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Partial-wave dispersion relations for the coupled a+ n and t + d channels of the Z = 2
five-nucleon system have been solved by the matrix N/D technique. Driving terms have been

constructed from one- and two-cluster exchange graphs with parameters of vertex functions taken from

studies of A & 4 subsystems, Accurate solutions to the coupled N and D equations have been

obtained by a Pagels approximation based on (N, N —1] Fade approximants. Coulomb forces in

charged-fragment channels were incorporated via the repeated X/D scheme of Kinoshita and Kugler.

No proper treatment has been given of the anomalous threshold of the t + d a + n

proton-exchange graph. Calculated n + n scattering phase shifts lack uniqueness, due to strong

sensitivity to the inaccurately known vertex parameters used as input, but display the basic features of
repulsion in the s wave, occurrence of resonances in the p waves, and existence of the small 3/2+,
d-wave resonance just above the t + d threshold. Failure of the calculation to produce the width of
the p-wave resonances is attributed to the improper treatment of the anomalous threshold. Differential

cross sections for t + d a + n show reasonable agreement with experiment in both the forward and

backward directions but lack details of the observed structure at medium angles. The latter again

occurs for the calculated t + d elastic scattering cross sections which moreover are unsatisfactory at

forward angles. A comparison with other coupled-channel calculations of light systems is attempted.

NUCI EAR REACTIONS He(n, n) He, E =0-40 MeV; calculated S&j2 through

D&&2 phase shifts; 3H(d, n) and H(d, d), E =6 and 14.2 MeV; calculated a{8).
Dispersion-relation method.

1. INTRODUCTION

The study of few-nucleon systems belongs to a
particular branch of nuclear physics. These sys-
tems are thought to be simple enough to enabie
highly accurate and sometimes exact descriptions
in terms of a bare nucleon-nucleon interaction.
The outstanding example is of course the A = 3 sys-
tem which enjoyed tremendous interest in the past
decade. The starting point in this development
has been the pioneering work of Faddeev' who

formulated a mathematically rigorous approach.
In its wake an extensive literature bears evidence
of the numerous aspects that turned up in the
realization of Faddeev's program.

For our purpose we mention two of these. Given
the exact Faddeev equations for coupled amplitudes
one may try to improve on the input which, for
computational reasons, is simpler than what is
commonly called "realistic" nuclear information.
In the earliest applications for instance one could
only handle an input of rather crude rank-one
interactions between nucleons, which permitted
practical solutions of the Faddeev equations by
matrix inversion. ' Nowadays one applies Padb
approximants to local realistic interactions. '

More physical aspects emerge from a compari-

son of a vast body of data on the A =3 system with

predictions. The data encompass the binding en-
ergy, electromagnetic form factors, angular dis-
tributions and polarizations in two-body scatter-
ing, complete 3-body breakup data, etc.'' The
comparison should amongst other things tell us
whether bare three-body forces need be intro-
duced; they may help to determine the relative
weight of tensor interactions, etc. Interfering
with the credibility of answers to this question,
is the sensitivity of predictions to the two-body
input, in particular to its off-shell behavior.

Turning now to A &3 systems, there are specific
reasons why one would like to be able to tackle
these. We mention that (tor not too high energies}
genuinely different two-body channels occur of
course only for A ~ 4. Next for A =4 and 5 one
encounters for the first time resonances. ' One

may hope that a description of relatively narrow
resonances in, e.g., theA =5 systems, starting
from a two-nucleon force, will be useful in under-
standing a universal nuclear phenomenon.

It seems that the five-particle system, i.e.,
the coupled e-nucleon and d-helion channels, is
particularly suited for such a study, on which we

report below. The first open channel, e plus
nucleon, has no competition below the first in-
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elastic threshold at E, =17.6 MeV. Elastic scatter-
ing for E&E, thus ideally tests the influence of a
closed channel on a single open channel, which
incidentally has a, simple spin-isospin structure.
A theory should in particular produce locations
and widths of the two lowest P-wave resonances
and give a fundamental description of the ob-
served spin-orbit coupling. Of special interest
is, further, the d„, resonance just above E,. Its
position and narrow width are clearly related to
the coupling of the elastic with (at least) the d + t
channel.

Guided by the success of the Faddeev theory
one would attempt to search for generalizations
thereof for A & 4. Only few formulations reached
the required level of rigor, ' but when it comes
to applications one encounters enormous compu-
tational difficulties. Some exploratory approxi-
mations have been worked out' but one clearly
is still far from a scheme that is both workable
and "realistic. '*

In view of the stated interest in solutions of
few-nucleon problems, entirely different approach-
es have been tried. Roughly speaking these have
been of two types, namely variational methods
and dispersion techniques. In the first category
one finds new applications of the resonating group
method as well as use of the Kohn-Hulthbn vari-
ational principle. Both approaches deal with

coupled SchrMinger equations where channel
coupling. is expressed in terms of bare inter-
actions and w'ave functions of channel fragments.
Successful calculations for A =5 have been re-
ported"' " and we shall return to these in our
final discussion.

Dispersion techniques used in nuclear prob-
lems have until now been of two types and con-
centrated respectively on forward elastic" and
general partial-wave amplitudes. "'" The former
application is based on a genuine S-matrix theory
and ultimately relates observed total cross sec-
tions, the real part of the forward amplitude, pole
positions and residues. " Forward dispersion
relations therefore provide a consistency check
on parameters and functions extracted from ex-
periment. In particular their predictive value is
limited to one coupling constant, or to a con-
straint on several ones. Partial-wave dispersion
relations as used in high-energy physics also ex-
ploit proved or assumed analytic properties of
partial wave S-matrix elements. "' '4 Direct ap-
plication to scattering problems of nuclear physics
would however require the introduction of non-
nucleonic degrees of freedom. "

We have in the past formulated an alternative
approach inspired by the rigorously proved dis-
persion relations for partial-wave amplitudes in

potential scattering from Yukawa-type potentials. "
In the postulated generalization, "coupled partial-
wave amplitudes for transitions betw'een two-
fragment channels with a total number of particles
A are assumed to satisfy some set of coupled-
channel equations which, to be sure, contain only
nucleonic degrees of freedom and which define
an analytic continuation in the energy variable.
Again, assumptions about analytic properties are
then concisely embodied in coupled partial-wave
dispersion relations. These may then be solved
by the matrix NjD-factorization method.

In the N/D approach to coupled amplitudes, two
features stand out. One is the preservation of
two-cluster unitarity, the second the nature of
the driving terms. Here (and incidentally in po-
tential theories of the Faddeev type) the emphasis
is on effective, renormalized driving terms re-
lated to subsystems of A'&A particles, and which
allude to what is called the dominant reaction
mechanism (nucleon exchange in stripping, etc. ).
We recall that, in contradistinction, the variation-
al theories employ driving terms expressed in
the bare nucleon-nucleon interaction. The few
subsystem parameters characterizing renormal-
ized driving terms (vertex parameters) could
either be computed from microscopic wave func-
tions or be taken directly from experiment. "
These parameters may then be said to form the
input, much the same as the adjusted parameters
of the chosen semiphenomenological two-nucleon
force form the input for variational calculations.

We have given in Ref. 13 the outline of a many-
channel XjD reaction theory. Basing ourselves on
that formulation we shall collect in Sec. 2 the
essential concepts and formulae without rederiva-
tion. Encouraged by the satisfactory results for
the three-nucleon problem" we then discuss in
Sec. 3 the input for the A =5 problem. Numer-
ical results for n-'He and d-'H elastic scattering
and for the d+'H- n+'He stripping reaction are
given in Sec. 4. A general discussion, comparison
to other approaches, and a conclusion appear in
Sec. 5.

2. RESUME OF MULTICHANNEL XD EQUATIONS

We start here with a condensed resume of the
ND ' method as adapted to low-energy nuclear
reactions, which will, moreover, serve to dis-
play our notation and conventions. We follow our
presentation in Ref. 13 where we incidentally
alluded to modifications necessary to include
long-range Coulomb forces acting between
charged fragments. These modifications are a
straightforward application of the formalism of
Ref. 18 and are applied here without rederivation.
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(C = (cgq C2}q m» fpl wq kc] . (2.1)

Consider a nonrelativistie, A -nucleon system
which allows for ~ divisions into asymptotically
free pairs of clusters C and an unspecified number
of three-or more-cluster divisions. We shall
understand C to denote the internal quantum num-

bers of the two clusters c, and c, in a particular
fragmentation, except their spin orientations m»
m» and Rc the relative momentum of the two frag-
ments. In the center-of-mass (c.m. ) system a
specification of an asymptotic state in "channel"
C is thus

The symbol

(2.2}

will comprise the nucleon number and charge, A,
and Z„ the binding energy e, = —

~
e, ~, spin and

parity, and other quantum numbers specifying
uniquely the state of c,. At a center-of-mass
energy F

u, =u, (E)-=—[2M, (E -E,)]"',-1
(2 2)

with M~ the reduced masses and Ec =c, +e» the
(ordered) threshold energies of channels C.

The unpolarized differential cross section for a
transition between two asymptotic states of type

(2.1) equals

d,.(E, e) 4"M, 'u. (E) (2.4)

where the c.m. scattering angle is given by cos6 = (kc kc.) and where kinematical factors have been chosen
so as to give the scattering amplitudes A the dimensions of energy x(length)'.

We now separate from A the Rutherford amplitude A' '"" (if C' =C) and perform a partial-wave analysis
of the remainder, writing

+ g (2J'+1) g —,'[1+w,w, w,'w,'(-) ' w][kc(E) d '~c(E i+a)
ESL'S'

AcLs. c 'I '8 (E ~ ~'} c 'L' (E I ~) c ' (E} ] Xmgm2LB, L's'mg m2 ( c, kc') '

In (2.5) J and w refer to the total angular momentum and parity of the system and S and L to the channel
spin and relative orbital angular momentum in C. We further used the general spin-angle functions

X~' ~ ~ ~ (k k ) =(-)'~'~'~ 'w+~ (-)'z'i ~2 "2' i' ir ™w'w-'[I+w w (-) w][1 '
+w( w)~ w]-

m&fft2LS, I S 'm& m2 (, C' 1 2 1 2

x[(2S+1)(2S'+I)]'~' g
mm -E) m'm

The partial-wave amplitudes in (2.5) contain spe-
cific kinematical and Coulomb singularities"
which are made explicit by threshold factors (kc)
and inverse Coulomb Jost functions,

J I' S' J
(M Z -M,) (M'Z'-M,

I

matrices X " may then be assumed to be reak
analytic,

A w(z*) =[An, s(z)]

(2 5)

(2 8)

d (E+ie)= e "c ~' '

(2 'I)

Here q~ and o~ L denote the usual Coulomb param-
eter and Coulomb phase shift. For any complex
energy z, the "reduced" partial-wave amplitude

For economy of notation, we shall henceforth con-
centrate on a certain subspace (J, w) and write the
amplitudes as A w(=A 'w), where, e.g. ,

a =(C, L, S) (2.9)

counts the "subchannels" belonging to that sub-
space. (Depending on fragment spine j;, the num-
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ber n~, of those will generally be larger than just
n&. ) We may then state further relevant properties
of A such as

8(z) =A e (z), (2.10)

a consequence of time-reversal symmetry. We
finally need a statement on the singularity strue-
tlre of A. 8 in the complex z plane. We assume
the existence of the usual right-hand or unitarity
cuts starting from thresholds Ec and of bound-
state poles on the real axis below the first thresh-
old. Further, we postulate interaction or left-hand
discontinuities ImB„&(E+i e), located in general
on an interval

E=-~ ~ Ao, &Min(Ec, Eo ) (2.11)

x[ko(E)] idc z (E +if)i (2.13)

along the real axis. The discontinuity of an ampli-
tude A 8(z) across its cuts is then given by (2i) '
times

ImA e
——itnB e-w QAg~p&A»+E~8, (2.12)

omitting everywhere arguments 8+i ~. Here p
contains threshold- and Coulomb-modified phase-
space factors,

p.(E)=r. ..(-E) =e(E-E.) g:

A, (z) = g N, (z)D-'„,(z), (2.14)

with the elements of the N and D matrix functions
satisfying linear coupled dispersion relations.
We now state the first of the two basic approxi-
mations to be adopted throughout this paper,
namely

E.,(z) =0 [au (a, 5)l. (2.15)

It should be emphasized that this neglect of Qux
losses into nonexplicit channels is not necessary
for the PfD method to work. As shown jn Ref.
13, some of these losses (due to three-cluster
breakup processes) may even be taken into account
approximately without carrying an explicit F by
using modified phase-space factors p (E) in place
of (2.13). However, in the exploratory calcula-
tions presented here, we shall strictly keep to
Eqs. (2.15) and (2.13) and state the equations ex-

while the unitary defect matrix E describes the
loss of flux into all the fragmentations not included
in the selected set of two-cluster channels C.
When assumed to decrease sufficiently rapidly
as (z [-~, amplitudes satisfying (2.12) may be
shown" to permit a matrix N/D decomposition

pressing our analyticity requirements,

(2.14a)

1).,(z) = 5., +(z —E,), , Xr. ,(E')dE'P.(E')
(2.14b)

In these equations, the symmetric matrix of left-
hand spectral integrals

, (z) =—,) dE' (2.16)
~ 00

approximating the spectral integral

pc.i(E')
Bn(z) Bc,L(z Ep)

J) (Es E )2(E& z)
C

(2.17)

forms the input, or driving-force matrix which
contains the specific dynamics of the system under
study. Once these dynamics are specified, the
set of Eqs. (2.14a) and (2.14b) for z =E+i e, to-
gether with Eqs. (2.14) and (2.5), permits the cal-
culation of scattering amplitudes A satisfying
unitarity in the restricted space of two-cluster
channels.

Before discussing our choice of B we mention
approximate algebraic solutions invoking so-called
pole approximations to some part of the input. We
chose a variant due to Pagels. " E is based on

by a finite sum of poles (that is, a quotient of two
polynomials) for z values off the cut of R„(z):

&„(z)=Q
." (z not on E, ~).r. „(E,)

a „E~
(2.18)

Here F~ is an arbitrary but fixed real energy be-
low the first threshold and which in Pagel's work
is set to zero. It should not be confused with the
subtraction energy E, needed in general to ensure
convergence of the dispersion integral (2.14b) for
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D." %bile results become independent of Ep only
for large enough s„ they are always rigorously
independent of Ep" so that one is free to choose
that value of Ep for which the solution takes its

simplest form, namely, Ep=Ep. We refer the
reader to Appendix A for the technical problem
of how to determine pole parameters in the ap-
proximation (2.17). The explicit solution of (2.14a}

and (2.14b) then reads

(2.19a)

np

) ( ) ( ) ( )g ( ) p (s Es)lV s(s) (o Es)@ s(o
aan

(2.19b)

where the real numbers N s(a „) are to be determined from the following system of linear equations:

occ'&I.c'&nn' ~ss' r „(a Es) -B,(a,„)+(a,„-E~)
a

da. ..
z =aan-

(2.20)

Two remarks are in order here. First, there
is clearly no need in our case to intr&duce into D
CDD poles" as used in Ref. 18 to cancel approxi-
mate bound-state poles coming from the first addi-
tive piece of (2.5), since repulsive Coulomb forces
do not give rise to bound states. There remains,
of course, the possibility of "genuine" CDD poles
which in the present work are simply ignored.

Second, inspection of the integrand in (2.11)
shows that the threshold factors (kc}' "cause
convergence difficulties. The difficulty may be
circumvented by assuming p to be cut off smooth-
ly at an energy EU, large compared to any energy
in the problem. We chose

p.(E) p.(E) 1--|..+

(2.21)

Letting E„-~, the quotient elements A s(E+i @, Ec)
remain finite in spite of the divergence of both N

and D, and one may check on soluble models with

pole input that the limit approached is in fact the
correction solution. Throughout the calculations
described below we have used

~p =4, Ep =Ep =-50 MeV, Ev =+1 GeV

(2.22)

energies being counted from the lowest (here the
a +n} threshold Wit.h this choice, changes in
partial-wave amplitudes when shifting E~, increas-
ing np, or increasing E„, were less than 2% in
absolute magnitude in the worst case (the Z"

n+a elastic amplitude at E & 20 MeV).

3. SELECTION OF DRIVING FORCES FOR A = 5

In the introduction we motivated our choice of
the 4 = 5, Z = 2 system as a first test ground of the

N/D approach to light nuclear systems. Taking the
threshold energy for n +'He scattering as E, =0 (by
choice) only one more two-fragment channel ex-
ists, viz. d+'8 with threshold at E,=17.59 MeV.
All counted we have for n -'He scattering only

nz, ——3, 4 coupled channels (for d = —,
'

a,nd go —,', re-
spectively), while, moreover, partial-wave phases
are eigen phases.

In order to set up input matrices 8 for this prob-
lem, we closely follow Ref. 13, using the idea that
transitions between two-fragment channels should
at low and medium energies be dominated by left-
hand singularities arising from one-cluster ex-
change diagrams (pole graphs) and from low-order
iterations of these. In a coordinate-space lan-
guage, this roughly corresponds to retaining effec-
tive intercluster forces of longest and next-longest
range.

There exist four one-cluster exchange (OCE)
graphs in our problem which, after projecting out

partial waves and putting external momenta to their
on-shell values (2.3}, form our first-order input
EVO. Three of them are shown in Fig. 1. The fourth

graph, which is a "crossed" graph for Fig. 1(b) and
describes d('H, n)'He stripping through deuteron
exchange, has been omitted from the outset since
it contains the 'He d+d vertex for which parame-
ter determinations are not available. From purely
spatial overlap considerations one would expect
that vertex to be much weaker than n-'He+n.

%'e only give here the unprojected form of such
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(c)

FIG. 1. Pole graphs used to construct first order mput matrix B( &: (a) for 4He+e -4He+ n, (b) for 3H+ d He+n
(deuteron-exchange graph neglected), (c) for 3H+ d 3H+d . Half-circles represent dressed vertex %motions.

a graph in a schematical way,

(3 1)

Here g denotes the exchanged cluster, I",'„ is a
vertex function for the virtual breakup of cluster
c, of channel C into cluster c,' of channel C' plus
cluster x, E»., is the energy of the intermediate
three-cluster state, and q and q' are the relative
momenta in the vertices which through momentum
conservation are expressible in terms of the ex-
ternal momenta Grand R'.,

%e shall not repeat here the complete angular-
momentum reduction of such a graph for arbitrary
spins which we have studied earlier. " It finally re-
duces expression (3.1) to (momentum-space) radial

I'~ „(z, I ) = (2'c~) 6, a),12y1 .y'2

+ (3.2)

In (3.2) q denotes the magnitude of the relative mo-
mentum, and l the orbital angular momentum, for
fragments 2 and 1 being virtually pres+it in frag-
ment 3. The subscript 5 denotes antisymmetrized
vertices into which we have absorbed the appropri-
ate antisymmetrization factors g~

' that mere still
explicit in equations such as (5.5) of Ref. 13.

integrals over reduced vertex functions f'(q) which
are the partial-wave components of the dressed
vertices in Eg. (3.1). In applications, some param-
etrization is required for these and we @@opted
throughout the Hulthen form vrhich has correct
threshold and asymptotic behavior"

TABLE I. Parameters of Hulthbn vertex functions used in the construction of the driving-
force matrix B.

Vertex {fm ')
z'»c, 'i%

{Mev fm-i»)

t d+n

'He-t+ p
4He 3He+n
~~-P+&
~~-+ &

0.232

0.449 0

0.846
0.863

-0.047 0

48.52
43.23

-81.97
-194.34

35.20
{27~ ~ ~ 44)

104.20
{56' " ' 141)

arbitrary

1.313
1.241
1.528
1.948
1,00

(0 9 ~ ~ 1.2)
1.20

(11~ ~ ~ 1 3)

1.221

0.051

0.078
0.163
0.172

(0.172' ~ 0 25)
2.04

(1.31 ~ 2.04)

arbitrary

I'y =7%

m3 4
{Ref. 26)
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We have investigated elsewhere" the possibilities
of determining such vertex functions from model
wave functions or from experimental data for the
subsystems. For convenience we summarize in
the first eight rows of Table I the strength con-
stants (Zc~) 'g and range parameters P, we have

adopted, w'ith minor modifications, " '6 from Table
I of that work. In acMition, we entered squared
coupling constants" g' and constants a related to
the vertex separation energies by

Since the choice of input is crucial, we should
like to add here a number of comments. %hile the
minus sign of the l= 2 admixture in the deuteron
relative to the l =0 part is well established, its
magnitude I'D is still uncertain at present. '4 We

have therefore adopted from the work of Phillips'4
two parameter sets corresponding to P~ = 4 and 7/&,

respectively, in or4er to study sensitivity with re-
spect to changes in P~. Gn the other hand, an es-
timate of the 1= 2 admixture in the '8-4 +n vertex
using realistic 'H and d wave functions'" shows
that this component (to be distinguished from the
8-9% D-wave admixture in the 'H wave function)
amounts to less than a percent. We therefore ne-

glected this admixture. Finally, we assumed the

same parameters for the 'He - 'H+p and 'He - 'He

+n vertices so that Coulomb effects enter only
through a different separation energy 8'n'/(2 p, ).
Although results on the two different coupling con-
stants have recently become available" this sim-
plification seems to us consistent because, as
shown in Appendix B, our choice of reduced input
jg anyway amounts to neglecting finer Coulomb ef-
fects such as the finite extension and mutual Cou-
lomb polarization of fragment charge distributions.

Parameters for this vertex, as well as for t-d
+n, are not very accurately determined at pres-
ent. " Since at the same time these are the param-
eters to which certain five-nucleon amplitudes are
fairly sensitive, we further decided to study the
sensitivity by varying the "standard" values of
those vertex parameters {rows 5 and 7 of Table I)
within certain limits. These limits, which appear
in brackets below the standard values, roughly in-
dicate the extent of the present uncertainties. It
should be emphasized that we do not use these un-
certainties for performing any "best fits" to ex-
perimental five-nucleon data, since this would
contradict the spirit of the theory.

Second-nearest left-hand singularities and the

Il

n & g ~ n
f 1

a 3H

J
Snn

—d

FIG. 2. Once-iterated pole graphs (box graphs) used to construct second order input matrix B~ . Black half dots
represent dressed propagators.
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ensuing driving terms axise, in the framework
of the present theory, from once-iterated OCE
diagrams which in an off-shell Lippmann-Schwing-
er formalism' represent second Born terms. The
relevant graphs for our problem (triangular graphs
approximated by box graphs) are depicted in Fig.
2 where the symbol 6'~ indicates that left-hand
spectral integrals have to be projected out since
those graphs in general have also a right-hand cut.

Denoting by 0",iz(E) the second-order Born graph
the corresponding driving term free of right-hand
singularities is

ImQ(' E')
a"&(E)=6 n"i(E) =- dE (3.3)

As discussed in Ref. 13, B~'i (E) as a repeated Born
contribution can be expressed in terms of on-shell

and half-off-shell amplitudes 8"'(EE';E):

, „E'.".„(E-)E".&. (E-) -d.".-(EE",E)a~„'&...(E-E, E)

a"
(3.4)

It is seen from Fig. 2(a) that as intermediate chan-
nels C" in B~' we admit not only 'He+n and '8+d
but also the pseudo channels 'He+@„„and '8+a„~
where the unstable "fragments" s„„.and s„~ are the

Sp antibound states of the two -neutron and proton-
neutron systems. The corresponding vertex pa-
rameters are listed in rom 9 of Table II. These
virtual states are included to simulate the strong
nucleon-nucleon interaction in the 'S, state. It is
not possible, at the present level of the theory, to
include these pseudo channels as extemaI channels,
since one must clearly require the answers to be
independent of the arbitrary normalization of the

s- nucleon +nucleon vertex —a. requirement which
in the ND ' formalism can be met only if breakup
inelasticities F are carried.

A point where we are going slightly beyond the
scheme outlined in Ref. 13 is the use of dhessed
pyopagators in certain intermediate channels. Such
dressing may be expected to be important in chan-
nels with weakly bound fragments which easily un-
dergo virtual dissociation. %e therefore restrict
ourselves to dressing, as indicated by the black
half circles in Fig. 2, the intermediate two-nucleon
systems in a manner familiar from off-shell multi-
particle scattering theory, ' ' which means that we

1
I
Re[le(E' —E)] ' (C= H+1 or s)

( ""'I. I (C='H + )

(3.5a)

(3.Sb)

as propagator for an intermediate system C with

total energy E' = e, +e, + (g'Ac'/2Mc). Here,

(, ~ "
i2p, /ff'I';. „(q, I) i'q' =d

(q'+ o")(q'+r') or s

(3.6)

with the abbreviation y'= o.'+ (2p/ff')(E' — +Ei ).e
Again, p, is the reduced mass in the vertex gov-
erning the virtual dissociation. Only the real part
of the inverse dressing integral is retained in

(3.5a) since its imaginary part represents real
2-1+1 dissociation and thus contributes to the
unitarity defect E in (2.12) which we decided to
neglect. If we were to carry that imaginary part
consistently, we would not only have to apply a ma-
trix ND ' scheme with inelasticities, "but also to
subtract from our 8 ' a right-hand spectral inte-
gral of that inelasticity. It should therefore be
kept in mind that approximation (2.15) also muti-
lates the input proper to some extent, unless bare
propagators are used. Note that for the s pseudo

channels, where &, is on the unphysical sheet and
therefore n=(- p2, ,e/'g i)-0&'0', the +is in the
pole factor of (3.5) is actually superfluous since
lc ' vanishes at the pole. This is most directly
seen from its explicit expression with the 1=0
Hulthdn vertex (3.2),

(o+r)(P+~)'
13H+ o(o+P)(o+2P+r) ' (3.7)

Diagram
L cci
(MeV)

Lcc
(NeV)

Ea
(MeV)

Fig. 1(a)
Fig. 1(b)
Fig. 1(c)

-34.44
-68.75
-13,82

-12.35
-0.001

+16.34

-18.18
-0.10

+15.18

TABLE II. Left-hand branch points Lcci and energies
Ez according to Eq. (3.2) for partial-wave projections of
the three pole graphs in Fig. 1, the graph of Fig. 1(b)
having been replaced by the corresponding "almost
anomalous" graph.
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where, at F. '=E, y=(-2p. e/If' +i e)' '=-a. In the
approximation (2.15), these propagators then have
no imaginary parts at all so that the 6'~ may actu-
ally be omitted in front of the correspondiqg 8'
graphs. Note also that the over-all constant Z' 'N

for the s vertices is arbitrary as required, since
in the '8+s box graphs there always occurs its
absolute square divided by the propagator integral
(3.6).

Before closing this section we must comment on
a peculiar feature of the amplitude corresponding
to the graph in Fig. 1(b) which drives the 'H(d, s)-
'He transfer in lowest order. This amplitude ex-
hibits an anomalous threshold, which is to say that
its left-hand cut encircles the lower threshold and
continues on an unphysical Riemann sheet" as
shown schematically in Fig. 3(b). By contrast, a
"normal" pole graph has a left-hand cut as in Fig.
3(a), extending between branch points f.cc, and
I «[cf. Eq. (4.15}of Ref. 13]. Here we are al-
ways speaking of the cut arising from the pole
propagator, since the additional cuts from the
dressed vertex functions I" (the half circles in Fig.
1) are practically always farther to the left and
"normal. " The anomaly occurs, in a C C' pole
graph with E~ as lowest threshold, if and only if

(3.8}

i.e. , if F.„is greater than the lower threshold.
Here g =Wc/p, ' =Mc /p, p and p,

' are the reduced
masses and c and ~' the binding energies in the two

~
e

~

= -c, =2.23 MeV,

(
e'

(
= e3 —e, = 19.82 MeV.

(3.9)

The d binding energy is sufficiently small to give
ER -F., =+3.78 MeV. The "anomaly" entails the
following properties. The left-hand and right-hand
cuts of the corresponding amplitude are not com-
pletely separated, as assumed in the usual ND '

method, and the amplitude develops an inverse-
square-root singularity at F.„ in addition to the
logarithmic singularity of a normal (partial-wave)
pole graph at its upper branch point L». The in-
corporation of such an anomaly into an Omnes-
Mushkelishvili formula for the 1—2 amplitude has
years ago been described by Mandelstam. " A

proper treatment within a coupled-channel ND '

scheme (where its more complicated effect on the
1 1 elastic amplitude has to be dealt with simu-
taneously) is, however, far more difficult and in
fact has only recently been worked out in full. "
Since this treatment inevitably leads to considera-
ble complication of the whole ND ' formalism, and
since application of the convenient Pagels's solu-
tion is then no more straightforward, we have de-
cided not to delve into this problem at all. Instead
we resort to an approximation where the energy

~
e

~

+
~

~'
~

is artificially shifted so as to make the
diagram "almost anomalous, " that is, to give FR

vertices involved. It is seen that an anomalous
threshold is generally associated with weak binding
in at least one of the vertices. In our example 'H-
(d, n)4He, g=q and

Eo

f2
I Xr'8 X XZXrVXZXX/'

[
~ I

12 /g

L~

(c)

FIG. 3. Location of left-hand cut relative to thresholds && and E2 for {a}a normal, {b}an anomalous, and {c}the
corresponding "almost anomalous" pole graph.
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—E a small negative value. (The precise value of1

that quantity is then somewhat arbitrary, but it
turns out that taking E„-E,anywhere between
-0.05 and -5.0 MeV gives about the same results. )
Note that the kinematics of the graph are left un-
changed. This treatment comes to mind because,
in the example above, L»= -28.66 MeV and I.I'2
= -2.42 MeV, so that the "anomalous section" of
the cut is not too large. Still, the procedure re-
sults in a considerable shift of the left branch point
I,„.This is schematically shown in Fig. 3(c) and

numerically in column 2 of Table II where we list
the left-hand propagator singularities of the three
OCE diagrams actually used. It therefore is pos-
sible that we have mutilated the true driving force
in a substantial manner, a circumstance that
should be kept in mind when discussing n-n scat-
tering, in particular near threshold.

We now summarize our input: (1) Driving forces
are used in the approximation

B(E)= B~'~(E) +B~'i(E) (3.10)

which is the second basic approximation of this
paper. (2) B'" describes simple exchange, as de-
picted in Fig. 1 [see Ref. 5, Eqs. (3.15) and (3.17),
except that in the present calculation we are not
using isospin]. The anomalous threshold is artifi-
cially removed. (3) B~'~ represents the proper part
of repeated exchange with the bare propagators
(E" —E) ' of Eq. (3.4) sometimes replaced by the
dressed propagators —7c of Eq. (3.5}. (4) The ver-
tex parameters for the I"'s in B~'~ [Eq. (3.1}]are
as given in Table I.

0
20

0~
(deg)'

10

8 16
~ I ~ ~ I I I I I

I

/l

(MeY)

24 32

0
~&„1S0-

(deg)
120-

Roper. "" Besides there exist "nuclear" phase
shifts for the related charged-particle process
'Re~~~ p)'He up to E' =40. MeV. "" It is to these
data that we compare our results in Fig. 4.

For all sets of parameters used, the calculated
S phase shift is strongly repulsive as it should
be, although always too strong. It also exhibits the
observed property that 5(~) —5(0) = -n in accor-
dance with Swan's extension of the Levinson theo-
rem" for elastic scattering from a composite tar-
get. In spite. of the absence of an S,~, bound state,
the phase difference -m corresponds to occupancy
of an S,~, orbital in the 'He target.

The magnitude of the S,~, phase depends sensi-
tively on both the range and strength constant of
the 'He-3+1 vertex, so that with the present un-
certainty in those para, meters no definitive result
can be given. The curve of Fig. 4, which was ob-
tained without intermediate s channels and without
propagator dressing in 8~', and with the "standard"
parameter set of Table I, is to be taken as just one
example. By varying the 'He - 3 +1 vertex param-
eters within the limits indicated in row 8 of Table

4. NUMERICAL RESULTS I
I
I
I
I

I
I

40

0
&gg 160-

(deg)
120-

40

166
5I

(deg) 120

80-

40-

~ I I I ~ I I ~

0 10 20

In the following we present numerical results
obtained by solving Eqs. (2.19) and (2.20}, using
approximation (2.15) and an input matrix B{E)as
described in Sec. 3. We discuss below some rele-
vant data and our calculations for the 'He+n scat-

3 + 3Htering phase shifts and the unpolarized H+d
+d and 'H+d —4He+n angular distributions. Al-
though the general matrix-N/D computer code used
in the present calculations produces all the indi-
vidual m amplitudes (2.5) of the problem, we have
in this work abstained from studying any palariza-
tion quantities since we expect these to be sensi-
tive to details of vertex angular structure which
are either inaccurately known (such as the D ad-
mixture in the deuteron) or have been neglected
complet'ely (such as the I=2 admixture of the t d-
+n vertex).

30 40
E„I~& (Me Y)

A. Neutron-n elastic scattering

Experimental data on n-n scattering are sum-
marized in the phase-shift analyses of Amdt and

FIG. 4, Phase shifts for He-n scattering. Solid
lines phase-shift analysis of Ref. 31. Dots, "nuclear'"
He-p phase shifts from analysis of Ref. 33. Dashed

lines, examples of 2VD results (theoretical S and P
phases very sensitive to small changes in input).
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I, both a phase shift close to the experimental one
(but still too repulsive) and one that is about three
times larger can be obtained.

Of particular interest are the P,~, and P,~, phase
shifts of n-'He scattering which produce the two
lowest 'He resonances. A signature of resonances
in lVD ' calculations (and in all coupled-channel
calculations indeed} is a pronounced minimum in

the magnitude of the determinant

IID" (E) II
= det[D~«) [ (4.1)

for the particular subspace (8, cc) where the reso-
nance is expected, Figure 5 shows the magnitudes
of the relevant D-matrix determinants for J' = —,

'-

and —,
' . There is in all cases a minimum in

IID"' ll corresponding to the 'He ground state, ac-
companied by a minimum in [CD'~'

)( at a some-
what higher energy and which corresponds to the
first excited state. Qualitatively, these are again
the features observed in nature. However, the
positions of these minima are again very sensitive,
this time to the strength and range of the 'H- d+n
vertex and to the use or neglect of propagator
dressing and virtual s channels in J3'. Dependence
on the 'He -3+1 vertex parameters is also there
but is much less pronounced. The sensitivity to a
vertex that does not occur in the 'He +n —'He +n
elements of the driving force, i.e. in lowest order,
demonstrates that as expected these resonance
minima are largely a result of channel coupling.

Again, in view of this sensitivity no unique re-
sult can be given, and the curves of Fig. 5 are to
be viewed as just one example. They were obtained
with the "standard" parameters from row 5 of Ta-
ble I, with PD=4'ceo, and with Figs. 5(a) and 5(b)
corresponding, respectively, to omission and in-
clusion of s channels and dressing. They also
roughly indicate the extreme situations that can be
obtained: In the case shown in Fig. 5(b) there is no

real 'He ground state but rather a minimum in
~~D' '

~~
at about 16 MeV of 'He+n separation en-

ergy, whereas the first excited state comes as a
fairly sharp resonance at some 4 MeV Cc.m. ) above
threshold. More realistic results obtain in the case
shown in Fig. 5(a) where the 'He ground state is a
resonance at E' =4 MeV (in expe.riment, E'„,
MeV), the first excited state coming a little higher
in energy. VYe may add that by varying 'H -d +n
vertex parameters, positions of 'Hel up to about
9 MeV above threshold can be obtained. Kith B"
omitted, resonances generally come still higher in

energy, showing that the 'He -n force generated by
B' alone is too repulsive.

Moreover, detailed P-wave phase-shift behavior
at these resonances, and in particular their almost
vanishing widths [F& 50 keV for the 'He ground
state in the case corresponding to Fig. 5(a)], are

l~,c f)J
I

1O-I

1O-~

/aecf)'g co'

roo-

1O-'-

-20 -16 -12 4 -4 0 4 8 12 16

FIG. 5. Absolute magnitudes of 25-matrix determinants
for J"= 2 and &2 as functions of c.m. energy.

completely unrealistic. An example, with input
again corresponding to the case of Fig. 5(a), is
shown in Fig. 4. The abrupt rise of 5~@, through
almost 180' corresponds to the ~~D'~'

~~
determi-

nant passing slightly below the origin in the com-
plex E plane. (One easily convinces himself that
in a two-channel problem at energies below the up-
per threshold the phase of the D determinant is
minus the physical scattering phase shift for elas-
tic scattering in the "lower" channel, just as in the
single-channel case. ) The distance to the origin
being extremely small, it is not surprising that
slight changes in the input and even inaccuracies
of the numerical computation can produce the situ-
ation where ~~D'~'

~~
passes slightly above the ori-

gin and the phase shift therefore abruptly drojs
through almost 180'—a behavior incompatible with
the causality limit on d5/dE. 35 This unrealistic
feature in the behavior of ~jD ~~

persists when going
from 8=8' to B=B' +E'~ and could not be changed
by whatever variation of vertex parameters we
tried, so that it is unlikely to come from a neglect
of higher-order inputs. It is, moreover, unlikely
to come from a neglect of channels to which the
resonances couple strongly (which would necessi-
tate the introduction of CDD poles), since other
coupled-channel calculations in the A = 5 system
which also neglect the breakup channels" "have
clearly shown that those are quite unessential for
the generation of the low-energy P-wave reso-
nances. %'e conclude that the unrealistic behavior
of calculated P-wave phase shifts at these reso-
nances is most probably due to our incorrect treat-
ment of the anomalous threshold of the 'H(d, n)'He
pole graph. It shouM be remembered that this
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I
g

I I I I I I I I ~ ~ I I I I I I 18

- 26

graph has a.n (8 —E,) '~ "~"singularity at thresh-
old which may be expected to strongly influence,
via channel coupling, the low-energy 'He +n am-
plitude. It is then plausible that a mistreatment of
this analytic structure may cause substantial er-
rors in phase shifts that resonate near threshold.
%hat can be said therefore is that in the present
crude form of the theory the existence of the P-
wave resonances is reproduced, including the
P, ~, -P~, spin-orbit splitting, but that their posi-
tions are poorly determined, and that realistic
widths cannot be obtained.

Attention should be drawn to the fact that the
source of projectile-target spin-orbit coupling in
this kind of calculation is the existence of at least
one vertex with a, nonvanishing l &0 component.
Therefore in our case, the spin-orbit splitting be-
tween the two n -'He resonances is exclusively due
to the D-wave component in the d- p +n vertex, or,
differently stated, to the tensor component in the

nucleon-nucleon interacrion. It is interesting that
the sensitivity of those resonances to the accepted
range of P~ values is nevertheless modest. In-
creasing PI, from 4 to 7% results in shifts -0.5
Mev in the positions with only -0.1 MeV change in
the spin-orbit splitting. Of course, the latter then
vanishes zf PD-O.

Also meriting a special discussion is the D3/2
partial wave whose phase shift is generally smaLL
in the range of energies covered. The calculated
~~D' ' (E) ~~

shows a minimum slightly above the
'H+d threshold, as observed. (It corresponds to
the —,

" second excited "state" of 'He. ) It is curious
to note that this resonance is not only relatively
stable under input variations but that even detailed
phase-shift behavior, with its characteristic little
kink, is reproduced qualitatively. This result
shows that repeated one-cluster exchange for elas-
tic 'H+d scattering is able to generate a qualita-
tively correct optical potential producing the —,

"
resonance. This resonance is obviously far
enough in energy (E, =18 MeV) from the n+'He
threshold to remain unaffected by our crude ap-
proximate treatment of the anomalous threshold.

14

- 12

- 10

8. Deuteron stripping on the triton

Calculated differential cross sections for the
H(d, n) He transfer process, at two different deu-

QQG I ~ I I I ~ ~ I I I I I ~ ~ I I I

20

18

8

1000-

EI =41.'/h/eV
lob

He

/

10 100-

1000-

2- 100-

0 I

0 20 40 60 80 200 120 140 160 280
e (dg)

I ~ I I I I I I ~ I I I I I I I I

FIG. 6. Unpolarized c.m. differential cross sections
for the H(d, n ) He process at two deuteron energies.
Circles, experimental points squares, 3He(d, p) 4He

measurements; solid lines, Legendre-polynomial fits
to measurements; all from Ref. 38. Dashed lines, ND
results.

0 20 40 60 80 100 '120 40 $0 $0
e, ~(deg)

FIG. 7. Unpolarized c.m. differential cross sections
for H+ d elastic scattering. Solid lines, experimental
values from Ref. 39; squares, ~He+ d measurements
from Ref. 40. Dashed lines, ND ~ results.
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teron energies, are compared with experiment"
in Fig. 6. (The cross sections of Figs. 6 and 7
were calculated from partial maves up to and in-
cluding J =-", .) Absolute magnitudes in both the
forward and backward maxima are reasonably
good. Qn the other hand, the smaller maximum at
medium angles is missing —in the framework de-
scribed here it could not be produced with any of
the acceptable sets of subsystem parameters. The
same defect will be seen to occur in 'H+d elastic
scattering cross sections. Since there are indi-
cations (although at present no really conclusive
experimental evidence) of the existence of several
broad resonances with almost pure A=2 'H+d
cluster structure around 5 MeV (c.m. ) above the
'H+ d threshold" ' it is tempting to speculate that
the smaller maximum in medium energy 'H(d, n)'He
cross sections might arise from I.= 2 initial-state
interaction through those resonances. At the mo-
ment me must admit ignorance about precisely
what deficiency of our input is responsible for the
failure to obtain this effect. It is certainly possible
that the neglect of the "crossed" stripping graph
in Fig. 1(b) is not justified, and parameter deter-
minations for the 'He- d+d vertex mould therefore
be welcome. %'e still feel that, otherwise, the
theoretical curves of Fig. 6 are encouraging.

In the energy region above the 'H+4 threshold,
the physical quantities studied here are generally
speaking much less dependent on changes in the
input than the extremely sensitive 'He+n phase
shifts at lom energies. The —,

" resonance was al-
ready mentioned. Also, the theoretical transfer
cross sections in Fig. 6 (calculated with the "stan-
dard" parameter values of Table I, with s channels
and propagator dressing in 8', and with P~ = 4%)
can be changed in magnitude by some 20% when
varying $ d+n or 'He-3+1 vertex parameters,
or switching off propagator dressing and s chan-
nels, but the angular shape always remains the
same. Vfe note, homever, that here second-order
inputs are essential for obtaining the correct rise
at backward angles —with 8 =8~'~, that rise is there
but always too weak.

C. Triton-deuteron elastic scattering

We are not aware of the existence of any de-
tailed phase-shift analysis for elastic 'H+ d scat-
tering. Figure 7 therefore directly compares
theoretical 'H(d, d)'H angular distributions at
three sample energies with experiment. '9 For
the highest energy of E' =34.2 MeV'(=E +16.26

MeV), we have plotted as experimental data a
'He+d, rather than a 3H+d, cross section40-
since experimentally those two quantities are
found to be nearly identical (except at very small

angles) at the lower energies, "this should not
make a difference for our purpose.

Again, a smaller maximum at medium angles
is missing, as discussed in connection with the
stripping process. More importantly, cross sec-
tions at forward angles come out much too small.
Once more, this angular pattern is fairly stable
under variations of the input. A closer look at the
results shows that the calculated "nuclear" ampli-
tudes at the forward ang1.es are quite small so
that cross sections are mainly given by the rapid-
ly decreasing Rutherford cross section, whereas
the experimental values are up to 10 times as
large. By contrast, the strong backward peaking
is reproduced reasonably well.

A somewhat puzzling result is that these cross
sections do not improve appreciably when going
from first order to first-plus-second order inputs.
This fact may be accidental, and it certainly does
not exclude the possibility of higher order inputs
still being important. In view of the weak binding
of the deuteron projectile, which above E' ' =E,
+2.23 MeV should lead to rather frequent three-
body breakup, me moreover suspect that as far as
~H+d elastic scattering is concerned, Eq. (2.15)
is no more an acceptable approximation.

5. DISCUSSION AND CONCLUSION

We produced above results of an ND ' calcula-
tion of elastic and transfer reactions between two
clusters with total A =5. The theory stresses two-
cluster unitarity, simple analytic structure, and
cluster exchanges (single and double) as driving
mechanism. As a consequence one could des:ribe
the processes and their coupling as repeated clus-
ter exchange.

It hardly needs emphasis that with the simple
assumptions and approximations underlying our
calculations, as spelled out above, one cannot ex-
pect accurate agreement with experiment to re-
sult. However, the additional labor required to
treat unitarity defects, "anomalous thresholgs, '9

or higher order inputs, is considerable. Qur pri-
mary interest therefore has been to test the theory
in its simplest approximation.

The outcome may be summarized as follows.
For the elastic scatterings calculated quantities
show a crude similarity, and sometimes order-
of-magnitude agreement, with experiment, except
for the widths of P-wave neutron-o. resonances
where the present simplified form of the theory
fails. Among the details that are unsatisfactory,
the more serious ones are the positions of P-wave
resonances, which are ill-determined positions
due to violent dependence on input, and further
the bad forward amplitudes for 'H+4 scattering.
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Transfer cross sections, except fear some finer
detail of their angular pattern, agree mell with

the measurements, showing that for this process
pole and box diagrams when unitarized through a
coupled-channel ND ' scheme provide a basically
sound description of the reaction mechanism.

%'e reemphasize at this point that we deliberate-
ly refrain from using the existing uncertainties in
subsystem parameters to perform @ny "best fits"
to the data. An "agreement" produced by param-
eter fitting would make little sense since omitted
refinements would change those fitted values.
More seriously, a parameter readjustment with
the purpose of improving results for one channel
is incompatible with the ND ' formalism which
aims at a prediction of al/4-particle observables
from the same set of quantities related to subsys-
tems.

Having mentioned above explicit deficiencies in

our application of the ND ' method we wish to
further comment on two of these in view of recent
investigations. Kok, Qreben, and van der Ploeg"
performed model studies of potential scattering,
applying the standard one-channel N/D method.
They concluded that for large coupling constants
one needs driving terms up to J3 ' in order to get
satisfactory agreement with the known, exact solu-
tion. In a "realistic" many-channel problem, nu-
merical convergence studies using higher order
input would be difficult, but we may expect by
analogy that those higher terms will be important
at least for the 'He-& elastic amplitude where ap-
preciable changes occur when going from B to
B~' to J3', and perhaps also for the 3H++ pro-
cesses.

The Qroningen group further succeeded in in-
corporating the singularity structure of anoma-
lous thresholds into the ND ' framework~9 and we
understand that a more complete treatment of the
A =5 system is part of their program.

Inclusion of this point could influence some of
our results. For instance, the P-wave resonances
in elastic &-4He scattering, being relatively close
to threshold, will be sensitive to the anomalous
threshold of the 'H(d, &) 'He pole graph. Our ap-
proximate account of this effect clearly cannot
provide more than a crude estimate. In particular,
we conjecture that rea1istic 'He widths cannot be
obtained without a proper treatment of the anoma-
lous threshold. The appearance of such anomalies,
and the considerable increase in effort required to
take them correctly into account, constitute an un-
deniable disadvantage of the dispersion approach.

But whatever the influence of anomalous thresh-
olds it is actually gratifying to see ordered reso-
nances emerge from a microscopic theory as op-
posed to a semiphenomenological approach using

an effective optical potential. The situation may
be compared with, e.g. , a shell, -model reaction
theory" where reasonable gross positions of such
single-particle resonances are ensured by a suit-
able choice of the basic one-body potential for the
total A-particle system. A corresponding pro-
cedure in the ND ' framework would be to analyze
the total input matrix so as to explicitly display
and extract gross positions of bound states or res-
onances of the total reacting system. These could

then be replaced with their experimental values,
with the remainder input producing shifts and

widths only. While technically such a program
could be implemented with the already mentioned
CDD-pole prescription of Ref. 18, it would clearly
represent another departure from the strict philos-
ophy emphasized before.

Closest in spirit to the ND ' method are general-
izations of the Faddeev theory, in particular with

respect to the driving terms. In practice, how-

ever, the theories are utterly different and are
beset by specific mathematical difficulties. Off-
hand it would seem that the solution of singular
Faddeev type equations is of lower complexity
than for instance the anomalous thresholds prob-
lem. In practice we know of one application to
A = 4,~ with rather limited success, while a treat-
ment of the five-nucleon problem parallel to the
&D ' treatment is in progress.

We are not aware of other dispersion calcula-
tions regarding the A, = 5 system. For a discussion
of graph methods as well as of procedures using
E-matrix unitarization of some input, we refer to
Refs. 43 and 44.

Next we turn to a comparison with variational
coupled-channel theories of light systems such as
the resonating-group method' or the Kohn-Hulthen
formalism of Hackenbroich and Heiss. " Both
methods have found successful application to the
five-nucleon system. ' ' "6 Here the 'He and 'Li
work of Heiss and Hackenbroich may be termed a
true gb-initio calculation since both the internal
wave functions of the subsystems and the reactions
between them are calculated from one and same
semiempirical two-nucleon force, excluding any
adjustable or phenomenological input. As in the
present work, coupling to breakup channels is
generally neglected. (An exception is Ref. 46
where a 'He~+ p pseudochannel was introduced
for the specific purpose of obtaining certain con-
jectured odd-parity 'He-& resonances. ) The meth-
od produces good S and P wave 'He+& phase
shifts'~ and is clearly superior to the ND ' results
produced here. With regard to the &' "threshold"
resonance, the two methods appea. r to be doing
about equally well, while for the two 'H+ 4 pro-
cesses comparison is difficult because Refs. (37)
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and (46) report on phases of S-matrix elements
rather than differential cross sections. Instead
we may look at the 'He(&, P)a and 3He(d, d}'He
cross sections of Chwieroth et a4.~ whose resonat-
ing-group calculation is similar in spirit to that
of B,ef. 46. Calculated angular distributions and
in particular small-angle elastic cross sections
show closer agreement with the data than our pre-
dictions. Qn the other hand the calculations use
phenomenological imaginary parts for the elastic
scattering potentials, and at present it is not easy
to judge to what extent the good absolute values of
the cross sections depend on the introduction of
these imaginary parts. A meaningful comparison
with the results described in this paper is there-
fore again difficult.

To a much higher degree, the latter statement
applies to a comparison with the coupled Schro-
dinger equation model of de Facio, R. K. Umerjee,
and J. L. Gammele' where phenomenological poten-
tials fitted to the elastic scatterings are used and
the nondiagonal (coupling) part of the potential
matrix is adjusted in each partial wave sq as to
produce the experimental reaction cross section.
While this method produces highly accurate param-
etrizations (preserving the coupled-channel aspect)
of almost all observable five-nucleon quantities,
it is evidently too different in both its aim and
starting point to be compared to calculations de-
riving those observables from nonadjustable sub-
system parameters.

In spite of its apparent inferiority we feel that
the ND ' method should be further exploited. '~

Our major argument is based on the fact that with
variational calculations in general little insight is
acquired as regards the reaction mechanism. In
contradistinction, a pursuit of an improved ND '
investigation will ultimately tell whether the re-
peated exchange mechanism is really dominant or
not in a general sense. Vfe feel that the explora-
tory results reported here justify such an effort.
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M. 8. would like to offer belated thanks to H. J.
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him in 1970/71 at Munich Technical University
where work on the Pagels ND ' computer code
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and T8,440 Telefunken computers of the Leibniz
computer center at Munich. Final tests and actual
computations were carried out on the UNIVAC
1106 of the University of Freiburg. The coopera-
tion of both institutions is acknowledged.

APPENDIX A: DETERMINATION OF PAGELS

PARAMETERS

In choosing pole positions a and residues r for
the Pagels approximation (2.18) we adopt, with
slight modifications necessary for a nonrelativ-
istic problem the Pads criterion as applied to the
present problem by Sweig." Using the variable

ur =u(E) = (A1)

where the "fitting-point energy"

F.„=El,(C, L)&E~ (A2)

may in principle be chosen differently for each
(C, L}, we write the right-hand spectral integral
(2.17), with cutoff (2.21}, as

tC, L (@x@DIEU)

Mc
fc, I (Ep t+U) ga(g g )C P

2M
g2' (EU -Ec)

(A4)

The remaining, dimensionless, integral

( E g )
oC. 1.(+ ( I g|')I gOI~U)

(1 —x)(1 +u x)
wE F. x

=fc ~(E„E ) UQc. ~(w, E~, EU, z~) (A&)
Fc -E~

c

where

is a "series of Stieltjes" in u ." Here,

alld

(A7)E'(x, Er) =Zc+ (Ec Er). -1-x
The [H, M] Padd approximants of (A5) at w = 0 may

I

be obtained in a standard fashion. " %e refer the
reader to Bef. 47 for a discussion of why approxi-
mating Q is preferable over a direct approxima-
tion of R.
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Qc ~ —0 as E-Ec (i.e., as w —~), (AS)

the choice M =/-1 is indicated. We therefore
calculate, by the usual Pads algebra, "the co-
efficients p.„and v„ in

According to general PaN theory, "for given
N the M =N andM =N- I approximants are the
ones that provide, respectively, the best upper
and lower bounds on Q(w). Since from (A3)

and where the q„(n =1, 2, .. . n~ ) are the zeros of
the denominator polynomial in (A9) which again are
determined numerically. According to Pads theo-
ry" they are all real, negative, and distinct.

Inserting (A10) into (A3) one finally obtains the
desired form (2.18) where

~c- E~
a „=-ac (E~ E E )=E +

(A12a)
np-&

II (w)=
n=0

a nW

np 1

v „w" +w"p

&n, .=&cr (E) &Ev Er)

(A9)

where we wrote n~ instead of N. This requires
knowledge of the first 2xn~ Taylor coefficients of
(AS) at w = 0 which are evaluated by numerical
quadrature. Note that these coefficients depend
on Ep, EU, and E~. For most cases they can be
worked out analytically but the resulting expres-
sions have rather sensitive cancellations built in
and are therefore not suitable for calculations.
On the other hand, since their integrands are
smooth, positive-definite functions, accurate
numerical evaluations are quite easy to perform.

Et then remains to establish the pole-sum form
of E%. (2.19) whose parameters are needed for
E(ls. (2.19). For that purpose one performs a
partial-fraction decomposition, writing (AQ) in
the form

np
X. (E~i Evr Er) (A10)

, u -q„(E„Ev,E,)
'

(E E )
(Ec E~)-rcc (E~.EvrEs)

-I-ocr (E~ Ev Er)

(A12b)

By construction the approximation becomes exact
at E =E» the fitting energy.

APPENDIX 8: COULOMB EFFECTS IN DRIVING FORCES

The reader may have noticed that the pole and
box graphs of Figs. 1 and 2 actua11y represent
contributions to certain un~educed amplitudes
w&trout Coulomb effects. However, in Sec. 3 they
were tacitly used as Born terms for the CouLomb-
reduced amplitudes A of E(I. (2.5). This Appendix
serves to explain that procedure and to point out
the approximations inherent in it.

The general prescription for obtaining the left-
hand discontinuities of reduced amplitudes" reads

where Im(S~() = d ~~ Im[B„t,—6„()8~'"']dv, (Bl)
ttp -1

t

u (n. )

np~1

)nv (q„)

+n~ (g, )"& (A11)

where the star on d may actually be omitted since
the middle factor is nonzero on1y on the left where
d is real. On the other hand, using the Gell-Mann
Goldberger transformation we may write (omitting

angular momentum projection)

rrrr[B „—il,„rrr, ""]=(' (r U —Ur '"'r ~ (U —Ur "") . (\ —Ur "") r')}, (B2)

where Pc denotes the channel interaction and Ucc'"", the point-charge Coulomb potential between the two

fragments in channel C, and where I(j) ) are Coulomb-distorted channel wave functions describing relative
fragment motion in C under the influence of Ucc'"') only.

In the spirit of approximation (2.15) we next replace the exact Green's function by its projection onto the

space of exact two-fragment scattering states I 4
') and eventually of bound states Irirv), omitting all scat-

tering states of a breakup type. This turns (B2) into the expression

6t - ' p' U (Coul) + p' U («ul) +B +B
B B Eg tt

E„ I+'.(E")&&+'.(E") I dE

x('v, , —rri; i) r, '.)}. (Br}
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The approximations leading to our choice of input
are then the following:

(i) Assume that for all two-fragment channels C

y p(coul) }7p) (84)

the purely nuclear channel interaction. Physically
this amounts to neglecting the finite extension and
the "granular" single-proton structure of fragment
charge distributions.

(ii) Replace

Iyg=[d (~~&~)] 'I~,&&, ( 85a)

where
I a& is the usual channel wave function with

free relative motion. From the definition of a Jost
function, this would be exact at zero fragment

Ie'.(&)& =[d.(A'+ fe)] '
I e"."'(&}&, (85b)

with I4'„i"~& the exact scattering state produced
by the purely nuclear channel interaction (84}.
This essentially amounts to neglecting the mutual
Coulomb polarization of fragment charge distribu-
tions.

(iii) Neglect Coulomb effects in I@s&. The re-

distance IHc(. This over-all description of Cou-
lomb distortion by a complex depletion factor
therefore means to assume that the range of nuclear
forces Vtc"l acting on the

I p'& in Eq. (83) is very
short.

To be consistent, one should then put in the
spectral integral

suiting approximate expression

contains Coulomb effects —except for the d '

factors which disappear when inserting into (Bl)—
only in the internal fragment wave functions in

I a& and I
a'& and in the occurrence of the modified

phase-space matrix p of Eq. (3.13). The "undis-
torted" pole and box graphs we used here are then
the first- and second-order Born terms corre-
sponding to the last-written driving force.
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