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A systematic survey is presented of F.2/M1 mixing ratios of y transitions between the 2+' and 2+

levels of even-even nuclei in the mass range 58 ~ A ~ 152. Particular attention is given to the
variations in the phase of the mixing ratios, which are deduced from the literature in a systematic
manner. It is shown that the systematics of both magnitudes and phases of the mixing ratios are explained

quite well for a number of nuclei by a model proposed by Greiner, in which the magnitude of the

mixing ratio is parametrized in terms of the deviation of the g factor of the first 2+ state from the
value Z/A. It is further shown that a semimicroscopic description, in terms of small admixtures of
two-particle components to the phonon basis states, yields reasonable agreement with the observed phase

variations and absolute magnitudes, even when only very few two-particle states are considered.
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lated E2/M1 mixing ratio 6.

I. INTRODUCTION

The interpretation of the magnitudes and relative
phases of the electromagnetic transition matrix
elements between the low-lying excited states of
even-even nuclei in the mass range 40 &A & 150
may be attempted in the basis states of three non-
equivalent models: The excited states may be de-
scribed as vibrations about a spherical equilibrium
shape, as rotations of a "soft" deformed core, or
as excitations of two particles (quasiparticles)
from the ground state. These various models lead
to quite different predictions for the static and

dynamic electromagnetic multipole moments, and

it is to be expected that detailed study of the sys-
tematic behavior of these moments can result in

an indication of the extent to which the low-lying
levels can be understood in terms of collective
or single-particle effects.

In a previous communication by the author, ' a
study was presented of E2/Ml mixing ratios in

deformed even-Z, even-N nuclei (150 & A & 190).
The results of that study indicated that a phenom-
enological interpretation of the mixing ratios be-
tween states of the P- or y-vibrational bands and

the ground-state band was possible if the ap-
propriate mixing of intrinsic states were included.
In the present work, a similar study of previously
measured 2'-2 E2/M1 mixing ratios of even-even
nuclei in the mass range 60sA s 150 is presented;
the compiled mixing ratios are compared with

other experimentally determined static and dy-
namic electromagnetic multipole moments and

with the structure of the spectrum of excited states

in order to determine the applicability of the ap-
propriate model. Particular attention is given to
the phases of the mixing ratios, which are de-
duced in a systematic manner from the literature;
these phases yield additional insight into the struc-
ture of the excited states.

The properties of the levels of nuclei of the f p-
shell (40 & A & 50) cannot, in general, be dealt
with in phenomenological terms, and must be
treated more microscopically; the same is true
of most neutron- or proton-closed-shell nuclei
in other mass regions. These will be discussed
in a subsequent publication. In the present com-
munication, we deal with those nuclei for which

the lomer excited states can be interpreted pri-
marily in collective terms.

A number of similar compilations have been
undertaken in the past. ' However, in view of the
success of high-resolution detectors and elec-
tronics in eliminating ambiguities and conflicts
in the angular distribution and angular correlation
literature in recent years, it seems worthwhile
to offer a more current compilation.

II. COMPILATION OF VALUES

The E2/Ml mixing ratios have been obtained
from a survey of the angular distribution and cor-
relation literature. In extracting the mixing ratios
from the quoted angular correlation coefficients,
the phase convention of Krane and Steffen (KS)'
has been employed, in which emission matrix
elements are always used for the multipole oper-
ators. The amplitude mixing ratio is given in
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this convention by the ratio of the reduced emis-
sion matrix elements of the multipole operators
as

, «, llT, A(E2)liJ, &

&J, IIT,A1) llJ, &

'

where A represents the appropriate electromag-
netic vector field and j„is the nuclear current.
The angular correlation coefficients for the case
in which the initial transition in a cascade J,-J,
—J, is of mixed E2/Ml character are written as

F»(11J,J2) —25E2(12 J,J2) + 62E2(22 J,J2)
AA' 1+ gP

&& F2(L2L2J2J2). (2)

The mixing ratios may be compared with theo-
retical values through the expression

0 825 (Jy ll%(E2) J, &E„' &J, l flf(m1) J, &
' (4)

where the reduced matrix elements of the multipole
operators are those used, for example, by Bohr
and Mottelson, ' and are given in units of electron-
barns (eb) for E2 and nuclear magnetons (i2») for
M2. The y-ray energy E& is measured in MeV.

For purposes of theoretical comparisons, it is
useful to define the mixing ratio ~:

, &J~l~(E2) J, &

&J, l m(M1) J, &

'

where n. is given in units of eb/p, ».
A selection of values of the 2' 2 mixing ratios

deduced from the angular correlation literature is
given in Table I. In general, the most recent
value has been selected; however, in a number of
instances earlier values exhibit smaller experi-
mental uncertainties and these values have been
used when available. Also shown in Table I are
the reduced E2 transition probabilities B(E2) for
the decay of the first excited 2' states, as well
as the ratios of the reduced E2 transition prob-

If the mixed transition is the final transition in a
cascade (or if the transition is observed following
the decay of a nuclear state oriented by, for ex-
ample, nuclear reactions or cryogenic methods),
the interference term is written with a + sign. The
phase of the mixing ratio so defined may be com-
pared with the frequently employed Biedenharn-
Rose (BR)' and Rose-Brink (RB)' conventions for
a y,-y, cascade as follows:

f(y,),„= f(y,)„„-~(y,)„,= ~(y,)„-„

~(y. )BR ~(~ )KS ~b )RB ~42)K

abilities describing the decay modes of the 2'
states.

A cursory inspection of Table I illustrates a
number of systematic features of the 2'-2 mixing
ratios. In general, the magnitudes are large, in

agreement with the expected forbiddance of M2
transitions between collective states. The phases
seem to show little systematic variation and, in-
deed, one seems to find nearly equal frequencies
for the occurrence of positive or negative phases.
This is illustrated by the histograms shown in
Fig. 2, from which it can be seen that for nuclei
at least four valence particles (or holes) away
from a closed shell, the mixing ratios have their
largest values and also have roughly equal num-
bers of cases with positive as with negative phases.
As one approaches a closed shell, one phase
clearly begins to dominate. As shown below, in
the lowest order approximations, the two-particle
contribution to the M2 matrix element depends on
the single particle g factor; the largest contribu-
tions are expected to arise from proton states,
which always have positive g factors. Hence near
closed shells one expects a unique phase for ~,
arising from the dominant contribution from the
two-proton states; the data are consistent with
this expectation.

The dependence of the magnitudes of the mixing
ratios on shell effects is illustrated in Fig. 2,
which shows the data of Table I as a function of
A. A decrease amounting to a factor of 20-200
in the magnitude of L as one approaches a shell
closure is apparent. One can also infer again the
dominance of proton over neutron contributions;
the minima of the data are smaller (i.e. , less
collective and more two-particle) for closed-
neutron configurations (in which the proton con-
figurations dominate) than for closed-proton con-
figurations. '

In the following section these tabulated mixing
ratios and transition probabilities are compared
with the predictions based on the interpretation
of the low-lying even-parity levels in terms of
various nuclear models.

III. COMPARISON WITH NUCLEAR MODELS

A. Phonon (vibrational) model

In the harmonic vibrational model, the low-lying
even-parity excited states are treated as arising
from quadrupole vibrations of the nuclear sur-
face. ' The energy spectrum of the excited states
expected in this model is shown in Fig. 3; in
practice, the degeneracy of the N-phonon levels
is split by various residual interactions. Also
shown in Fig. 3, for comparison, is the energy
spectrum of ' Te, ' with the energy spacing nor-
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TABLE I. E2/M» mixing ratios of 2' 2 y transitions.

E(2) 8 {E2,2 0) 8 (E2, 2' 0)
Nucleus (MeV) [»0 (eb)2] E(2')/E(2) 8 (E2, 2' 2)

E
(MeV) (eb/p, ~)

2&Nisp
58

2S»~32

2&Nis4

spZns4
64

Spzn36
66

SpznS&
68

32Ges&

32G e4p
72

'74

s2Ge44
76

348e4p
74

34Se4
76

S4Se44
78

80
36Kr44

82
36Kr46

84
36K r48

3&S«6
84

3&Sr48
86

3&Sr50
88

40Z r52
92

1.454

1.333

1.172

0.992

1.039

1.077

1.040

0.835

0.596

0.563

0.635

0,559

0.614

0.618

0.777

0.883

0.795

1.078

1.836

0.934

492&Mo56 0.787

100
448,u56

)iRI15g

ip4
46pds&

'46pd60

46pd64

'isscd 8

'4&cd60

1 ipgd

112( d

0.540

0.475

0.358

0.556

0.512

0 434

0.374

0.633

0.633

0,658

0.617

42Mo52 0.871

46Mo, 4 0.778

1.4
1.9
1.5

.3 4

2.9

2.4

4.6

6.3

5.6

8.7

7.2

6.8'
3.S'
3.O'

6.9

3.9

3 4

19

15

19

9.3

10

».91

1,62

1.96

».82

1.80

1.75

1.64

1.75

2.04

1.97

2.00

2.18

2.13

2.04

1.90

2.14

1.83

1.72

1.75

1.98

2.14

1.92

2,09

1,82

2.24

2.52

2.32

2.50

2.42

2.20

2.14

2.18

2.71

2.53

2.23

O.OO»S'

O.O042 '
0 039c

0.0062

0 000

O. O3» '

Q. QQ86

0.0019

0.018

O.O23 j

0 072"

0.034

0.021

0.Q16

0.018

0.073

o.oovs '

0.17

2.7 '

o.oos '
0.068

o.ooe3"

O.O»8"

o.ooe"

O. OS9 ~

0.038 z

0 049

o oeobb

0.024

O.013

Q 014 dd

O.31«

O.O9V"

0.041

O.O36"

1,321 -1.1(2) b

0.826 +0.7 (2)

1.129 +3.2 {1)

0.812 -4(1) d

0.828 -1.9 (3)

0.806 -1.5 (1) f

0.670 -(5+1) &

—1.0
+ 1.0
+ 3.4

2, 7

2 y3

0.635 -(6+ )"
o.esv +s.s(s) '

o.e9s + (e+,')

O.64O +(»V',")"
0.698 +2,6(2) P

».o»s -(4o',",) q

0.661 +0.8(2) '

O.VVS +O.2V{4) '

1.383 —0.04(2) '

0 913 +0 05(2) u

0.993 -2.0(4) "

0.717 + 0.44{4)"
0 847 1 1(1)W

0.645 + 0.58(3) "

0.971 -2.2 (2) "

0.826 +6(2) ~

0 628 -60(20) z

0,535 -9(2)

o vse +(3O.-)b

0.616 -7(2) c

0.497 -3.1(4)

p 44p {5+2) dd

1.084 —0.9(2) ~&

0.973 ~ -0.65+1.5) ff

0.818 -1.2 {2)hh

0.695 -0.77(6}&g

+»Q

+11

+31

+4 5

+ 1.4
+ 0.42

-0.04

+ 0.07

—2.4

+ 0.73

-1.6
+ 1.1
—2.6

+46

—14

-7,5

-12

—1.Q
-1.8
—1.8
-1.3

0 630 -10 3(1 3) h 20

0 609 +2 9(8) i +5

0.546 +3.5(15) ~ + 8
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TABLE I (Continued)

E(2) B (E2, 2 0) B (E2, 2' 0)
Nucleus (MeV) f10 {eb)2) E{2')lE(2) B (E2, 2' 2) (MeV) (eb/p„}

122
52 Te70

124»Te72

126
52 Te74

126
s4xe72

128
s4Xe74

132
54Xe78

0.564

0.603

0.667

0.386

0.441

0.668

3(26Ba76 0,464

'356Ba78 0.605

'&sCe82 1.596

1452sCe84 0.642

14640Nds4 0-695

628Sms 8 0.334

'64Gds8

48Cd66 0.558

4sCdss 0.513

',",Sn„1.293

12

12

16 11

13 ll

8 11

16'

14

6.9

s.4'

S.3'

270

2.16

2.38

1.63

2.23

2.20

2.13

2.28

2.20

1.94

2.24

1.93

1.47

1.58

2.39

2.24

3.13

3.49

2.70

3.23

O.O22"

O. O52"

0.015"
0.011

0.0074

0.0036

0.020

0.013

0.0014

0.026

0,0063

0.0070

2.9

o.oo4""

0 017 ""
0.25 ""

0 021 xx

0 15xx

0.650 -(1.4 0'3) && -2.8
O 71O -(1 5"-')"

0.820 -1.8 (2)

0.691 -3.5(1) ~ j

0.722 -3 4(1) kk

0 754 5 5{4)kk

-2,6

—6.0

-5.6
—8.7

0 4g1 +(9+4) mm +22

0.528 + 6.4(10) "" + 14

0 630 +(5 ) +10

0.573 +(9 3) PI'

0.563 -7.4{9)«

0.865 —1.6(5) ""

0 712 (4+3) ~
0.860 +(7 2)

0.586 -3.1{1)»
O.765 +4.3(7)»

+10

-6.4
+6,7

0.752 +0.33(3) ' ' + 0.53

0.923 +0.014(14) ' ' + 0.02

0.894 -0.08(3) -0.11

' Unless otherwise indicated, B (E2) values are derived from lifetimes and branching ratios
given by C. M. Lederer, J. M. Hollander, and I. Perlman, Table of Isotopes {Wiley, New
York, 1967).

D. F. H. Start, R. Anderson, L. E. Carlson, A. G. Robertson, and M. A. Grace, Nucl.
Phys. A162, 49 (1970).

D. M. Van Patter, E. J. Hoffman, T. Becker, and P. A. Assimakopoulos, Nucl. Phys.
A178, 355 (1972).

A. K. Sen Gupta and D. M. Van Patter, Phys. Lett. 3, 355 (1963).' T. Hayashi, K. Okano, Y. Kawase, and S. Uehara, J. Phys. Soc. Jap. 27, 1375 (196g).
J. Lange, J. H. Hamilton, P. E. Little, D. L. Hattox, D. C, Morton, L. C. Whitlock, and

J. J. Pinajian, Phys. Rev. C 7, 177 (1973).
g R. K. Mohindra and D. M. Van Patter, Bull. Am. Phys. Soc. 10, 38 (1965).
"H. Chen, P. L. Gardulski, and M. L. Wiedenbeck, Nucl. Phys. A219, 365 (1974). This

value differs both in magnitude and phase from that of Ref. j.
1 U. Schotzig, H. Schrader, R. Stippler, and F. Munnich, Z. Phys. 222, 479 (1969).
& K. C. Chung, A. Mittler, J. D. Brandenberger, and M. T. McEllistrern, Phys. Rev. C 2,

139 (1970).
kA. Coban, J. C. Lisle, G. Murray, and J. C. Willmott, Particles and Nuclei 4, 108 (1972).
~ Z. Grabowski, S. Gustafsson, and I. Marklund, Ark. Fys. 17, 411 (1960).

Value deduced from A2 coefficients given by R. M. Lieder and J. E. Draper, Phys. Rev.
C 2, 531 (1970).

"A. V. Ramayya, J. H. Hamilton, B. van Noiijen, and N. R. Johnson, Phys. Rev. 157, 1015
(1967).' A. Marelius, P. Sparrman, and T. Sundstrom, in Hyperfine Structure and Nuclear Radia-
tions, edited by E. Matthias and D. A. Shirley (North-Holland, Amsterdam, 1968), p. 1043.
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TABLE I (Continued)

~ G. Satyanarayana and V. Lakshminarayana, Nuovo Cimento 9A, 243 (1972).
~ Value deduced from angular distribution coefficients A2& and A44 given by J. P. Roalsvig

and K. J. Casper, Phys. Rev. 138, B1378 (1965).
' A. C. Rester, private communication quoted in Nucl. Data BS, 109 (1971).
' R. G. Arns, D. U. Martin, %. G. Monahan, and S. %. Sprague, Nucl. Phys. A148, 625

{1970).
' Y. Kamase, Nucl. Phys. A154, 127 {1970).
"M. E. Bunker, B. J. Dropesky, J. D. Knight, and J. W. Starner, Phys. Rev. 127, 844

(1962).
"N. K. Aras, E. Eichler, and G. G. Chilosi, Nucl. Phys. A112, 609 {1968).
"D. Heck, N. Ahmed, U. Fanger, %. Michaelis, H. Ottmar, and H. Schmidt, Nucl. Phys.

A159, 49 {1970).
"D. Heck, U. Fanger, W. Michaelis, H. Ottmar, and H. Schmidt, Nucl. Phys. A165, 327

{1971).
& H. Kawakami and K. Hisatake, J. Phys. Soc. Jap. 24, 614 (1968).
'B. Singh and H. %. Taylor, Nucl. Phys. A155, 70 (1970).

F. K. McGowan, R. L. Robinson, P. H. Stelson, and W. T. Milner, Nucl. Phys. A113,
529 (1968).

N. C. Singhal, N. R. Johnson, E. Eichler, and J. H. Hamilton, Phys. Rev. C 5, 948
(1972).

J. Hattula and E. Liukkonen, Ann. Acad. Sci. Fenn. A 6 No. 274, 3 (1968}.
R. L. Robinson, F. K. McGowan, P. H. Stelson, %. T. Milner, and R. O. Sayer, Nucl.

Phys. A124, 553 (1969).
R. L. Robinson, %. T. Milner, F. K. McGawan, P. H. Stelson, and M. A. Ludington,

Nucl. Phys. A166, 141 (1971).
W. T. Milner, F. K. McGowan, P. H. Stelson, R. L. Robinson, and R. O. Sayer, Nucl.

Phys. A129, 687 (1969).
0'~ Z. W. Grabowski and R. L. Robinson, Nucl. Phys. A206, 633 {1973).
hh Reference 3.
~ G. Garcia-Bermudez, S. L. Gupta, N. C. Singhal, A. V. Ramayya, J. Lange, J. H.

Hamilton, and N. R, Johnson, Phys. Rev. C 9, 1060 (1974).
&j J. Koch, F. Munnich, and G. Schotzing, Nucl. Phys. A103, 300 (1967).
""Z. W. Grabowski, K. S. Krane, and R. M. Steffen, Phys. Rev. C 3, 1649 (1971).
~~ Reference 21.

mH. %. Taylor and B. Singh, Can. J. Phys. 49, 881 {1971}.
""T. Hayashi, K. Okano, K. Yuasa, Y. Kam. se, and S. Uehara, Nucl. Instrum. Methods 53,

123 (1967).
K. S. Krane and R. M. Steffen, Phys. Rev. C 4, 1419 (1971).

Pp H. %. Taylor and B. Singh, Can, J. Phys. 49, 2724 (1971).
q& M. Behar, R. M. Steffen, and C. Telesco, Nucl. Phys. A192, 218 (1972)."M. E. Wiedenbeck and D. E. Raeside, Nucl. Phys. A176, 381 (1971).
s s % % Black and A. C. G. Mitchell, Phys. Rev. 132, 1193 (1963).
"W. V. Presbvich and T. J. Kennett, Nucl. Phys. 67, 302 (1965).
""M. Bebar, Z. %. Grabowski, and S. Raman, Nucl. Phys. A219, 516 (1974).
""E. P. Grigor'ev, A, V. Zolotavin, V. O. Sergeev, N. A. Tikhonov, and M. I. Fominykh,

Izv. Akad. Nauk SSSR, Ser. Fiz. 34, 2074 {1970)[transl. : Bull. Acad. Sci. USSR, Phys. Ser.
34, 1849 (1970)].

~Deduced from y-ray angular distribution anisotropies given by E. R. Reddingius and

H. Postma, Nucl. Phys. A137, 389 (1969).
""D.R. Zolnowski, E. G. Funk, and J. W. Mhelich, Nucl. Phys. A177, 513 (1971).
~& C. A. Kalfas, W. D. Hamilton, and R. A. Fox, Nucl. Phys. A196, 615 (1972).

malized such that the excitation energy of the
first 2+ state is equal to the phonon energy. This
is a rather unique example of a vibrator; in prac-
tice one seldom finds such close spacing of the
three-phonon quintuplet.

In the zeroth-order harmonic model, both the
state vectors and the multipole operators are
treated collectively. The state vector of the N-

phonon level of spin J is given by

(6)

where the brackets indicate that the phonon cre-
ation operators bat are coupled together to give
a resultant J and M, including appropriate angular
momentum and parentage coefficients. The col-
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lective form of the M1 operator is given by

II(M1, p) = (3/4s)'Ings p, „J„,
=(3/4w)'"g„p»(k JT(I){( I-) 'b, „b~t„}

I2& =.I2, &+I 12.&,

I2 &
=.i2. &-f 12,&,

(9)

where g'+5' =1, and where the state vectors on
the right-hand side of Eqs. (9) are the pure-phonon
states J„given by Eq. (6). In this approximation,
the static and dynamic properties of the levels
may be computed to be

E(2') 2 —b/g
E(2) 1+2f/a ' (10a)

B(E2,2' —2) 2(1 —2b )
B(E2, 2 -0) 1 —b

(10b)

(6)

Here p» represents the nuclear magneton (=et/
2Mc). If the 2' and 2 levels are interpreted as
two- and one-phonon states respectively, it is
apparent that the 2'-2 M1 transition must not
exist in this model, since the M1 operator cannot
change the number of phonons.

The lowest order perturbation which can be ap-
plied to this model is allowing for configuration
mixing of ~N= 1 phonon levels. For example

The deviations of the energy ratios, B(E2) ratios,
and quadrupole moments from the predictions of
the pure phonon model (h =0) may be reasonably
well accounted for by phonon mixing. Singh,
Mehta, and %aghmare' have recently done a
similar type of calculation based on configuration
mixing and have obtained reasonable agreement
with experimental values.

However, this type of mixing does not give rise
to Ml transitions. It is apparent from the very
nature of the M1 operator that M1 transitions of
the type J-Ja 1 must vanish, since the J„oper-
ator cannot change the value of J (J„(JM)
—

( JM+ g&). Additionally, the vanishing of the
M1 component of the 2'-2 transition follows from
Eqs. (7) and (9):

&2 liII(MI) II 2'& ~ sh[gz(2 ) - gs(2 )l.
As long as the g factors of the phonon states are
identical, the M1 amplitude vanishes.

Nonvanishing M1 transitions may be obtained
by introducing noncollective contributions into
the state vectors, Eq. (6), or into the Ml oper-
ator, Eq. (V). These nonphonon contributions will
be discussed in succeeding sections. It should
be noted, however, that the reasonable success
obtained from a calculation of the B(E2) ratios
including phonon mixing suggests that such states
may provide a useful basis from which to proceed.

B. Rotational models

B(E2,2'-0) 1

B(E2, 2' -2) 2 1 —2b'

leg(2) I
= Is&I [~»»(E2, 2-0)1'~.

(10c)

(lod)

In this section we consider the excited states
as members of quasirotational bands. Figure 3
illustrates how the multiple-phonon levels may
be decomposed into various intrinsic excitations

4 or more nucleons from closed shelll6-
2 nucleons from closed shell

closed neutron or
proton shell

fn 12—
OP
Ul
O

4l

6 +4

I

0

0 4
60

N=50

80 lOO
A

l20
(

I 40

FIG. 1. Histogram of E2/M1 mixing ratios 6 of 2' —2
transitions in even-even nuclei 60 &A&150. The labels
+ and —refer to the phase of 4, as defined in the pres-
ent vrork.

FIG. 2. E2/M1 mixing ratios of 2' 2 transitions in
even-even nuclei 60 ~A&150. The solid curve indicates
the trend of the measured values and shorvs pronounced
minima in the vicinity of closed shells.
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8+
3+

Quadrupole
phonon

vibrational
spectrum

0+2+ 2+4+4 5+6+8

Decomposition into

quasi —rotational bands

6+

4+
2+&

pgy('
6+

0+2+ 5+4+6+
N=&

p+

2
4+

p+

0+ 2+ 4+
N=2

2' 0+

2+
N=)

QE =ffaI

0+

120Te Number
of

phonons

0+

FIG. 3. Spectrum of excited states expected on the basis of the phonon vibrational model. The actual spectrum of ~ Te
is shown to the left. To the right is indicated the decomposition of the phonon states into quasirotational bands, which
might be identified (in order) as the ground state, y, p, yy, pp, gyes, py, and ppp quasibands.

and rotational bands. These rotational bands
deviate considerably from the Z(7+ 1) spacing ex-
pected for a rigid rotor, indicating the "softness"
of the nuclear deformation. (This is the basis
for such considerations as the variable moment
of inertia model" or the higher-order cranking
model. ") The 2' excitations may then be con-
sidered as states of the quasi-y or quasi-P bands.
The E2/Ml mixing ratios then obtain a collective
(i.e., E2) character, in agreement with observa-
tions. However, contrary to observation, the
crossover 2'-0 E2 transition would not be strong-
ly forbidden by this type of model, and thus it is
to be expected that limited success in interpreting
E2/Ml mixing would be obtained.

An alternative possibility is to consider an asym-
metric rotor model, for example, that of Davydov
and Filippov. " However, as was shown by Lipas, "
collective M1 transitions must be identically
vanishing in such a model.

C. Phonon-plus-particles model

As discussed in Sec. IIIA, the phonon model
disallows all M1 transitions; in the present ap-
proach, we introduce a small admixture of a
two-particle state into the state vector. The ap-
proximate success of the phonon model in ac-
counting for the lower B(E2) ratios indicates that
this admixture may be treated as a perturbation
of the phonon state vectors.

In the present calculation we employ the method
developed by Tamura and Yoshida. " A pair of
nucleons in the quasiparticle states )j,) and ~j, )
is excited from the ground state. The coupling of
the particle and collective motions is described
by the interaction

int 2X
P

(12)

where Q& is the collective quadrupole operator
(i.e., the a» in the model of nuclear surface
vibrations), and g„ is a two-quasiparticle quadru-
pole operator, given by

Qq
= Q (j ns

~
r Y» (j 'm')(u, v~ + u, iv~)

&& (&gory'm' + ~ymO'y'm') ~

t

where u and v are respectively the usual quasi-
particle non-occupation and occupation amplitudes,
and o. ~ and Pt (o and P) are the quasiparticle
creation (destruction) operators.

Under such an interaction, assumed to be treat-
able by standard methods of first-order perturba-
tion theory, the state vectors of the 2 and 2' levels
can be written as perturbations of the collective
states 2„(with n regarded as a seniority index of
the collective states, rather than as a phonon



K. S. ERASE

number):

12&=12,&+ g 5(2;(j j2)2)l(j j.)2&,

TABLE II. Computed two-particle contributions to
2'-2 E2/Ml mixing ratios.

(14) Nucleus (eb/p„)
(fm4/Mev21

Protons Neutrons

12'&=12 &+ Qf(2. (j j )2)l(j j.)2&.

We employ a notation slightly different from that
of Tamura and Yoshida, but preserve the spirit
of their work. The mixing amplitudes 5 are given
by

}i&ollqll2„&&j, 11@II&,&(u, ~, +s, &, )

io[z, +z, -z(2„)]

(15)

where the E& are the quasiparticle energies. The
Ml matrix element may then be computed to be

&211m(~1)112 &= ~}t &ollqll2, &

x&o II 0 112&& g zy'g'; g

The quantity B&.&.. & &
depends on the couplings

of the single-particle states and on the M1-matrix
elements between the single-particle states. The
dominant contributions to the total M1 transition
probability will arise from cases in which
and j,'= j, (including as a special case, j( =j,' =j,
=j,); that is, the identical configuration (j,j,) is
admixed into both the 2 and 2' levels. The total
M1 transition probability is then proportional to
& jill5g(M1) Ilj & or (j2115}l(rifi) 11 ja& which are at
least an order of magnitude larger than the ma-
trix element (j, IISR(M1) IIj,); that is, empirical
values of the former matrix elements do not dif-
fer greatly from the single-particle estimate
(Schmidt limit) for the static Mi moments, while
the empirical M1 transition probabilities are
generally retarded by 2-3 orders of magnitude
relative to single-particle (Weisskopf) estimates.
Thus, the major contribution to the 2'-2 M1
transition matrix element is proportional to

Ni
62Ni

64Zn

"Zn
6'Zn
?oGe
72 Ge
74Ge

76Ge
?4S

76se
78S

80Kr

"Kr
84Kr

"Sr
86sr
88sr
92Zr
84Mo

86Mo

"Mo
1008u
102R

"48u
104pd
106pd
108pd

106Cd

io8Cd

110Cd
112Cd
114( d
116Cd

'"Sn
122 Te
124Te
126Te
12 6Xe
128~e
132Xe
132Ba
134B
140C

142 Ce
144Nd

'"Sm
152Gd

-1.0
+1.0
+3.4
-6
-2 7

2 03

-9
-20

+ 5.7
+8

-11
+10
+11
+31

—48
+1.4
+0.42
—O. 04
+0.07
-2 4
+ 0.73
+1.1
+9

-110
—19
+46
-14
-7 5

-12
-1.0
-1.8
-1.8
-1.3
-2.8
-2 5
-2.6
-6.0
-5.6
-8.7

+22
+14
+10
+19
-16

+ 0.53
-0.11

2 e3
—7
-6.4

77
84
88

148
105

76
75

105
111
150
215
283
353
150
326

-1027
160
312
236
283
293
261
202
425
371
283
237

2500
2600
4000
2100
1300
930

1500
3200

-5600
250
310

1800
510
930

-1600
1200
2400
430
230

—0.5
3.9
1.1
1

-0.3
-0.4
—0.5

1 4

-0.4
-1.5

3 ~ 7

—9
-11
—9
27

44
43

-13

—3
-1

—1
2

3
-2

1
3
4
3
1

-2
-3
-6
-5

4,

-3
4

-1
2

108
650

0.8
0.1

-250
-150
-350

+ 1.4
+ 1.7
+ 1.3
+ 1.6
+2.2

+ O. l
+ 0.1
+0,5
+ 0.6
+ 0.3

+300
+ 0.6
+ 2.0
-0.6

+ 1.2

+ 1.2
+ 1.3
+2.0

180
20
20

4
10

2

2.5

2.5
3
0.6
1.2
1.2
2

2

4
0.6

0.2

2

3
1.2
1.2
1.9
1.2
1.9
2.5
4.0

0.2
0.2
0.6
0.7
0.7

160
1.2
0.7
0.7

5
5
4
3
4
3
0.2
2.5
5

12

&, &,
+ „,, 'l&j, illlj. &l* j,(j,+1)+e-j,(j,.i)

[z +z, -z(2,)][z, +z, -z(2,)] 2[3oj,(j,+1)(2j,+1)j'~

j,(j,+ 1) + 6-j,(j,+1)
2t'3O ( y)y y)] e &2 II™IIJ

&I
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&2 (3)I(B2) l(2 &

&2 (II@f1)((2i&

[(3/4v)ZeB, ') ' &2((3R«2) (2 &

&0((3g(B2) I(2 &&o(3II(B2) ll2&

7;8fg92l J1 J2
(16)

We take R~ = 1.2A'" fm and y =40 MeV/It, ' The.
E2 matrix elements may be computed from either

We expect that the detailed structure of ~, in
particular its phase and most of its variation in
magnitude between neighboring even-even nuclei,
will be contained in the B& & .& I term of Eq. (16).

1
The remaining E2 matrix elements of Eq. (16) and
of (2 ((Sit(E2) ((2') are assumed to be highly collec-
tive and thus to vary relatively slowly.

Values of 9» .» have been computed from
Eq. (I I). The sante-particle Ml matrix elements
have been computed in a manner similar to the
Schmidt limits for the magnetic moments, except
we have taken g, =0.6(g,), as giving a more
realistic estimate of the empirical moments. For
the matrix elements of Q we have used the Weiss-
kopf estimate of the E2 transition intensity, modi-
fied by taking the n'eutron and proton effective
charges to be O.V and 1.V e, respectively. The
pairing factors and quasiparticle energies have
been computed using the single-particle energies,
Fermi energies, and gap parameters given by
Kisslinger and Sorensen. " For each even-even
nucleus we have computed the five largest con-
tributions to 9& &

.» from two-neutron and also
from two-proton states. The sum of these five
values is shown in Table II.

The tabulated values of QB» .» illustrate
the dominance of the contributions from the two-
proton configurations over the two-neutron con-
figurations. This dominance follows from four
causes: (1) The single-particle matrix elements
of Q are proportional to the assumed effective
charges; the proton contributions would thus be
expected to dominate over the neutron contribu-
tions by a factor of the square of the ratio of the
effective charges, which amounts to a factor of 8.
(2) The single-particle M1 moments (i.e. , g fac-
tors) are generally larger for protons than for
neutrons by a factor of 3. (3) The two-proton
excitation energies are generally lower than the
two-neutron energies; this produces another fac-
tor of at least 2. (4) The single-neutron Ml mo-
ment (g factor) is negative when j= I+-,', leading
to cancellations in the summation; this does not
occur for protons.

The mixing ratio 6 may be expressed as

of two methods:
Method I. It follows from Eqs. (9) and (10b) that

&2 3g(E2) 2'& ~ I-2P
&0 3g(Z2) 2') (19)

~Q(2)=as{,~&') (oiler(za)(12),

and t us

&2((3g(B2) (2'& -e(I-25') 512v
&0 I(3g(Z2) I(2 &&0(II(Z2) I(2& eg(2) 175

(&0((3g(E2) ((2) (= [5B(B2,2-0)) '~ . (22)

We again use Eq. (19) for the ratio of the E2 ma-
trix elements and compute 5 from Eq. (10c). In
this case the signs of the 2-0 matrix element and
of b are undetermined, and hence the sign of A is
undetermined.

Values of L computed according to Methods I
and II are shown in Table G. The agreement of
the calculated values with the absolute magnitudes
of the experimental values is not unreasonable,
considering the approximations made in selecting
a broad set of parameters for each mass range.
Detailed comparisons between theory and experi-
ment for a given nucleus must be based on calcu-
lations which employ a set of single-particle ener-
gies and moments more appropriate to that nu-
cleus (for example, deduced from the neighboring
odd-mass nuclei). One could also improve the
agreement in the present case by employing a
reduced value of the coupling constant X, which
was selected somewhat arbitrarily"; a reduction
by a factor of 3, for example, would increase the
calculated values of ~ by an order of magnitude
and give rather good agreement with experiment
for the Ru, Pd, Cd, and Te isotopes. However,
these cases are even more sensitive (in magnitude
as well as phase) to a resonance-type behavior
arising from the closeness of the energies of the
two-particle and 2, levels, and thus such a dis-
cussion of the value of x must await a detailed
calculation based on a more realistic and suitable
choice of single-particle energies.

The phase of b, is not predicted uniquely, but

(21)

We take a ~ + 1 and compute I(' from Eq. (10c) and
the crossover-to-cascade B(E2) ratios. If the
value of Q(2) is known, "the value of a may be
computed. The sign of ~ is determined by the
sign of QB as well as that of Q(2).
Method 11. In the event Q(2) is unknown, we may
obtain a value for the magnitude of the 2-0 ma-
trix element as
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rather is subject to a number of estimates of the
E2 matrix elements of Eq. (18). The magnitudes
of these E2 matrix elements vary relatively little
over the range of even-even isotopes of a given
atomic number; it may be assumed that the rela-
tive phases of these matrix elements do likewise.
We therefore assume that the information on
variation in the phase of ~ is contained in the

B& &
.

& &
terms, and from Eq. (1V) we see that

this in turn depends on the M1 matrix elements
and on the energy differences in the denominator.
Since the dominant contributions to 9& &

.
& &

come
from proton states, the M1 matrix elements (i.e. ,
the g factors) are all positive, and thus the phase
variations will be characterized by the energy
differences between the two-quasiparticle states
and the unperturbed collective states 2„. We
expect that (E~ + E~ ) will always exceed E(2,),
and so we examine the relationship between
(E& +E& ) and E(22). The unperturbed energies

2
of the 2, states have not been computed, but their
relative systematic behavior can be inferred from

that of the perturbed 2' states. The energy re-
lationships between the 2' states and the lowest
two-quasiparticle states are illustrated in Fig. 4,
for a number of sequences of even-even isotopes.
In all cases a suitable selection of 2, states,
highly correlated with the 2 ' states, could be
made to cross with the two-quasiparticle energies
at a point corresponding to an observed change in

phase of the mixing ratio. It is interesting to note
in support of this contention that, in four illus-
trated sequences of isotopes in which this phase
change occurs, it always occurs only once in each
sequence; that is, phase sequences such as (+ —+)
or (-+-) do not occur. Furthermore, it is pos-
sible that the phase difference of the 2'-2 mixing
ratio between the Te and Xe isotopes may simply
result from the relationship between the 2' level
and the two-proton states, as indicated in Fig. 4.

The theory does predict phase changes at'" "'Ba ' ' '02Pd and" "Ru, while the observed
changes occur at "2 "'Ba, ' ' Pd, and ' ' Ru
It is indeed possible that a more refined calcula-

ZA (2p )

30 „Ge (2p )

A= 62 70 68

Se ( Igg, q)

A=72 76
I

80
I

44
IOO I 04

{ Ig )

A= I 02 I06 I I 0 I 06 I I 0 I I 4

2'

~'&7ip) ( Ig )

2'

l20 I 24
I

I 28 I24
I I

I28
I

132

FIG. 4. Relationship between energies of 2' states and lowest two-proton configuration. The 2' states are labeled
with + or —to indicate the phase of the 2' 2 E2/M1 mixing ratio.
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tion using single-particle energies more suited to
each particular nucleus (rather than an average
set for a larger mass region) could provide more
successful predictions of the level crossings and,
thus, of the change in phase of h. Further con-
clusions in this respect must await additional
measurements of the 2'-2 mixing ratios, par-
ticularly those of the more neutron-deficient iso-
topes.

An additional point of interest in the comparison
of relative phases is the degree to which the
phases (and possibly also the magnitudes) of A

correlate with Q(2). Unfortunately, the quadrupole
moment data available" is not sufficient to draw
detailed conclusions. It mould, for example, be
of interest to attempt to account for the difference
in the phase of ~ between the Te and Xe isotopes
with a change in sign of Q(2), indicating the Xe
isotopes may be somewhat oblate. However, the
lack of values of Q(2) for the Xe isotopes makes
such comparisons impossible at present.

An alternate approach to the pQonon-plus-parti-
cles model has been given by Korolev. " In this
approach the nucleus is treated as a core plus
one or more zero-spin pairs which excite col-
lective modes of the core. One can then compute,
in terms of an interaction constant and a suitable
set of unperturbed energy levels, the M1 and E2
matrix elements to be expected for transitions to
the first 2' state (assumed to be a one-phonon
state) from various possible structures of the 2'
state (two-phonon, one-phonon plus pair, one
"excited" pair, etc.). The success of this model
then depends strongly on the interpretation of
the physical 2' state, in particular its admixtures
of paired states, although Korolev" has obtained
reasonable agreement with ratios of reduced E2
transition probabilities in the Cd isotopes.

D. Higher-order N1 operators

In our discussion of the phonon model in Sec.
IIIA, it was pointed out that if both the state vec-
tors and the M1 operators are treated in their
lowest-order phonon modes, the M1 matrix ele-
ments must vanish. In the previous section, the
effects of relaxing this restrictien for the state
vectors was considered; in the present section,
we consider the effect of higher-order terms in

the M1 operators. Here "higher order" refers
to more sophisticated couplings than that suggested
by Eq. (8). [We note that Eq. (7) contains the im-
plicit assumption that the nuclear mass and charge
distributions are identical, and thus we are pres-
ently concerned with cases in which the mass and

charge distributions differ. ]
A generalized M1 operator may be obtained by

including higher-order phonon conb ibuboas of the
form

5g(~i (() (3/4(()1/2(( [g ((((j(0)~(f(0j(1(+ ~ ~ ]

J'„"=(a, Z'„") = Q (2s(, I(((, ill()e,„Z'",
mm1 z

(25)

where uz is the collective quadrupole operator
which can 4e represented as a linear combination
of the phonon creation and annihilation operators
bz~~ and ~z . This operator 4&(o can now' con.neet

~ 1
states differing by one phonon number, and thus
we expect nonvanishing M1 matrix elements be-
tween the 2' and 2 levels. The coefficient g'"
may either be computed on the basis of the iater-
action which is assumed to give rise to the cc(a@ling
of Eq. (25), or else may be regarded as a siagle
parameter of the theory to be determined frere
comparisons with eloper iment.

Greiner" has used sech a model to comyvte

g factors and E2/Ml mixing ratios in vibrational
nuclei by astuming that the exiiteem of , Ih eager
pairing force for protons than for neitroes re-
sults in a smaller proton deformatioa, Mich im

turn causes the M1 oyeri, tor to ob4gje the t—-ON ial
structure described by Eq. (28). The factor g'"
is given by

(25)

where P, is the root-mean-square amplitek of the
vibration, defined by

and where f gives the difference jn proton and
neutron deformations,

(25)

We then obtain

ZAz '
(2 3x 10 )& (29)

or, from Eq. (25),

A5/3P
6 —(1.1x10 )

( )
.

where we can make the identifications [cf. Eq. ('I)]

g (0)

J {0)

and where we can define a first-order cmaplial, of
the form
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g "~=8 x 10-'
Q

(31)

where z is the symmetry energy constant in the
Weiszacker semiempirical mass formula (g = 20
MeV). This leads to values of g'" of order
5 x 10 ', whereas from a comparison of Eq. (29)
with the tabulated values of ~, it can be seen that
values of g'" of order 0.5 are required. In
Greiner's model, the parameter f may be deter-
mined from the difference between the empirical
value of g(2), the g factor of the first 2+ level,
and the hydrodynamical value Z/A. The deduced
values of f generally lie to the range 0.1-0.2,
and hence in Greiner's model, g'" is of order
Z/A, leading to reasonable agreement between
the predicted values of b and the measured values.
Grechukhin takes g'" as a parameter of the model,
and sets Z/A as a limiting value. In the present
calculation we will follow Greiner's method.

In Table GI are shown the predicted values of
4 based on Greiner's" parameter f which we have
derived from the empirical g(2} values, according
to the relationship g(2) =(Z/A)(1 —2f)(1+ 3f). The

An alternative formulation of this type has been
given in a series of papers by Grechukhin. " The
result obtained is similar in form to Eq. (29);
however, g'" is ultimately regarded as a free
parameter to be determined from coniparisons
with the empirical b, values. Grechukhin does at-
tempt a semiclassical calculation of g '", which
again depends on the difference between the nu-
clear mass and charge distributions. Vfhereas in
Greiner's model this difference is simply repre-
sented by the parameter f, in Grechukhin's cal-
culations the proton distribution is computed semi-
classically by considering the competition between
the Coulomb repulsion and the proton-neutron
attraction, from which one obtains

g(2) values were obtained from the compilation of
Shirley. " The data are shown for the medium
weight nuclei in the mass range 100 &A & 126, for
which the most reliable g(2) values are available.
The agreement both in sign and in magnitude is
striking, particularly in ' %u and '~Ru, in which
cases the theory correctly predicts the change in

sign at ' Ru and the resonance-like effect ob-
served for '~Ru. [It should be noted that f & 0 re-
quires that the neutron pairing force be stronger
than the protori pairing force. This can be circum-
vented by regarding f as a free parameter of the
theory, on which g(2) and 6 both depend, but
arising from some undetermined facet of the nu-
clear structure. ]

A more systematic indication of the relationship
between g(2) and a is illustrated in Fig. 5. Again
the g(2} values are as given by Shirley, "with ad-
ditional results for the Xe isotopes from Gordon
ef al." The uncertainties of many of the g(2)
values are sufficiently large as to prevent drawing
definite conclusions regarding the applicability of
this model. However, it should be noted that there
is no case in clear disagreement with the expected
relationship; there is, for example, no instance
of a positive ~ for which the error bars do not
allow positive values of [g(2) —Z/A]. More quan-
titative conclasions of this nature require con-
siderable reduction in the experimental uncertain-
ties of the g(2I values.

IV. DISCUSSION

We have shown that agreement of at least a
qualitative nature may be obtained between experi-

0.5

0.2—

Nucleus g(2) Z /A f Theory Experiment

TABLE III. Comparison of experimental 2' 2 E2//j/11

mixing ratios with computed values.

I

CU

o. i I
t

II,

II
II

I
1

I I I I II
II II

100R
'02Ru
'048,u

0.55(7)
0.41(3)
0.29 (4)

0.44 -0 ~ 16 +2.5
0.43 0.03 -20
0.42 0.20 -5.8

+9
—110
-19

f06 Pd
108Pd

110Pd

0.38 (3)
0.30(4)
0.25 (3)

0.43
0.43
0.42

0.09 —7.8
0.20 —5.5
0.25 -5.9

-14
-7.5

—12

—0.5
- IOO —IO IO 1 00

110Cd
112( d

12 2Te
124 Te
i26 Te

0.35(8)
0.30(6)

0.34(5)
0.29 (4)
0.25 (7)

0 44
0 43

0.43
0.42
0.41

0.14 —4.8
0.20 -4.5

0.14 -5.6
0.21 -4.5
0.25 -4.5

—1.8
—1.3
-6.0
-5.6
-8.7

FIG. 5. The relationship between the reduced 2' 2
E2/~1 mixing ratios A(in units of eb/pg and the g fac-
tors of the first 2+ states. Experimental uncertainties
on the g factors are as shown; the uncertainities of the
A values have been omitted for clarity. The dashed
lines illustrate the general trend of the relationship
which might be expected based on Eq. (29).
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mental values of 2'-2 E2/Ml mixing ratios and
theoretical values computed either (1}on the basis
of a semimicroscopic model in which the M1
amplitudes are obtained from two-quasiparticle
admixtures to the collective vibrational states,
or (2) on the basis of a phenomenological de-
scription in which the mixing ratio 6 is strongly
related to the deviation of the g factor of the first
excited 2' state from the hydrodynamical value
Z/A. It is perhaps somewhat surprising that
these two approaches should both appear promising
for such a calculation, since they represent fun-
damentally different ways of interpreting nuclear
structure. In calculation (1), the Ml amplitudes
are due purely to the dynamics of the two "va-
lence" particles. Although there are effects pres-
ent due to the "core", (i.e. , the nucleus minus the
two "valence*' particles), such effects represent
at most a renormalization of the coupling constant
lt or perhaps of the E2 amplitudes. (Of course,
the energy levels available for the two quasipar-
ticles are determined by the properties of the
core; however, the core itself does not take part
in the transition. ) The phenomenological approach
represented by calculation (2) considers the dy-
namics of the core (in this case the entire nucleus)
through the collective variables. In effect the
latter approach includes implicitly a number of
effects not considered in calculation (1), including
variations in the structure of the core induced by
the transition and higher-seniority configurations
(four quasiparticles, etc.) whose effects might be
significant.

In an attempt at a more quantitative comparison
of the two calculations, we have computed the

g factor of the first excited 2' state using the
state vectors ~2) given by Eq. (14), obtaining
after some manipulation

g =gz+ &g y

where

(32)

The expression for B& &
.

& &
is identical to that

given by Eq. (17), except that the energy factor
in the denominator becomes [E& +Ez —E(2,)]2.

1. 2
Evaluating ~g for a medium-weight nucleus
(A = 100) we obtain b.g = 0.5, using parameters
identical to those used in Sec. IIIA for the calcu-
lation of a. Equation (33) requires that n, g have
the same sign as the B& &

.
& &

term; as discussed2' 1 2
above, the dominance of two-proton contributions
leads to positive values for B~ ~, , and thus to
ag & 0. [In this case the previous discussion re-

2 1A 2g4g= —
2 ltB(E2, 2 0)QB, ~.~ )

)1f2

(33)

garding the prediction of phase changes in 4 ac-
cording to crossings between E(2,) and E& + E&

1 2
does not apply, owing to the different energy fac-
tor which appears in the B& &

.
& &

expression for
1 2' 1

hg. ] Furthermore, the computed magnitude of
b, g is too large, although the reduction in g' by
an order of magnitude as suggested above will
yield a reasonable size for b, g. (An alternative
explanation, in which the angular momenta of the
"core" nucleons are somehow quenched such that

g = 0, with all of the magnetic properties of the
nucleus arising from the "valence" pair, is un-
reasonable. ) One, therefore, concludes that
although the dynamics of the "valence" pair may
possibly give a reasonable explanation for the
M1 transition probabilities, it is unable to account
for the static nuclear magnetic dipole moment.
This failure may arise from either (a) the dy-
namics of the core, which does not contribute
directly to the M1 transition probability in the
present formulation, or (b} higher seniority con-
figurations which would influence both the static
and dynamic M1 moments. It appears that per-
haps the phenomenological model may be suc-
cessful in accounting for the microscopic effects
using few independent parameters.

V. CONCLUSIONS

A complete understanding of the E2/Ml mixing
ratios of the low'-lying even-parity states of even-
even nuclei in the mass range 60 &A & 150 ob-
viously requires a detailed calculation which con-
siders all multiple-seniority configurations of a
complete set of single-particle basis states. The
success of such a calculation for a given nucleus,
however, requires knowledge of the appropriate
single-particle states and transition probabilities.
We have shown in the present work that the sys-
tematic behavior of the E2/Ml mixing ratios can
be interpreted with reasonable success across
the entire mass range by considering only a few
low-lying two-particle states as perturbations of
the phonon basis states (presumably the correla-
tions among the multiple-seniority configurations
are implicitly included in the phonon state vectors
such that their effects are included in the single-
phonon E2 transition matrix elements). The
variations in phase, and, to a lesser extent, the
variations in magnitude can be successfu11y ac-
counted for using a relatively small number of
parameters.

Additionally, as will be subsequently demon-
strated, "nearly all of the "single-phonon" tran-
sitions in the Ru, Pd, Cd, and Te isotopes may be
interpreted in terms of a single-parameter model
based on the higber-phonon terms in the magnetic
moment operator, where that single parameter is
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deduced according to the method of Greiner from
the difference between the g factor of the 2+ level
and its expected hydrodynamical values of Z/A.
Such a model not only is successful in predicting
the relative magnitudes over a large range of
mass numbers, but also seems to hold for transi-
tions from levels of up to four phonons. "

The phase of the E2/Ml mixing ratio is a nu-
clear observable which has in the past not been
widely used as a probe of the nuclear structure.
This situation has resulted in part from the con-
fusion resulting from the several different phase
conventions which can be used to extract the
mixing ratio from the angular correlation data
(along with a corresponding failure on the part of
numerous investigators to specify which con-
vention they have adopted). In the present work
these phases have been determined in a consistent
manner and can be related to the intrinsic electro-
magnetic matrix elements. We have shown how
this phase can be related in a model-dependent
way to details of the nuclear structure. It is hoped
that considerations such as these can lead to a
better understanding of the phase relationships
between nuclear electromagnetic matrix elements;
for example, it should be possible to employ the
observed mixing ratios and suitably computed
(model-dependent) Ml matrix elements to deter-

mine the phase of the corresponding E2 matrix
element, which might be important in understand-
ing a similar phase-dependent problem such as
the interference term which arises from measure-
ments of quadrupole moments by the reorientation
effect following Coulomb excitation. In any event,
it is apparent that both the phase and the magni-
tude of the E2/Ml mixing ratio can be success-
fully employed as a probe of the nuclear structure.

Note added in Proof; Hubler, Kugel, and Mur-
nick'3 have recently recomputed a number of g(2)
values derived from perturbed-angular-correla-
tion measurements employing implantation into
ferromagnetic hosts following Coulomb excitation
(IMPAC). Although their results suggest sub-
stantial changes in a number of previously pub-
lished g factors (some of which are represented
in Table III and Fig. 5), the qualitative conclusions
of the accompanying discussion regarding Greiner's
model are unchanged. In the quantitative compari-
son of Table III, the revised g factors yield slightly
better agreement between theory and experiment
for the mixing ratios. More recent IMPAC results
on the even-even Xe isotopes by Norlin et al."
suggest g(2) & Z/A, in apparent contradiction to
the expectation based on the mixing ratios. A
recent measurement ' of 5(2'-2) in '208n of
-1.43 +0.25 complements the data of Table I.

*Work performed under the auspices of the U. S. Atomic
Energy Com~ission.
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