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In the model of a nucleon interacting with a massive object via a potential in the Dirac equa-
tion, we have demonstrated that the behavior of the nonrelativistic pion absorption operator
under Galilean transformations depends upon the properties of the potential under Lorentz
transformations. In particular, the operator has a Galilean invariant form if the potential is
the time-like component of a four-vector, but not if the potential is a scalar.

Barnhill' pointed out that there exists an ambigu-
ity in the nonrelativistic reduction of the pseudo-
scalar interaction which is assumed to represent
the pion-nucleon interaction. If the nucleon is
taken to be static, the reduction leads to the usual
form?

H-_%a-a, (1)

where § is the pion momentum operator. If one
views this interaction in a frame in which the nu-
cleon is moving nonrelativistically and if § is
small, one might expect from Galilean invariance
that

H=-Lola- (5,45, @)

where P, (5,) is the initial (final) nucleon momentum
operator, Barnhill obtained the result
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where A is arbitrary. Thus Barnhill concluded
that the size of the “Galilean invariant” term is
undetermined.

One may note that pion absorption can only take
place on an “off-shell” nucleon i.e., there must be
a third body to provide energy-momentum conser-
vation. Thus it seems possible that this ambiguity
in the operator reduction might arise because the
“third body” has been ignored. In addition, we are
particularly interested in the description of proc-
esses such as the absorption of negative pions from
atomic orbitals. There the reduced operator will
be used as a nonrelativistic operator corresponding
to very small momentum transfer and the matrix
elements will be taken with respect to two Schro-
dinger wave functions describing the nucleon mov-
ing initially and finally in the field of the nucleus.
For these reasons we have studied the following
problem:

Consider a nucleon interacting with a massive
object. Assume that this interaction is described
by a potential in the Dirac equation. Treat the
pseudoscalar 7 — N interaction as a perturbation
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and compute the matrix element
M=4gX;7sXi»

where g=2Mf/u.

Take the nonrelativistic limit of this matrix ele-
ment and identify the operator that corresponds to
the one to be used with Schrodinger wave functions.

We will consider two types of interaction poten-
tials: either the fourth component of a four-vector
or a scalar. One might believe off-hand that the
transformation character of the potential is imma-
terial. That this is not so is the essential point of
this paper.

Writing

(o)

we have the relations
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where + applies when V is a scalar and - applies
when V is the fourth component of a four-vector.
Substituting relation (4) into (5) and dropping terms
of order p2V/m? and p%(E — m)/m® we obtain the
Schrddinger equation

(p2/2m+V+m —-E)u=0, (6)

Using Eq. (4) to eliminate » the matrix element
becomes

M/ig=u}(E;+mz V)G Py,
- (Pu))&(E,+mz V), . (7
Using (6) to make the replacement
Vi, ;= (E; j=m =p?/2mu; ; (8)

and the notational convenience that p; acts only on
u; and p, acts only on u} we have

M/ig=ul (E;+mFm+ E,Fp//2m)7'F B, u,

-1

- ul(E;+m¥m+ E;¥p 2/2m)7G D, u, . 9)
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We can now identify the desired operator, and if
we write €; ,=E; ,-m itis
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Defining §=p, - B;; §= (P, +B,)/2; w =€, — €, =pion
total energy (=pion mass, u, to the order of the
calculation); and n=¢, +€, and keeping through
quadratic terms we obtain the result
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For § small we may drop additional terms and
obtain:

H-_%E-ﬁ; V=scalar (12)
H..-Q:a- [q_—-“—(ﬁ +P,)|; V=four-vector.
m om i 1l

(13)
Equation (13) gives the result that Galilean in-

variance is preserved to the order expected.
Equation (12) shows no Galilean invariance in the
scalar case.

We do not know exactly what conclusions to draw
from this result but some of the possibilities are:
(1) Galilean invariance is nof to be expected a
priori and therefore the Lorentz character of the
nucleon-nucleon interaction can be determined by
doing pion-absorption experiments.

(2) Galilean invariance is to be expected a priori
and therefore all nucleon-nucleon interactions
must behave as a Lorentz four-vector.

(3) It is not proper to use a scalar potential in the
Dirac equation.

(4) The use of the Dirac equation to describe a
nucleon is wrong in some essential aspect.

The reader will no doubt think of other possi-
bilities.

We have demonstrated that, for a given Lorentz
transformation property of the potential V appear-
ing in the Dirac equation, there is no ambiguity in
the nonrelativistic reduction of the pion absorption
operator (in pseudoscalar coupling to first order)
to be used in the calculation of a matrix element
with the Schrdédinger wave functions generated by
that potential V. There remains an uncertainty in
the nonrelativistic operator, however, due to our
lack of knowledge of V.
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