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the correction gives rise to oscillations as a function
of AY3 in the depth of Vg in the nuclear surface which
are similar in amplitude and wavelength to those
found by Perey and Satchler* in their accurate analysis
of the elastic data. Further investigations of this point
are planned.
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The structure of the Si nucleus is studied using a variational procedure. The method of angular-
momentum projection from a deformed intrinsic state is applied, and each J~ state is projected from a deter-
minant which is variationally “best” for that state. This more general variational procedure includes
important vibrational correlations, which in #Si have hexadecapole character. The level spacings in the
energy spectrum improve considerably compared to those in the Hartree-Fock method followed by angular
momentum projection, and this leads to a much better agreement with the experimental spectrum. The
E2 transition probabilities, except for the 6+—4" transition, are also in good agreement with the experi-

ments.

1. INTRODUCTION

NUMBER of calculations'™ have been done in
recent years to study the low-lying states in 23Si.

All the calculations which consider #%Si to be deformed
and obtain the energy spectrum in either the SU(3)
model or the Hartree-Fock (HF) model have the
shortcoming that the energy spectrum is too dense
by about a factor of 2. Das Gupta and Harvey? dis-
cuss the possible reasons for this compression and sug-
gest that for the oblate HF solution there are residual
correlations (B vibration) which are of importance.
They then show that the states in 28Si associated with
the oblate minimum can in fact be explained in terms
* Work supported in part by the National Research Council of
Canada (B.C.) and by the U.S. Atomic Energy Commission
(Jicjz'.PP).'Bemier and M. Harvey, Nucl. Phys. A94, 593 (1967).

2 S, Das Gupta and M. Harvey, Nucl. Phys. A94, 602 (1967).
3S. N. Tewari and D. Grillot, Phys. Rev. 177, 1717 (1969).

of the rotation-vibration collective model, and suggest
that this additional degree of freedom should be in-
cluded in a many-body calculation.

Recently, Rowe* has discussed several methods for
describing ‘“vibrational” correlations in finite nuclei.
A comparison of these methods by Parikh and Rowe®
in the model of Lipkin ef al.5 has shown that the pro-
jected Hartree-Fock (PHF) approximation in which
the variation is carried out after projection, gives good
results for a whole range of situations. This goes from
the case where the nucleus is vibrational to the other
extreme where it has static deformation and includes
the transitional region in between. Similar results in

4D. J. Rowe, Phys. Rev. 175, 1283 (1968).

57]. C. Parikh and D. J. Rowe, Phys. Rev. 175, 1293 (1968).

6 H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62,
188 (1965); N. Meshkov, A. J. Glick, and H. J. Lipkin, ibid. 62,
199 (1965); A. J. Glick, H. J. Lipkin, and N. Meshkov, 7bid. 62,

211 (1965); D. Agassi, H. J. Lipkin, and N. Meshkov, 7bid. 86,
321 (1966).
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a more realistic situation have been reported by Ullah
and Rowe.” They have investigated the J*=3—, T=0
state and the associated octupole correlations in the
ground state of 60.

In view of these findings, it seems natural to apply
the PHF method to the Si nucleus. We have carried
out such a calculation and report the results here.
More precisely, it is the purpose of this paper (i) to
study the influence of vibrational correlations on the
energy spectrum in 2Si and (ii) to further test the
PHF technique in a realistic nuclear case.

We find that by taking account of the additional cor-
relations the energy spectrum turns out to have about
the right density of levels. The electromagnetic transi-
tion probabilities between the lowest few states in
the band work out, but the BE2(6t—4%) seems to
be in conflict with recent measurements. An interesting
feature we find is that the residual correlations are of
the hexadecapole variety instead of the quadrupole
variety (B vibrations) suggested in Ref. 2.

2. PROJECTED HARTREE-FOCK METHOD

We present in this section a summary of the PHF
method. More details can be found elsewhere.®—1

The method of angular momentum projection from
a deformed determinant has been applied extensively
to calculate properties of nuclei in the 2s-1d shell.1*—12
The nuclei are considered to have an inert O core
plus active particles in the 2s-1d shell. The Hamiltonian
of the system is written as

H= 3 e(a)astaati X (aB| Val|vd)astacta,as, (1)
a apy
where {af | V4 |v8) is the antisymmetrized two-body
interaction matrix element. The HF theory provides
a prescription for finding determinantal states x, which
minimize the expectation value of H. In general, the
intrinsic states are deformed and are therefore not
eigenstates of the total angular momentum (a.m.)
operator. We take them to be axially symmetric, so
that K, the projection of total a.m. on the symmetry
axis, is a good quantum number. A state Yux’ with
good a.m. J, projection M along the z axis in the lab
frame, and projection K along the body-fixed z axis
can be obtained from the state xx.

The projection method of Peierls and Yoccoz,® which

"N. Ullah and D. J. Rowe, University of Toronto Report
(unpublished).

8 M. Bouten and P. Van Leuven, Physica 34, 461 (1967);
M. Bouten, P. Van Leuven, H. Depuydt, and L. Schotsmans
Nucl. Phys. A100, 90 (1967).

9 G. Ripka, in Advances in Nuclear Physics, edited by M.
Baranger and E. Vogt (Plenum Press, Inc., New York, 1968),
Vol. 1.

1 C. S. Warke and M. R. Gunye, Phys. Rev. 155, 1084 (1967).

1 W. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Letters
13, 52 (1965).

12 M. R. Gunye and C. S. Warke, Phys. Rev. 156, 1087 (1967).

3 R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London)
A70, 381 (1957).
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used the Hill-Wheeler integral,* is applied. We have
[ Yax”y=[(27+1) /8x*(Nx) "]
X [ dQ D™ (Q) R(2) | xe), (2)

where R(Q)=exp(—iaJ,) exp(—iBJ,) exp(—iyJ,)
and Dyx’(2) is the matrix element of the rotation
operator R(Q),

Dux’ (Q)=(JM | R(Q) | JK),

and Nk is the normalization constant. From the wave
functions | ¥ux”’), one can then obtain energies, mo-
ments, and transition probabilities for the low-lying
states in the nucleus.

This is the HF method followed by projection (HFP
method) and has the restrictive feature that the in-
trinsic state is the same for all the states in a band.
The PHF method is an improved variational pro-
cedure where the variation is carried out after the a.m.
projection. It allows for the possibility of having dif-
ferent deformed determinants for various states in a
band and can give important corrections to the HFP
procedure.

More precisely, we have used a modified Hamil-
tonian H’ with

H'= H—N\0Q2—MQu0, 3

where H is defined in Eq. (1),
Q20= (167!‘/5) 11272 Yzo,
Q40= (437!'/9) 1/21’4Y40,

(quadrupole operator)

(hexadecapole operator)

and A; and \q are Lagrange multipliers. We carry out a
HFP calculation described above for different values
of the Lagrange multipliers Ay and A; and obtain
separate minima (with respect to the parameters A,
and \;) for each angular momentum state in the band.
While this is only a two-parameter variation which
preserves axial symmetry, it nonetheless allows for
important quadrupole and hexadecapole correlations.

The results of our calculation are shown in Sec. 3.
The single-particle energies in the Hamiltonian H
[Eq. (1)] are taken to be e(1dsp)=—7.0 MeV,
€(2s12) =—4.2 MeV, and e(1ds2) =0.0 MeV, corre-
sponding to a one-body spin-orbit coupling strength
of —2.8 MeV. The two-body interaction ¥ is a Rosen-
feld exchange mixture with a Yukawa radial depend-
ence and is given by

V12= Vo%(Tl’Tz) (0.3+0.701'62) 6_”2/“/(7'12/‘1) 5
with V=40 MeV and A= (mw/2k)2a=0.589,

(4)

3. ANALYSIS OF RESULTS AND DISCUSSION

From the energy spectra shown in Fig. 1, it is im-
mediately seen that the quality of the spectrum is im-
proved for the “rotational” band by the inclusion of
residual correlations. This comes about (see Table I)

“D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1106 (1953).
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Tasre 1. Calculated properties of %Si for different values of the Lagrange multipliers A\, and A\s. Each column represents a solutions
‘The type of the HF solution and the values of the Lagrange multipliers are indicated. Egr, (Q), (Quw), and (J-J) denote, respec-
tively, the energy, the quadrupole moment, the hexadecapole moment, and the expectation value of J- J for the intrinsic determinant.
L(J™) gives the energy of projected J state. Np(dss2), Np(su2), and Nyp(ds2) are the total number of protons (in the spherical orbits
in the bracket) for the J*=0% ground state. The minimum energy for each J is in italics (see Fig. 1).

Type Oblate Oblate Oblate Prolate Spherical
A2 0.0 0.0 0.0 0.0 0.0
A 0.0 0.2 0.4 0.0 0.0
Enr —137.280 —136.990 —136.147 —135.116 —136.0400
E(0%) —139.981 —140.550 —140.798 —137.294 —136.0400
E(2%) —138.922 —138.955 —138.236 —136.546 aes
E(4%) —136.856 —136.737 —136.093 —134.539
E(6%) —134.303 —134.339 —133.925 —132.633
E(8%) —133.973 —134.002 —133.496 —132.603 ces
Q) —19.66 —18.68 —16.25 21.18 0.0
{Qu) 10.90 14.08 16.96 —13.86 0.0
J-J) 20.87 23.90 26.81 24.90 0.0
Np(dsre) 4.53 4.69 4.93 3.72 6.00
Np(s1s2) 0.89 0.61 0.32 1.18 0.0
Ny (dar) 0.58 0.70 0.74 1.09 0.0

because J=0;", 2;+, 61, and 8 states move away
from the J=4;+ state. The latter is not affected by
the additional degrees of freedom included in the PHF
variation. One can understand this by a somewhat
crude argument. Since the expectation value of (J?)
when both \; and As are equal to zero is 20.87 units
(which gives a value of Ja4), the J7=4* state is not
influenced by the correlations. The first excited 05+
state shown in Fig. 1 is obtained by projecting states
of good a.m. from the prolate HF minimum. It comes
at an energy which is about 1 MeV below the energy
of the lowest observed 0% excited state, and its prolate
intrinsic structure would imply that there is no E2
transition probability from 0;t—2;* because the 2;+
state has oblate intrinsic structure. This is in disagree-
ment with the experiment® which gives an enhance-
ment of about a factor of 8 over the single-particle
estimate. The second excited Ozt state shown in Fig. 1
has a spherical nature [closed (ds;)® configuration’]
and lies more than 1 MeV above the 0yt state. It
should be emphasized that while the 0+ and 0;F states
are orthogonal to each other, the 05 state has nonzero
overlaps with them. In order to understand the position
and the y-decay rate of the first two excited 0% states,
an “inverted coexistence” model similar to that of
Bar-Touv and Goswami® involving the three calcu-
lated O states can be invoked. Das Gupta and Harvey?
have suggested that the 05 state is a one-particle-one-
hole (Tamm-Dancoff) state based on the oblate min-
imum.

The E2 transition probabilities have been previously
calculated by Gunye and Warke' in the HFP approxi-

15T, K. Alexander ef al., in Proceedings of International Nuclear
Physics Conference, Gatlinburg, Tennessee, edited by R. L. Becker
et al. (Academic Press Inc., New York, 1967).

16 J, Bar Touv and A. Goswami, Phys. Letters 28B, 391 (1969).

7 M, R. Gunye and C. S. Warke, Phys. Rev. 159, 885 (1967).

mation. The B(E2) values in the PHF calculation
shown in Table II differ somewhat from those calcu-
lated in Ref. 17, but have essentially the same kind
of agreement with the experiments except for the 6+—4+
transition, which neither of the calculations predicts
correctly. A comparison of the experimental Z£2
strengths for the K=0 ground-state band in *Ne, #Mg,
and ?Si done by Lam et al.'® shows that the strengths
in 28Si are much smaller than those in Ne and #Mg,
and particularly the 6+—4+ strength is down by nearly
a factor of 10, having a value of only 2.9 W.u. (Weiss-
kopf units). This indicates a substantial difference in
structure between the 6t and the 4t states. Now, the
prolate 6;+ state has about the same excitation energy
above the prolate HF minimum as the oblate 6, state
has above the oblate HF minimum. One could there-
fore in a semiclassical picture expect considerable
mixing of the two 6;% states. A similar admixture of the
4+(oblate) and 4*(prolate) states would be much
smaller because of the larger potential barrier. Such a
model has been discussed by Castel and Svenne®® for
2851, and would have the consequence of reducing the
E2 decay rate from 6t—4* state. For example, an
equal mixture of the two 6% states and no mixture of
the two 4% states can reduce the B(E2) by a factor
of 4 compared to the rate shown in Table II.

The last three rows in Table I show for the J=0;"
ground state the number of protons (neutrons) in the
dsps, s12, and dyje shells and the manner in which they
change with A\, and . Tt is quite surprising to find that
for A=0.0 and A;=0.4, which is variationally the
“best” set of parameters for the ground state, there
is very little occupation of the sy shell. The Qy opera-

18S. T. Lam, A. E. Litherland, and T. K. Alexander, Can. J.
Phys. 47, 1371 (1969).
¥ B. Castel and J. P. Svenne, Nucl. Phys. A127, 141 (1969).
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o' Spherical 3.94
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F16. 1. Energy spectrum of #Si. HFP shows the spectrum obtained by projecting from the oblate HF solution (column 2 of Table
I). The PHF spectrum is obtained by using the improved variational method. The minimum energy for each J~ is italicized in Table
1. For comparison the experimental spectrum is shown on the right side.

TasLE IL. The calculated and experimental E2 transition probabilities between some of the low-lying states
in %5i. Column 3 gives the values in units of ¢? (fm)*. Columns 4 and 5 are in Weisskopf units.

Ji ]f B(EZ;]i_’]f)calc B(Ez)cnle/B(Ez)s.p. B(Ez)expt/B(Ez)S.p.
2, 0 78.75 11.4
4+ 2t 67.11 9.75
6+ 4.+ 47.71 6.93 2.940.6
02+ 21+ NO e
03+ 2+ <1
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tor does not connect si» with either dsj» or dgjp, but it
does connect dsp with itself and ds;» with dsp, with the
result that an increase in hexadecapole correlations
would tend to populate ds;» and dss shells at the expense
of the s12 shell. It would be of interest to check experi-
mentally whether in the ground state of 28Si there is
little occupation of the s12 shell compared to the dgpe
shell.

The existence of hexadecapole correlations could have
been expected, but the absence of quadrupole correla-
tions is not very well understood. The oblate and the
prolate intrinsic states have large quadrupole deforma-
tions, though they are nowhere near having perfect
overlaps with the (0, 12) and (12,0) SU(3) representa-
tions, respectively. In view of this, one would expect
that the inclusion of collective quadrupole correlations
in PHF would improve the spectrum. A PHF calcula-
tion done by Dreizler et al.® for *Ne showed very
little influence of residual correlations, but the *Ne
intrinsic state has deformation which is almost exactly
equal to that of the (8, 0) representation of SU(3).

20 R, Dreizler, P. Federman, B. Giraud, and E. Osnes, Nucl*
Phys. A113, 145 (1968).
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It should be mentioned that we have also done similar
(two-parameter) calculations for 2Mg and S, but with
no substantial improvement in the spectrum. We think
that this might be due to inclusion of only those cor-
relations that preserve axial symmetry. It has been
argued? that correlations which do not preserve axial
symmetry could be of importance. We are at present
unable to include such correlations in our calculations.

In conclusion, we feel that the PHF method is a
very useful technique for spectroscopic calculations and
provides an extremely good approximation to the lowest
few states in a nucleus. In the future, we intend to
include more general correlations.
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The Na*(d, n), the Mg*(d, n), and the Al (d, n) reactions were used to populate isobaric analog states.
Their v decays were measured with a Ge(Li) detector (i) in coincidence with the neutron groups, (ii) in
singles arrangements using a bare detector, and (iii) in a three-crystal configuration. The observed branch-
ing ratios were compared to the approximate selection rules operating in the rotational and the Hartree-
Fock model. It is found that the 4.23-MeV state in Mg has a wave function with admixtures of angular
momentum projection K=0 and K=2. This fact supports the model proposed by Kelson e al. which
gives an ellipsoidally symmetric deformation to Mg*. The observed transitions in Si?® indicate that the
analog of the ground-state doublet in Al* has an oblate deformation.

1. INTRODUCTION

URING the last few years, Hartree-Fock (HF)
calculations! have been successfully applied to
nuclear structure calculations in the 1d-2s shell, in
particular, to Ne®, Mg, and Si*. Prior to these calcula-

1 Work supported by the U.S. Atomic Energy Commission.

1See, e.g., G. Ripka, in Advances in Nuclear Physics, edited
by M. Baranger and E. Vogt (Plenum Press, Inc., New York,
1968), Vol. I; I. Kelson, Phys. Rev. 132, 2189 (1968).

tions, the Nilsson single-particle model? (4=324) and
the weak coupling collective single-particle model3 (4 =
27) were found to give reasonable fits to low-lying
levels in this mass region. The popularity of the latter

2H. E. Gove, in Proceedings of the International Conference on
Nuclear Physics Kingston, 1960, edited by D. A. Bromley and
E. V)V Vogt (University of Toronto Press, Toronto, Canada,
1960).
( 3R7. M. Lombard and G. R. Bishop, Nucl. Phys. Al101, 625
1967).



