3 ')'8 4 8ll' 3$' 4 85' ~ 3 ' )
]2b2+ 5@2 b2 Sb&+5p2

4 85' ~ 3' 485' 3' )
2ba(2ba+ p,a) 2ba(2ba+ p,a) --x -mp 8 a'3 2 yy' +mp —

8 8 3 2 qq

2'+ b2 b2 3b~ +
(35' ~ 38')'» 4~ 4 35'+3 '4 )

(Al)

5b2 2b2 2'—
3 8(35 )

88$ —
(3 (4* 4") $*5

3
I7$' +838 —

3 54"I
b +p,

+
(2ba a)a/a exp —

4 (q +q )

16iasbs Va(G + 2$) 1 O' Sba+5ga
/a(4b +~ ) /a exp 12 4

2ba b2+ p2 2b2 b&+ p&
x exp 3 4 2 ,qg' +exp —3- 4 ,gq

2ia'b' Va(8+ 2G) 1 b2 2b2 + ~2
(2+)s/a (Sba+ a)s/a ~ 4 3ba + a (q q )

16@,'O'V C 1 b' 12ba+ jp'
Sb'+3~')' xP 4 Sb
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2b~(3b + p ), 2b (3bs+gs)
exp 9 I 3 & Ifq +eXp —

3bs 3 s qq'

2p, sbsV 8 1 3b2+2p2 3b'+2p2 3b2+2p2
(4,}*:(»}pe» —,(4' 4") ~p

4
ss' ~e» —,sq) . (x»

C. Projection on the multipoles

2 1/ 4 b' 12b2+ Sp, 2 b' Sb'+5p, 2

e,(q, q')= — (sp'4'p, (G —4) (4, 4,}, exp —
4 ss, 4 . q* exp —

4 ss, 4, q")

b' 12b2+5p, 2 „b'8b'+5p'
4 ss' 4 ' 4' '» 4 ss'+se'~)

Sl '(S4*+ p*)
X &g 8b2+3

23/2 b2 b2 3b2 + 2@2
(4(p. sp') " '» 4' ' 4 ss'. sp' )

b2 b' 3b2+2p2
+exp ——q" exp ——

4 5b2 +2~2

leap

q'

s~( s 2)s~ exp —
12 (q +q' ) is 3 qq

1 b2
~ (S», ,}, exp —

4
(4' ~ 4") 4, .)

2 i/2 b ' Bb'+ 5g' „.2b'(b'+ y, ')
3'"(4b + ')'~ ~ 12 4b'+ ' ~ ' 12b'+3@.'

1 b2 2b2+ Q2 b2 b2qe'4'v, (sp+4}( &,)„,exp —
4 4 . . (q ~ q' ) e,

4 44, .44)

x/2 1 b& 1 2bs + 5 ass 2bs(3bs + ps)32p'b'V G(3, 3 ),~ exp —
4 3b, 3, (q'+q") is

9b 3
qq'

1 3b2 + 2p,
2 3b + 2 p.4P'l)'V,e, ,eexP — (4' q") e; 4 qq') . (A3)

APPENDIX 8: PROPERTIES QF THE INTEGRAL

Ir(qg') fEq. (29)l

In this Appendix, to shorten the notations, we
omit the z e' factor appearing in the Coulomb po-
tential defined in E(1. (39), and Eq. (29) becomes

Rp
I,(q, q') = dRj, (qR)j, (q'R)R.

0

Let us work on a more general expression:

0
I,"(q, q') = dRj, (qR)j, (q'R)R".

Applying

j„,(x) = -—+—j (x),s
d

once to j,(qR) and once to j,(q'R), we obtain by

summing the two expressions for I~,

0
2&I", =q R""dRj,(qR) j„,(q'R)

R
+ q R""js„(qR)j,(q'R)

0

Rp
+ R""d(j,(qR)j,(q'R)) .

0

We increase the order ofj,(qR) and j,(q'R) and ob-
tain, when integrating by parts and repeating the
procedure, the final result

2+ /2

(2l+N 1)IP—(2l+3-), IP, +(2l- II+5)I, sW

=Ra "Ij((qRO)j s(q'R. ) js "(qRO) js+2(q'Ro—)]
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We notice that

is just the recursion relation for the Legendre
polynomials P,"(X) and Q", (X), where g is related
to X and

X= +g
2gtg

I~ by a decreasing recursion until the final result
Io". The consistency of the method depends on
this value of Io which always can be obtained by
a direct calculation.

When q=q', due to

Q (2l+1) jg'(~) =1,
l~0

we establish the following relation:

Consequently the I", have components on the Qf
and therefore one must start the calculation of the

g(21+1)I;(q,q) = N', 1
. (B3)
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