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New treatment of the one-particle continuum in nuclear reaction theory
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A new method is proposed for the treatment of the one-particle continuum in nuclear reac-
tion theory. The method comprises a matrix diagonalisation technique similar to that used
in the eigenchannel theory. However, in contrast to the eigenchannel theory, this method
does not require the S matrix to be obtained in a diagonal form. It is shown that by a relaxa-
tion of this requirement, a numerically much faster method of treating the one-particle con-
tinuum can be developed.

1. INTRODUCTION

After an initial period of optimism due to its
success in explaining the photonuclear giant di-
pole resonance microscopically, the Tamm-Dan-
coff approximation (i.e., the one particle-one hole
approximation with only 1k' transitions consid-
ered) has since revealed its inadequacies. The
hope of reproducing all the basic features of the
photo cross sections through continuum calcula-
tions based on this approximation has not been
fulfilled. A number of continuum calculations' '
performed for different nuclei have shown that
only the gross structure of the cross sections can
be reproduced, and that the peaks obtained are
too high and narrow compared with experiment.
It has therefore become clear that although the
Tamm-Dancoff scheme of configurations can still
be used as a starting point, higher order configu-
rations, collective correlations, or in general,
more complicated features must be introduced
in order to achieve a better agreement with ex-
perimental results.

However, most of the attempts for a better
understanding of the structure of the photonuclear
cross sections have been made through bound-
state calculations. %hile these calculations can
certainly give a clue to the validity and useful-
ness of the assumption made, it is clear that their
interpretation is not totally unambiguous. They
are clearly unsuitable if one wants to explain the
finer details of the reaction, such as the (y, p) or
(y, n) cross sections, separately, or the angular
distribution of the reaction products.

Several methods of treating the one-particle
continuum have now been developed (see, e.g. ,
Refs. 1 and 4), and of these the eigenchannel (EC)
method' and the coupled channel method have been
widely applied. ' ' ' Both of these methods, how-
ever, suffer from disadvantages. The EC method

requires a search procedure for the eigenphases
of the S matrix, resulting in many diagonalisations
of large matrices for each excitation energy at
which the cross sections are to be calculated. It
therefore proves to be a time-consuming process.
On the other hand, the EC method, because of its
utilisation of a matrix diagonalisation technique,
is easily extended to approximations more sophis-
ticated than the simple Tamm-Dancoff approxima-
tion. The coupled channel method, although rather
quicker numerically than the EC method for simple
cases, is much more difficult to extend to com-
plicated models unless further simplifying ap-
proximations a,re made. Both of these methods
have been recently discussed in detail. ' '

In this paper we present a new method which
retains the flexibility of the EC diagonalisation
technique but which is numerically much faster.
In fact is it shown in Sec. 3 that only a very small
number of diagonalisations are required. This
method should therefore be particularly useful in
investigations aimed at extending into the con-
tinuum region calculations based on the more
sophisticated nuclear models. Because of the
size of the matrices to be diagonalised in any
such model, a treatment of these problems with
the EC method is often not practicable. On the
other hand, a treatment with the coupled channels
technique usually involves severe formal diffi-
culties.

Although so far only photonuclear reactions have
been mentioned, the new method involves the cal-
culation of the scattering matrix and so can be
applied to other types of nuclear reactions. In
fact, in the following, no hypothesis is made about
the nature of the particular reaction treated, ex-
cept for Sec. 5 which is devoted to the explicit
derivation of the formulas for the photoreaction
cross sections. The method is also general with

regard to the complexity of the shell model ap-
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proximation treated, except in so far as it is re-
stricted to the case where only one particle at a
time is in the continuum.

In Sec. 2 we discuss the discretization of the
continuum and the boundary conditions used to this
end. Section 3 describes the solution of the nuclear
Hamiltonian in the internal region. In Sec. 4 it is
shown how the S matrix can be calculated and in
Sec. 5 how the formulas for photoreaction cross
sections are obtained. Section 6 discusses the
treatment of the closed channels, and Sec. 7 con-
tains a summary of the conclusions reached.

2. DISCRETIZATION OF THE CONTINUUM

AND BOUNDARY CONDITIONS

We consider the reaction

terms of the discretized basis ]y,}, i.e.,

i';=+ a, , (p, . (2.6)

Substituting Eq. (2.6) into Eq. (2.5), we obtain,
as in a bound-state calculation, a system of in-
finite homogeneous equations

(2 7)

where V» is the matrix element (p„j V~ &p,). In or-
der to solve this system of infinite equations, we
truncate the basis such that only v basis functions
are considered. The number v must be sufficient-
ly large so that the basis is reasonably complete.
The condition for the system of equations (2.7) to
be soluble is the secular equation

a+X- b+ Y, (2.1) det[(e) —E;)5,~+ V»] =0. (2.8)

where a ean be any incoming particle and b any
outgoing particle. Let 4 be the wave function
describing the compound nucleus system. The
nuclear Hamiltonian H can be considered to be
composed of two parts,

0 =Ho+ V, (2.2)

where H, is a shell model Hamiltonian and V is
the residual interaction. H, is a sum of single
particle operators

tZ +g)oZ (2.3)

where t(i ) is the kinetic energy operator and U, (i )
is the shell model potential. In the so-called
bound state calculations where v, is assumed to
be a potential of infinite depth we have a denumer-
ably infinite set of discrete energy levels e, and
therefore of wave functions cp, where

Pop& -—e,. p;. (2.4)

The use of a more realistic finite potential intro-
duces the diffinQty of a continuous infinite set of
basis wave functions which may be discretized by
an appropriate choice of boundary conditions, as
will be shown later. In the following we denote
this discretized set of wave functions by (y,}. We

may now apply the usual formalism of the bound-
state calculations.

The nuclear Schrbdinger equation may be written
as

(2.5)

The nuclear wave function g; can be expanded in

Here I, and 0, are the radial parts of the incoming
and outgoing particle wave functions in the chan-
nel c and g, is the wave function of the target or
residual nucleus together with the angular parts
of the incoming or outgoing particle divided by its
radius; the summation is over all open channels.
A normalisation factor v, '", where v, is the rela-
tive velocity in channel c, has been introduced so
that if A.„,or B„have unit value then the corre-
sponding incoming or outgoing spherical wave has
unit flux. The S matrix is then defined by

B„=—Q S„.A~, (2.10)

It is possible to choose the A.„such that we ob-
tain a stationary wave solution, i.e. , the ampli-
tudes of incoming and outgoing waves in all chan-
nels are equal, but there is a phase shift between
them. We then obtain for the wave function of the

The solutions of Eq. (2.8) are the eigenvalues E,
of the nuclear Schrodinger equation. Ne require
that one of the eigenvalues E; be equal to the exci-
tation energy E„. Clearly with an arbitrary choice
of boundary conditions this requirement cannot in
general be fulfilled. A particular choice of the ba-
sis functions as obtained by a suitable selection
of the boundary conditions is necessary.

We divide the configuration space into an exter-
nal and an internal region, the boundary being a
sphere of radius a. The matching radius a is
chosen large enough such that all nuclear interac-
tions may be assumed to occur in the inner region,
as in the R-matrix theory. In general, the wave
function in the asymptotic region can be expressed
as

p„= g i U, "'[A„,f, + B„,O, ]g, .
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0th combination in the asymptotic region

pn= Qfv, "'V„,[e ' "cI,—e ' ncO, ]p, . (2.11)

and

(2.18)

The ingoing and outgoing radial wave functions I,
and 0, are defined by

I,* =0, =[G, (k,r)+iF, (k,r)]e ' ', (2.12)

where

kn
= Q &nc(kcr) 0c (2.13}

Here I', and G, are the regular and irregular solu-
tions of the radial differential equation (i.e. , Cou-
lomb functions for protons and spherical Bessel
functions and Neumann functions multiplied by k,r
for neutrons). l, is the orbital angular momentum
of the particle in channel c, and (d, is the Coulomb
phase. Finally E„, p.„and Q, are the excitation
energy, reduced mass, and threshold in channel c,
respectively.

Substituting Eq. (2.12} into Eq. (2.11) we obtain

K „ is the wave number in the internal region; n

refers to the radial quantum number.
As mentioned before, a complete basis of single

particle wave functions (y;}would require an infi-
nite number of radial quantum numbers, but in or-
der to restrict the dimension of the basis to an ac-
ceptable level, only a few radial quantum numbers
are kept for every channel. The number of radial
quantum numbers kept for each channel c is denot-
ed by v, where

v=P v, .

Usually a value for v, of four to six suffices. '
Besides requiring that the logarithmic deriva-

tives of the inside and outside wave functions
match, we also require that their amplitudes
match. We thus write the matching condition for
the magnitudes of the outside and inside wave func-
tions as follows:

where ]„,(k,a) = Q a, ,„u,„(K,„a) . (2.19)

E„(k,r) =2v, Vn, [G, (k,r) sin(5„—(u, )

+F, (k,r}cos(5„-&u,)].
(2.14)

At this point the difference between the present
method and the eigenchannel theory becomes ap-
parent. In the eigenchannel theory it is required
that

~kl ~k2 ~k3 ~kn * (2.15)

' ru,'„(v,„r)
~ucn(ecnr) r=c

(2.1 t }

Condition (2.15) is equivalent to requiring that the
S matrix is in a diagonal form. Therefore the
wave functions are eigenfunctions of the S matrix,
or, as they are called in the eigenchannel theory,
eigenchannels. Here no such restriction is re-
quired. Therefore the S matrix is no longer diag-
onal and the wave functions are no longer eigen-
channels.

We now proceed to calculate the logarithmic
derivative of the asymptotic radial wave function

$„(k,r) at the matching radius a, and impose for
the internal radial wave functions u,„ the require-
ment thai

(2.16)

where

In the following, for convenience of notation, we

substitute a single index i for the two indices c
and n We a. lso refer to the set (y, }connected to
the radial parts of the single particle wave func-
tions u, „ through the relation

Ps =Mcnlc (2.20)

(2.21)

we must vary the set of phases 5k, and repeat the
whole procedure until the consistency requirement
(2.21) is fulfilled. There are of course a large
number of ways of setting up an iteration proce-
dure which eventually leads to the condition (2.21).
The EC method is one of these. Due to the re-
striction (2.15) on the phases in the asymptotic
region, the EC method is numerically very waste-

From the single particle Schrodinger equation (2.4)
and the boundary condition (2.16), we can then ob-
tain the single particle energies e, and wave func-
tions y& and proceed to compute the matrix ele-
ments of the total HamiltonianH [Eq. (2.2}]. The
nuclear Hamiltonian in the internal region [Eq.
(2.5}]can then be diagonalised [i.e. , the secular
equation (2.7} may be solved] and the energy eigen-
values E& obtained. Of course, in general none of
the eigenvalues E, will be equal to the excitation
energy E,.

As we require that one of the eigenvalues
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ful, because a large number of time-consuming
diagonalisations are needed. In fact the whole pro-
cedure must be repeated for every excitation ener-
gy E„because the boundary conditions b,„, are also
a function of the excitation energy. In practice it
is found that in a typical one particle-one hole cal-
culation using the EC method (for instance, in "0;
see Ref. 1), about 50 to 100 diagonalisations are
required at each energy E„ for which the cross sec-
tions are to be calculated.

By relaxing the restriction (2.15), a more effi-
cient search procedure leading to the satisfaction
of the consistency condition (2.21) has been devel-
oped. Many diagonalisations of large matrices
are no longer required at each excitation energy
E„. The new procedure is discussed in detail in
the next sections. To illustrate the method we
discuss in Secs. 3, 4, and 5 the simple situation
when all channels are open. In Sec. 6 the treat-
ment when some channels are closed is discussed.

eigenvalue F., =F.„. Therefore we need to find ~V

independent sets of 5„,. This can be achieved by
fixing arbitrarily for every k =k', iV -1 phases
5„and varying the remaining phase 5~, until con-
sistency is achieved. Of course c' is chosen to be
different for every different k'. To be more spe-
cific, a possible although arbitrary choice can be
to assume some fixed boundary conditions for
c4k and to vary the phase 5„, when c =k for all
values of k. Adopting this choice we illustrate
now in the case k =1 the search procedure for the
phase 6» that leads to a solution of the nuclear
Schrodinger equation satisfying the condition (2.21).

For the sake of notational simplicity we rewrite
Eq. (2.7) in the following way:

(3.1)

where

3. SOLUTION OF THE NUCLEAR HAMILTONIAN

IN THE INTERNAL REGION

In the situation where all. N channels are open
there are N independent degenerate solutions of
the nuclear Schrodinger equation (2.5) with an

&1+ V11 V12

V21 62 V22

Vv, ,

V„

V2,
(3.2)

v1+ 1, VV1+ 1 V1+ 1

Vv1+2 v1+ 1 &. .2+ Vv "~ .21 1 1

V. ..„
V+2V1

V
V1 V1+ 2 VV VV

2 V1+1

V1 v,.2 1V

(3.4)

tions corresponding to the boundary conditions
specified by the phase 5» from the other v —v,
equations that correspond to fixed boundary condi-
tions. To make this separation evident block ma-
trices have been used.

%e now proceed to "prediagonalise" the matrix
Q making use of the transformation

Y =CZ. (3.7}

(3.5)
C is a unitary matrix such that the Hermitean ma-
trix Q can be diagonalised with the unitary trans-
formation C QC, i.e.,

C~QC =A, (3.8}

+1 v1+1

&1V +21

a1V

(3.6)

where A is a diagonal matrix, i.e. ,

(3.9)

Applying (3.7) and multiplying on the left by the
matrix

In Eq. (3.1) we have separated the first v, equa. —
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(3.10)

where

W =VC. (3.11)

The system of equations (3.10) can be rewritten as

PX+WZ =E„X,
8' ' X+ AZ = E„Z .

We define now a. matrix U such that

(3.12a)

(3.12b)

where the factor

(3.14)

has been introduced to take care of the possibility
that one of the Ak be equal to E„. In this case the
term has to be interpreted here and in the follow-

ing, not as a division, but as a product of all the
factors {E„-X, ) with (E„—X;) excluded.

Making use of the matrix V, Eq. (3.12b) becomes

(3.15)

Multiplying both sides of Eq. (3.12a) by f and apply-
ing Eq. (3.15), Eq. (3.12a} becomes

Y = —CU(VC) X.1

f (3.19)

The eigenvectors X and Y are the coefficients
a„of the expansion (2.6). From them, through
Eqs. (2.19) and (2.14), one can easily derive the
amplitudes V„of the wave function in the asymp-
totic region. As will be apparent later [Eqs. (4.8)
and (5.2)], the normalisation of the amplitudes
V„ is arbitrary. From the amplitudes V„and
the sets of "consistent" phases 5k„ it is then pos-
sible to calculate the S matrix and hence the reac-
tion cross sections. This is shown in the next
section.

4. CALCULATION OF THE S MATRIX

AND REACTION CROSS SECTIONS

For the purpose of computing the S matrix, it is
convenient to rewrite Eq. (2.11}in a matrix form:

nuclear Schrodinger equation, and need not be re-
peated each time for different excitation energies
E„.

The search procedure for the fulfillment of the
consistency requirement (2.21} is done by varying
only one phase, for instance 5», and calculating
the determinants [Eq. (3.17)] of only the part of the
matrix directly connected with the phase 6». When

Eq. (3.17) is satisfied, the eigenvectors are then
directly given by Eqs. (3.7) and (3.15), i.e. ,

[f (P —E,) + W VW ]X= 0 . (3.16) g =T I —T'0, (4 1)

In Eq. (3.16) E, denotes the unit matrix (of dimen-
sion v, ) multiplied by E„The syste. m of equa-
tions (3.16) admits non-zero solutions only if

where P is the column vector of element P„J and

0 are, respectively, the column vectors of ele-
ments

det[ f (P —E, ) +Wf tW ] = 0 . (3.17} (4.2}

The matrix in Eqs. (3.16) and (3.17}is a v, && v,
matrix whose element i,j is given explicitly by

11(z. —«„))t», —«, )»,, + v„
k

and

and where T' is the square matrix whose elements
are

(3.18) T' =V e" ".
ka kc (4.4}

As mentioned before, the factor g, (E„—X„}, in-
troduced to take care of the possibility that one of
the ~k be equal to E„, can be omitted when this
does not happen.

Equation (3.17) is equivalent to Eq. (2.8}but is
of course much more convenient in practice since
it involves only the calculation of a very small de-
terminant of dimension vy:4 6. Therefore, as
we had previous1y stated, the diagonal. isation of a
large matrix must be performed only once [Eq.
(3.8)] for each desired independent solution of the

Let us consider the following linear combination

x =-~0

where G is a not yet specified complex matrix.
As in the internal region the pk are degenerate
solutions of the nuclear Hamiltonian with the com-
mon eigenvalue E„; any linear combination of them
will still be a. solution of the Hamiltonian with the
same eigenvalue E„. If we now choose

(4.6}



106 B. F. BARRETT AND P. P. DEI SANTO

Eq. (4.5) becomes

y=I (T—} 'T'0. (4.7)

Therefore in this basis y comprising unit flux in
one entrance channel only, the S matrix is given
by '.

s =(r-)-'v', (4.6)

as may be seen by comparing Eq. (4.7) with Eqs.
(2.9) and (2.10).

Once the S matrix has been calculated by means
of Eq. (4.8), the calculation of the reaction cross
sections for particle-particle reactions is straight-
forward (see, for instance, Sec. 16.4 of Preston' ).

6. TREATMENT OF CLOSED CHANNELS

In Secs. 2-5 we have implicitly assumed that
all X channels are open. In the case when some
channels are closed some modifications are in or-
der. In fact, when E„—Q, is negative the general
solution of the asymptotic radial Schrodinger equa. —

tion is a linear combination of increasing and de-
creasing exponential functions. To be specific,
in the case of N, open channels and X-.V,„closed
channels Eqs. (2.11) and (4.1) become

~op

5. CALCULATION OF PHOTONUCLEAR CROSS SECTIONS where

In the particular case of the photonuclear cross
sections it is more convenient to adopt an alterna-
tive definition of G:

E,' =E,'(k, r)g,

with

(6.2)

G =(T') ' (5.1)
I -2 p.(E. —@.)1"'

k, =

so that

}t =(T') 'T I —0. (5.2)

This corresponds to the case where for the wave
function y, unit flux exists in the kth exit channel
and zero flux in the other exit channels. The pho-
ton channels are then treated perturbatively (see,
e.g. Ref. S).

The multipole matrix element between the ground
state Ig. s.) and the transformed state l}t,) may be
written simply as

Here E,'(k,r) are two independent solutions of the
radial differential equation with E„-Q, & 0, whose
asymptotic behaviour is that of e'"'", respectively,
for neutrons and exp[a(k, r —q ln2k, r)] for pro-
tons'. In the case of neutron channels E,' are the
modified spherical Bessel functions multiplied
by p:

E:(p) = ( '~p)"'I„„-„(p)

E. (p} =(-'~p)"'Ifi, „&,(p),

&x~ ID"
I g.s.) = P 0»&(i ID'"

I g s )

= P G» a&&&w; ID"
I g s.)

(5.3)

(5.4)

where p =k,r, and I, and K, are the spherical Bes-
sel functions of the first and third kind, respec-
tively. In the case of proton channels E,' are VVhit-

taker's functions given by

&4 QGa a"&4 ID Ig s) (5.5)

the proportionality constant being determined as
in Ref. 8. The total photoabsorption cross sec-
tion cr is then given by the sum of the partial cross
sections, i.e. ,

where D " is the electromagnetic transition opera-
tor of multipolarity J and parity m. The partial
cross section for a particl. e leaving the nucleus
via channel k following absorption of a photon of
energy E„and spin and parity Jm is then propor-
tional to the square of the multipole matrix ele-
ment, i.e.,

E,'(p) =e ~p'"'I}f(l, + l-q„21, +2, 2p},

E, (p) =e 'p""II(l, + 1 -q„2l, +2, 2p),
(6 5)

where $„1', F' have the same meaning as g, T',
F' in Eq (6.1) except. that they refer here only to
values of the index k between 1 and ~V,p, while &I},

1', F' also have the same meaning as P, T', F'

where M(a, b, z) and II(a, 5, z) are Kummer's func-
tions. Finally F„', are a,rbitrary constants that
can be used, just as the 5„ in the case of open
channels, to obtain a matching of the inside and
outside wave functions and logarithmic derivatives,
according to the arbitrary boundary conditions pre-
fixed as explained in Sec. 3.

In the block matrices notation of Sec, 3, Eq. (6.1)
becomes

y+ F+ Q
'

,
"1' F' E'
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in Eq. (6.1}, but they refer to values of k between
N

p
+ 1 and ¹ Since we need only X

p
independent

solutions for the calculation of the S matrix and
of the cross sections we consider only the follow-
ing N, „linear combinations of (I)„:

X =G4+G4 (6.7)

+(GF +GF )E —(GF'+GF')E'. (6.8)

In order to achieve the right asymptotic behaviour
for all X, we require that the coefficient of E' dis-
appears, i.e. ,

GF'+GI''=0. (6.9}

Also the term with E can be neglected in the
asymptotic region, so that asymptotically we have

y = (GT + GT )f —(GT'+ GT')0 (6.10)

Now when we want to calculate the S matrix we re-
quire unit flux in. the entrance channel, as in Eq.
(4.7), and this can be achieved by imposing the
condition

GT +GT =1.
Conditions (6.9) and (6.11) can be simultaneously
satisfied if we select

G =(T fT }-
(6.12)

where

(6.13)

Under these conditions the S matrix becomes

S =GT +GT'

where G and G are two not yet specified complex
matrices of dimensions N, &N„„and (N N.p)-&&N, , ,
respectively, and X is a column vector with V

p

elements. From Eq. (6.6) it follows

}t = (GT + GT )f —(GT'+ GT')0

satisfied if we select

G =(T' fT-') ',
G = Gf-,

(6.16)

7. CONCLUSION

Although different methods of treating the one-
particle continuum in the theory of nuclear reac-
tions have been proposed in the literature, and
two of them (the coupled channel and EC methods)
have been extensively used, neither of these meth-
ods is completely satisfactory. The method de-
scribed here retains the diagonalisation technique
of the EC theory which has proved to be particu-
larly convenient for the extension of the nuclear
model beyond the simple Tamm-Dancoff approx-
imation usually considered. At the same time the
computation time required has been drastically
reduced with respect to the normal eigenchannel
calculation by releasing the condition that the S
matrix be obtained in a diagonal form.

The method proposed here is not intended to
give in itself better results than the previous theo-
ries when applied to the same nuclear model. How-
ever, because of the ease with which it can be ex-
tended to more sophisticated models and its short
computation time, it is hoped that it will enable
the investigation of more realistic nuclear models
than have so far been treated, and thus aid in the
search of a better understanding of the nuclear
physics involved in the process of nuclear reac-
tions.

where f is given by Eq. (6.13). Under these condi-
tions Eq. (6.10) becomes

X=(GT +GT )f-G
=(T' fT'-) '(T fT —I}0.—

One can then proceed exactly as in Sec. 5.

=(T fT ) '(T' f—T'). - (6.14) ACKNOWLEDGMENTS

GT'+GT'= 1. (6.15)

Conditions (6.9) and (6.15) can be simultaneously

If, however, one wants to calculate photonuclear
cross sections, it is more convenient to have unit
flux in the outgoing channels as in Eq. (5.2). This
can be obtained by imposing the condition
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