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$(0) =8/7, which is indeed rather close to unity,
as was suggested by the arguments leading to our
ansatz (3.10). At this energy (E=O), we obtained the
Schmidt norms (see also Ref. 9)

r (0) =
I
Gp't'(0) V (0)Gp'~'(0)

I

= X(2 ln2 —1)!~'=0.6215K

and

r (0) =
I
G i' (0) V,' (0)G,'~' (0)

= fez(0) —2(x I
G, (O) VG, (O) I x)yI:&(0)j I &.

The term (x I
GpVpGp I x) calculated in configuration

space, ~ is

Pro. 18. The parameter P(Z+i0), as given by Eq. (B.7);
again, p=m=X=1. (x I

G, (o) vG, (o) I x)= Ln(0) j»2' (p+P)'
P 0 p+2P p

nator is calculated in x space, making use of the
locality of V(r) to form V '(r). We thus obtain

which gives
~'(0) =0.1795) .

Ln(E) 3=) (2P—~)'/2P(P —zE"')'. (36)

This becomes a maximum if

P (E) = s
p

', (iE"')+—',—-(9p'/4 5-zpE'" —E)"'. (—87)

z1(E) and P(E) are shown in Figs. 17 and 18. There we
see that the imaginary parts both of p and of g soon
become very important if one goes to positive energies.
Looking at E=O, and using (B4) and (3.3), we find

The work of Weinberg and collaborators'" shows that
this is sufhcient to make V"& a very good approximation
to V, if the coupling constant A. is not too large. Since
in the three-nucleon problem a similar weakening of the
potentials is achieved by subtraction of separable
terms (see the results given in Sec. 4), we may expect
that these separable terms represent a good approxima-
tion for our problem.

"M. Scadron and S. Weinberg, Phys. Rev. 133, 81589 (1964) .
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The Thomas-Fermi integral theory of the nuclear surface is shown to have singular solutions for the
nuclear density. This failure is traced to its inadequate representation of the behavior of wave functions
in a potential. A new theory based on approximate wave functions is developed and shown to be asymptotic
to the Thomas-Fermi theory in the interior of the nucleus. An improved treatment of exchange forces is
shown to be essential to obtaining realistic solutions.

I. INTRODUCTION

REVIOUS statistical theories' ' of the nuclear
surface have been formulated as variational

problems in which the total energy Wp of a nucleus is
minimized as a functional of its neutron and proton
density distributions p„(r) and p„(r) . The most
thorough formulation of the problem is that of Bethe, '
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who writes 8"p as an integral of the long-range direct
force between nucleons, plus local-density approxima-
tions to the short-range force, the space-exchange
integral, and the kinetic energy. Buchler et al.' ap-
proximate the long-range direct-force integral by a
differential term, a fair approximation if the surface
thickness is not too small; such a term includes the
erst-order correction of Weiszacker for the additional
kinetic energy necessary to cause a varying density.
In Sec. II, it is shown that the integral theory of Bethe
can have discontinuous solutions. Such a solution is ob-
tained numerically for the one-dimensional case. This
singularity demonstrates that the surface thickness is
due not only to the properties of the long-range direct
nucleon-nucleon force, as argued by Wilets' and
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Bethe', but also to the necessity of the wave functions
to anticipate the disappearance of the potential in
which they move, before they reach the region of their
classical turning points. In Sec. II, it is also shown that
a continuous solution of the Thomas-Fermi equation
would have much too low a central density —approxi-
mately that at which the nuclear-matter chemical
potential has its minimum.

In Sec. III, an improved theory based on approximate
wave functions is derived. This section extends the
work of Kohn and Sham4 to the case of a threedi-
mensional wave function in a potential which is a
function of only one of the three Cartesian coordinates.
The resulting relation between the potential and the
Dirac mixed density rapidly approaches the local-
density relation inside the nucleus, but differs in the
surface.

Section IV applies the theory of Sec. III to the
surface of the nucleus. It is shown that there is a large
inhomogeneity correction to the single-particle po-
tential due to the space-exchange part of the nuclear
force. This exchange correction makes possible the
achievement of solutions with an acceptable central
density. In Sec. V, numerical results are discussed, but
no solutions are obtained. Recent nuclear-matter
results' are incorporated into the theory.

surface of a nucleus, however, these two distances are

comparable Therefore, it is necessary to add the
second term, which is an inhomogeneity correction due

to the long-range interaction between nucleons, g~.
The subscript D here means that only the ordinary,
i.e., non-space-exchange, part of the force is to be used,
since this is the part whose contribution to the energy is

proportional to the product of the ordinary densities,

p(r) p(r')gn(r —r'). g~ is assumed. to depend on the

density; this is necessary primarily because the force
includes a strong contribution from a long-range tensor

force, which depends strongly on the density 5 The
factor 1/(1+2~) is a correction for self-consistency

arising from Brueckner theory, as explained by Bethe';
If. is the dimensionless "wound integral" of that theory.

Thus, in Eq. (2.1), almost all the complicated
features of the nuclear force, including the short-range
correlations of Brueckner theory and the space-ex-

change part of the interaction, are absorbed into
the nuclear-matter term W(p). This is a very con-

venient way to treat the short-range part of the
interaction, g„and Bethe has given arguments to show

that it should be accurate as well. On the other hand,

(2.1) is only a makeshift approach to the space-ex-

change part of the interaction. It would be correct if

the local-density approximation to the mixed density
of neutrons or protons

II. FAILURE OF THE THOMAS-FERMI THEORY

A. Thomas-Fermi Theory of Bethe

Bethe' obtains his Thomas-Fermi theory of nuclei

by supposing that the total energy of a nucleus is

given by6

Wr= fd'r W(p) p(r) —(1+2m) '-',fd'rfd'r'p(r)

~'(r, r') =~~(w I
r—r' I)

p= kg'/3ms,

~(p 1) =~i(23)/23

y=kpt/2

(2.2)

X fp(r)gD(r —r', p(r))
—p(r') g~(r —r', —',Lp(r)+ p(r') j)I. (2.1)

Here W(p) is the binding energy per particle of nuclear
matter at density p. The 6rst term is thus merely the
integral of the energy density of a Fermi gas of nu-

cleons; it would be the only contribution to the energy
if the range of the forces were very short compared to
the distances over which the density varies. In the

4 W. Kohn and L. J. Sham, Phys. Rev. 137, A1697 (1965);
140, A1133 (1965).' P. 7. Siemens, Nucl. Phys. 142A, 225 (1970).

This equation divers from Bethe's because gD depends on p.
J. Nemeth and H. A. Bethe LNucl. Phys. 116A, 241 (1968)g
also use a density-dependent interaction, which they take to
depend on the density at the center of mass of the two inter-
acting nucleons, or on the geometric average of the densities at
r and r'. Using the arithmetic average of the densities at r and r'
is operationally slightly more convenient and should not affect
the results. The use of the average density has the advantage
that the Thomas-Fermi equation obtained using the c.m. density
tends toward instabilities of wavelength about 1 fm, because its
kernel is alternating in the relative coordinate; this difficulty
does not occur when the average of the endpoint densities is
used. It is easy to generalize these equations to different densities
of neutrons and protons.

were accurate, because then the contribution to the
exchange energy from the interaction of a pair of
nucleons would only depend on the density at their
center of mass, and would depend on that density in

the same way as it would in nuclear matter. This
assumption will be criticized below, and an improved
treatment of p(r, r') will be offered. This corrected
treatment will be shown to be essential for obtaining
sensible numerical results. It is important to treat
the exchange density well, since, in addition to the
antisymmetrization requirement, most of the long-range
nucleon-nucleon interaction has a space-exchange
character (this is very different from the many-elec-

tron problem, where exchange forces are small). It
will not be surprising to And in Secs. IV and V that
the inhomogeneity corrections to (2.2) are large,
because the longest-range part of the nuclear force,
the one-pion-exchange diagram, is a space-exchange
force.

Variation of (2.1) with respect to p leads to the
Thomas-Fermi equation,

&~= (~/~~) (~(r) W(~) )+ (1+2~) 'UD(r), (2 3)
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where

UD(r) = fd'r'fp(r')gn(r —r', —,'P(r)+p(r') ))
—p(r)gn(r —r', p(r) ) —,'p-(r)'(Bg~/Bp) (r—r', p(r) )

+—p(r) p(r') (BgD/Bp) (r—r', 2LP(r)+p(r') j)I. (2.3')

The eigenvalue Ep results from the subsidiary condition
fpd'r=A, the total number of nucleons. Bethe~ has
pointed out that if the quantity varied is not 8'& but
Wr/A, then the eigenvalue in (2.3) must be Wr/A.
This condition is necessary since (2.3) can have
solutions of a given norm for many values of E&.

Equation (2.3) as it stands will not have positive
solutions of Gnite norm for most realistic interactions,
since W is repulsive at very small densities (because of
the kinetic energy required by the exclusion principle).
The usual way of overcoming this difhculty is to also
permit p=0 as a solution in most regions of space;
this follows trivially from the variation, if, for example,
p"' is varied instead of p, to ensure that p is positive.
Bethe' has pointed out that a more realistic treatment
of the low-density region is to take account of the
decaying exponential "tails" of the wave functions
at low densities, and to use (2.2) and (2.3) only above
a certain density. The difhculty described below' does
not diGer significantly between these two low-density
prescriptions.

B. Singular Solutions of Thomas-Fermi Theory

To see that (2.3) has discontinuous solutions, con-
sider the case of a step-function density p=p+ for
r)R, p=p for r(R, and suppose Bgn/Op=0 Then.
the realizations of (2.3) just inside and outside R are

EI (8/Bp) (pW) „+——(1+2m) —'

d'r'(p p) g (r—r'), (2—.4a)

Fp = (8/Bp) (pW) ~p + (1+2m) '

Equation (2.5c) would be an identity if the nuclear
force were an ordinary potential and if 8' included only
the potential energy. However, for realistic g~ and 8',
condition (2.5c) is not likely to be satisfied, since W
includes the potential energy and the saturating parts
of the force, as well as the exchange contribution to
the energy. For example, the direct force of Ref. 5
gives the right-hand side of (2.5c) a value of about.
—330 MeV fm', which the left-hand side does not reach
above one-fifteenth nuclear matter saturation density
for the form W= —24.2x~'+11.5'' MeV, which has
the saturation density and maximum binding energy
expected empirically for nuclear matter (this form of
8' is certainly incorrect at so low a density, especially
since it does not begin with a positive coeKcient of
x~' as the kinetic energy requires).

However, if p+ is zero, or a specified tail beginning
at some density p2 as recommended by Bethe, then
(2.4a) does not have to be satisfied. Instead, only
(2.4b) remains, which becomes for this case

(~/~p) (PW),=, =-'(p- —P2) (1+2~) 'fd'r'gD(r')+&~

(2.4c)

This condition is easily satisfied; for example, in a
real nucleus Ep is expected to be about —8 MeV, and so
if gD and the function 8' are as mentioned in the last
paragraph, then p will be 0.09 fm ' for p2=0.03 fm '.
Clearly, the step density discussed here is an over-
simplification, but it ought to be equally clear that dis-
continuous solutions of (2.3) are to be expected.

A one-dimensional analog of (2.3) was solved on a
computer for several curves 8' and a simplified gD.

g~ was taken as an exponential of range 1.4 fm; its
volume integral was varied from —170 to —420
MeV fm'. The functional form of W was changed, but
its saturation density and value at saturation were
kept constant. The density was assumed symmetric
about x=0. This one-dimensional equation corresponds

d3r (p+ p )g~(r r') (2 4b)
r~&R

The sum and difference of these equations are

2E~=(~/~p) (PW),=„+(~/~p) (PW).=. ,

O= (~/~p) (PW)., (~/~P) (PW). —
+(1+2~) '(P=P+) Jd'r'gD (25b)

(2.5a)

In (2.5a), the curvature of the surface has been ne-
glected at E., which amounts to supposing that E is
much larger than the range of g&. By a theorem of
elementary calculus, (2.5b) can be satisfied when there
is a, value p' between p+ and p such that

.I5 =

.10-

.05-

X, fm

(~'/~P')(pW). ='=( + ~) 'I 'r'g~( ') ( 5 )

' H. A. Bethe (private communication).

Pro. 1. Discontinuous solution of Thomas-Fermi equation
(2.3) for nuclear matter slab, with realistic 8 and g~ as described
in text, Sec. II B.
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to a three-dimensional slab of nuclear matter p(r) =
p(x), with g(x) = fdyfds g(r). Figure 1 shows a typical
solution, with lV as given above and a strength of gD
which would give —310 MeV fm' for the right-hand
side of (2.5c). The solution solves (2.3) to better
than 0.02 MeV at each of 50 points between x=0
and @=3.6 fm; at the discontinuity p =0.081 fm '.
This solution has the tail prescribed by Bethe; solutions
were also obtained which dropped discontinuously to
zero density. The energy per particle Ep was —12.41
MeV for the solution shown, which had 1.16 particles
per fm' in the slab, including the tails.

C. Reasons for Singular Solutions

Two features of the Thomas-Fermi theory repre-
sented by Eq. (23) are necessary for the existence of
singular solutions. The first is the presence of a zero-
range approximation to part of the potential energy.
This part of the potential energy is partly a zero-range
approximation to the short-range part g, of the nuclear
force—but there is no reason to expect the finite range
of g, to play a critical role in the shape of the nuclear
surfac"- -and partly because of the local-density ap-
proximation to the exchange energy. The accuracy of
the latter approximation will be discussed below in
Sec. IV, where the exchange energy is seen to have an
important inQuence on the density distribution.

The other ingredient of the singular solutions of
Thomas-Fermi theory is the local-density approxima-
tion to the kinetic energy, which amounts to the
postulate that the local density is the density of plane-
wave states in the local potential U(r), where U(r)
is the variational derivative of the total potential
energy with respect to the density at point r. This is
most easily seen by rewriting Eq. (2.3) as

(fP/2M) k~(r)'= E~—U(r)
=Ep (8/Bp) PV*(p) p(r)—]—U (r),

(2.3")

where W*(p) is the potential energy per nucleon of
uniform nuclear matter at density p. Equation (2.3")
is the form in which atomic Thomas-Fermi theory is
traditionally presented. From Eq. (2.3"), it is ap-
parent that in Thomas-Fermi theory, the density at a
point r is determined only by the potential at that point,
no matter what the potential might be at nearby
points. Thus the relation (2.3") requires the density
p (r) = 2k&(r) 3/3vr2 to vary discontinuously if the
potential U does. Conversely, the zero-range approxi-
mation to part of the nuclear force permits the po-
tential U to vary as rapidly as the density does. There
is nothing to prevent discontinuous solutions.

Equation (2.3") is only expected to be useful when
U varies slowly, but its solutions for realistic TV* and
gD vary rapidly. In a rapidly decreasing U, p cannot

which occurs at a density p& which is about two-thirds
of the density po at which W(p) has its minimum.

Consider the point E. in the nuclear surface at which
the density goes through p&. The density is a function
of the kinetic energy T of the most energetic nucleon,

(r) = L2(r)l= L& U(r)3.

Therefore, the slope of the density is related to the
slope of the potential energy,

Bp Bp BT Bp 8U

I9r BT Br BT Br

Lp(r) 3+ —U (r) I, (2.7)
Bp Bp 8

8T Br Br )'
where

p*(p) = (~/~p) Lplf'*(p) j (2 7')

is the potential-energy part of the local nuclear-matter
chemical potential. But

Bp Bp Bp Bp 8
(p) = — = ——(pNM —2')

Br Br 8p Br Bp

Bp BT
(2 g)

Br Bp

since T and p are functionally related, while at p(R) = p&

the chemical potential pNM has its extremum.

at. r=E.,

vary as rapidly as (2.3") prescribes, because the wave
functions must anticipate the change in U and begin
to decrease before they reach the region in which U
varies rapidly. This point is most easily visualized in
the case of a square-well potential, where the density
will fall off for a distance 1/k~ away from the edge of
the well. ln a nucleus, 1/k~ is not much less than the
surface thickness, so the e8ect need not be negligible.
Figure 1 demonstrates that it is not.

Thus the variational principle leading from (2.1)
to (2.3) is incorrect, because it does not restrict the
functions p(r) to those which can be generated by
physical wave functions. The extrema of (2.1) do not
in'fact lie among the physically possible functions,
but are discontinuous functions; so that the inclusion
of unphysical functions in the class of variations is
not unimportant, but has the most drastic quantitative
effect on the application of the Thomas-Fermi method.

D. Hazardous Extremum of the Chemical Potential

It is perhaps fortunate for the Thomas-Fermi model
that it possesses discontinuous solutions, because its
continuous solution in a finite nucleus would have an
equally objectionable property: It could reach only
about two-thirds of nuclear-matter equilibrium density
in the interior of the nucleus. This difficulty is associ-
ated with the minimum in the chemical potential
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Equations (2.7) and (2.8) together imply that

(B/Br) UD(r) p ——0

at the radius at which the density attains the value p&.

With an attractive long-range interaction g~, U has
its maximum value at the shoulder where the density
begins to drop rapidly. For the experimental density
distributions, the maximum of U occurs inside the
radius at which p =p&. Worse yet, the repulsive Coulomb
potential has a negative slope, so that when it is in-
cluded, the Thomas-Fermi theory will require p=p&
not merely at the maximum of UD, but actually farther
inside. Thus in the Thomas-Fermi theory, p& cannot
be attained in the surface, but only inside the nucleus,
where the density is a slowly varying function of r.
Such a solution is very unsatisfactory: It means that
the central density of the nucleus is determined by the
surface in such a way that the maximum binding of
nuclear matter cannot be exploited.

E. Previous Approximate Solutions and Other Models

Recently, ' approximate solutions to the Thomas-
Fermi equation have been obtained by variation of
parameters with certain functional forms. These
computations of course have not detected the fact that
the solutions are discontinuous.

The integral of gD appearing in Bethe's theory
t Eqs. (2.1) and (2.3)j may be expanded in derivatives
of p, if the density is not too rapidly varying':

fd'r'gn(r —r') Lp(r') —p(r) g=-,'V'pfd'r'gr (r') r".

(2 &")

Approximation (2.7") and a term in (Vp)' —which is
equivalent in (2.1) when integrated by parts —wer'e

used by Wilets' and by Buchler et al.~ The resulting
diQ'erential equation naturally has no discontinuous
solutions. It might also be claimed that the way in
which the differential theory penalizes rapidly varying
solutions is reasonable, because the kinetic energy may
also be expanded in derivatives of p, but the coef-
6cient of this term in the kinetic energy is much smaller
than that due to the long-range potential. Besides, such
an expansion has been shown by Hohenberg and
Kohno to break down near classically forbidden regions.
In any case, the diGerential approximation is not ex-
pected to be very reliable, because the thickness of the
nuclear surface is comparable to the range of the forces.

Seyler and Blanchard'0 do not obtain discontinuous
solutions in their integral theory, because their force
has no zero-range components, but relies on a mo-
mentum-dependent term to imitate the eGects of the
exchange force and the saturation of the short-range

8 I. J. Donnelly, Phys. Letters 28, 161 (1968).
9 P. Hohenberg and W. Kohn, Phys. Rev. 136, 8844 (1964) ."R. G. Seyler and C. H. Blanchard, Phys. Rev. 131, 355

(1963).

force. This probably ascribes too long a range to the
density dependence of the interaction; and it will be
shown below that the treatment of exchange is critical
in determining the density distribution. Neither their
theory nor the differential theory takes adequate
account of the behavior of wave functions near their
classically forbidden regions —and Secs. II B and II C
have demonstrated the importance of this e8ect.
Thus, these theories cannot be relied on for detailed
studies of the shape of the density distribution in the
nuclear surface.

III. DENSITY AND MIXED DENSITY IN A
SEMI-INFINITE POTENTIAL

Kohn and Sham4 have shown how to calculate
densities and other average properties of wave func-
tions near their classical turning points in a one-
dimensional potential, using approximate wave func-
tions. In this section their work will be extended to the
case of a three-dimensional noninteracting Fermi gas
moving in an external potential U(x) which is a func-
tion of only one of the three Cartesian coordinates.
The results of this analysis will be applied to the
nuclear surface in Sec. IV.

Consider a three-dimensional gas of noninteracting
spin- —, particles moving nonrelativistically in a po-
tential U(x) which approaches a constant value Uo
for large negative x, and which increases monotonically
vith x. When convenient it will be assumed that the
particles are in a large box, though the results will be
taken in the limit of infinite volume. The ground state
of the system may be characterized by a Fermi energy
Ep separating occupied and unoccupied single-particle
states. The one-particle Schrodinger equation is

(H E.+H„—E„+H, ——E,)4=0, (3.1a)

H E,= V(x) —B'/Bx' ——k.'—Vo,

H„E„= B'/By' —ky', ——

H. E.= B'/Bs' —k.2, ——
(3.1b)

where V(x) =2MU(x)/8, ' is the reduced potential.
Equation (3.1) may be separated by factoring 0,

H,P,=E,P„
HAw=EAw,

HA"=El *,

+(» y &) =4'(x)4.(y)4.(s)

(3.2a)

(3.2b)

(3.2c)

(3.2d)

where the index nz denotes the eigenstates of (3.2a).

The solutions P„and f, are plane waves while the solu-
tions f depend on V(x). The Green's function for
Eq. (2.2a) may be written as

G, (x, x', E) = Q P, (x, E„)P, (x', E„)/(E—E ), (3.3)
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It is important to notice that G is rot the Green's
function of the three-dimensional problem (3.1a), but
only of the one-dimensional Schrodinger equation. The
advantage of using G rather than a three-dimensional
Green's function is that Kohn and Sham4 have de-
vel oped techniques for calculating G which are not
easily generalized to the three- dimensional Green's
function.

The Dirac mixed density p (r, r') may be expressed
in terms of the Green's function G,. For by its def n-
ition,

p(r, ")= Z Z Z 4.*(x,E-.) /P *(y, E-,)/P**(s, E-.)
mg f1' te z

XP.(*',E.,)P„(y', E„„)P,(",E..) (3.4a)

TABLE I. First fear Airy -function derivatives appearing
in Eq. (3.12) of the text.

( 8//sf)'"L Ai(- s+ I') Ai(- s- I')3 « I' =0

Ai (—s) '
—2LsAi (—s) '+ Ai

' (—s) sg

4L2s'Ai ( —s) '+ 2sAi' (—s) '—Ai (—s) Ai' (—s) $

points, Kohn and Sham have shown that

G.(x, x', E) = (1/2i) [P(x, E)P (x' E) j-r/s

X exp[ai8 (x, x', E)j for x(&x', (3.2)

p (x, E) = [E V(x) j"',—
=2f [dsk/(2 )sj'/P, *(x k,')P (x' k.&)

Xe—@y(s—t/ )e—t s(z—z ) (3 4b)
8 (x, x', E) = dhP (f, E), (3 g)

where Et/ is also expressed in reduced units. (3.4b)
follows from (3.4a) because the spectrum of H is
determined by the region of constant potential to the
left. The integrals over k, and k~ lead to

(r r') = (2 ') dk, (k//' k,')J[ri(—kp' k') ".'j—
Xf *(x,k,') /P, (x', k.')

(2s )-' g (E// E.)J[ri (Ep —F,)"'j—

p (r, r') = (47r'i) —' dE
C

X'/P**(x, E*)0.(x', E*), (3 5)

where ri'= (y—y') '+ (s—s') ' and J(f) = 2Jr (f) /t. The
limits on al 1 the sums and integrals are over occupied
states, so that ks' ——2M(Er —Us) /fP. It follows im-
mediately from (3.5) and (3.3) that the relation be-
tween p (r, r') and G, is

and there is a branch cut extending to + oo from the
minimum value of V in the interval (x, x') . If the
potential is constant V (x) = Vs, then the integrals are
straightforward and (2.2) is obtained.

To learn about the behavior of the density in the
region of classical turning points, it is useful to cal-
culate p (r, r') for a ramp potential V(x) = (x—as) V'+
Ep, where ng is the classical turning point of a particle
of energy Ep. The Green's function found by Kohn
and Sham for x&x' and ImE& 0 is

s- 8 (*,E)8(x', E) ~»s
I~r/s[8 (» E)j3i px, Epx', E

+J»s[8 (x', E)j}Ie' "JJ/s[8(x E)j
+e "'~

[r8/s( xE) j}/ (3-.9)
where 8 (x, E) =8 (ns, x, E), and trtt is the classical
turning point for energy E, i.e., V (ntr) =E. Using
(3.9) in Eq. (3.6) for the mixed density, noting that
G, (E—ie) =G,*(Ejie), and changing variables to
s= ( V') '/'I E—-', [V(x)+V(x') j}leads to

X (EF E)G, (x, x', E)J[rt (—Ep E) r/s j (3.6)—p(r, r') =-', V' ds (sr —s)J[2s (sp —s) '/'j
where the contour C encloses the real axis up to Ep
(»g 2)

As an exampl e, for %KB wave functions in a slowly
varying potential far from their classical turning

„Im E

where

sp ——( V') s/'f E/,,—-', [V(x)+V(x') j},
s = -',rs ( V') '",
l' = ( V')»s (x—x') /2

FIG. 2. Contour C used in
evaluating Kq. (3.6)

EF

Re E

and Ai represents the ordinary Airy function of the
first kind. "

To obtain an explicit expression for p (r, r'), the
Bessel and Airy functions of Eqs. (3.10) may be ex-
panded in powers of s (ss,—s)»'-and f', respectively,

"In terms of Bessel functions, 3s '"Ai (—s) = L ji/3 (t) +7—I/3 (t) g, where 3t =2s".
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giving

p(r, r') = (2ir) —'V' Q Q t'"s"(sp) "+'Iii(sp), (3.11)

Im E

where

ds (—1)'
I~i(sp) = Ll ~(l+1) ~)

—' —(sp —s) '+'
—oo SP (2k)!

2k

XI — LAi( —s f) Ai( ~+i))r o=(312)

'X
E

G

Re E

FIG. 3. Contour C' used in
evaluating Eq. (3.19) .

Table I shows the first few derivatives needed for
evaluating Eq. (3.12), which may be obtained by
means of the differential equation Ai" (s) =s Ai(s).
Very likely a closed-form expression for Iz& can be
found, but this has not been done. Instead, the erst
few of the II,~ have been evaluated, making use of the
integrals

fdy Ai( —y) '= y Ai( —y) '+Ai'( —y)',

3fdy Ai( —y) 'y= y' Ai( —y) '+y Ai'( —y) '

and by defining

kp= {Ep V$-', (x+—x') )}'"; (3.16)

kp = i {VL-',(x+x') )—Ep }'i'

when —,'(x+x') )np, the appropriate definitions are
CLIP 2/3

sp ————— dtLV(t) Fp)i" —(3.15')
2 ( + /)/2

+Ai( —y) Ai'( —y),

5fdy Ai( —y)'y'= (y'+1) Ai( —y)'+y'Ai'( —y)'

+2y Ai( —y) Ai'( —y),

7fdy Ai( —y)'y'=y4 Ai( —y)'+ (y' —3) Ai'( —y)'

Z jap,

Then the mixed density is given by

p(, ') = (k '/ ') { ( —-'y'+ '-.y')

XLs 'I'Ai( —s )'+s '~'Ai'( —s )'
——',sp-3i' Ai( —sp) Ai'( —sp) )

(3.16')

+3y' Ai( —y) Ai'( —y), (3.13)

3fdy Ai'( —y)'=y'Ai( —y)'+y Ai'( —y)'
—2 Ai( —y) Ai'( —y),

5fdy Ai'( —y)'y= (y' —2) Ai( —y)'+y' Ai'( —y)'
—3y Ai( —y) Ai'( —y),

7fdy Ai'( —y)'y'=y4Ai( —y)'+ (y'+4) Ai'( —y)2

—4y' Ai( —y) Ai'( —y),

—z~irsp ifiioy2rp i Aj( —sp) ~—q~ (y'zp'i' Ai( —sp)

+~sp "'Ai'( —s ) ))} (3.17)

where y=
~
r—r'

~
kp/2.

For large sF, asymptotic forms of the Airy functions
lead to the expression

p(r, r') = (kp'/3n') {L1——,', 8p '(—,';—,'+,",, sin28p))

)& (1—-',y'+ s'~ y') +—,',8p-'L ——',y'(1+ sin 28p)

which may be verified by differentiation. The resulting
expression for the mixed density is as x—+—00, where

+—,",y'(1+-,' sin28p) )}, (3.18)

3 Ag

2 (~~i)/2

2/3

dtLEp —V(t) )"' (3.15)

12 Y. C. Lin, thesis, Cornell University, 1969 (unpublished) .

p(r, r') = (1/2n-) V'{32{sp'Ai( —sp)'+sp Ai'( —zp)'
—-', Ai( —sp) Ai'( —sp) ){1—52 (P+s') sp

+ (2/35) (f'+s') 'sp') ,ioAi( sp—) '—(f'+s—')

+—'—(t'+s') 'Lsp Ai( —sp) '+—', Ai'( —sp) ') } (3.14)

plus terms of order
~
r—r' ~'. lt is remarkable that, to

this order, the mixed density is isotropic in the relative
coordinate (r—r'), as first noted by Lin. i2

It is instructive to recast Kq. (3.14) in a form in
which V' does not appear explicitly. This may be done
for —',(x+x') (ap by using for sp the equivalent defi-
nition

sp=L$8(k(x+*'), & ))2"

8p —— dtLEp —V(t) )"'.
(x+xt') /2

Thus the mixed density approaches the local-density
approximation (2.2) with 8p 2 away from the classical
turning point ng, and the coefficient of Hp

' is small.
This rapid approach is to be contrasted with the one-
dimensional Fermi gas studied by Kohn and Sham, in
which the density approaches the classical density only
as H+ '. The reason may be seen by examining Eqs.
(3.6). Following Kohn and Sham, a change of vari-
ables E=Ep+ix and a deformation of the contour of
integration to that of Fig. 3 show that

p(r, r') —p'(r, r') X = —(2ir) ' Im xdx

&&~L~~(~p+~x)"r~*ap+~x) G:%p+~x)), (3.1—9)

where p' is the local-density approximation given in
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(2.2) . Kohn and Sham, who obtain a similar expression
involving the real part and without the factor x,
argue that the main contribution to the difference from
the local-density approximation is from the region
X~O near the Fermi energy Ep—that is, from the waves
near the top of the Fermi sea. However, the extra
factor (E/ E) in—Eq. (3.6), or x in (3.19), suppresses
this contribution, so that the difference appears only
in higher order. The suppression is directly due to the
fact that in a three-dimensional (as contrasted with a
one-dimensional) Fermi gas, there are few states with
k, near kp. As a result of this suppression, the oscilla-
tions of density noted by Kohn and Sham occur only
very near the classical turning point of the most
energetic particle. This feature ought also to be found
in a statistical treatment of electron densities in atoms.

IV. APPLICATION TO NUCLEAR SURFACE

A. Single-Particle Potential

Because the mixed density for the ramp potential
can be expressed in a way LEq. (3.17)) that does
not explicitly use the form of the potential, and be-
cause this expression very rapidly approaches the con-
stant-potential expression away from the classical
turning point of the last nucleon LEq. (3.18)j it is
tempting to use the expression (3.17) to relate the
nuclear density to the potential felt by nucleons in a
real nucleus. For the ordinary density p(R, R), where

R= 2(r+r'), this may be done by using (3.17) even
though the potential is not a linear one. For the mixed
density, however, since the corrections to the local-
density expression have only been computed to second
order in y (i.e., fourth order in the relative distance),
some estimate of the remaining terms must be made.
Inspecting Eq. (3.17) and (3.18) suggests the form

p(r, r') =p(R, R)S(p(R, R); ~
r—r' ~)f(y2 ss) (4.1)

for R(crF. The function S in (4.1) is the local-density
ratio of mixed and ordinary density fcf. Eq. (2.2) j;

- O.I2
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l.oi R =-l.8fm
X
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FIG. 5. Comparison of approximation (4.1) (solid curve) and

exact calculation (individual points with several symbols) for
the mixed density in an analytic potential. The various symbols
for the exact mixed density distinguish different values of r~.
Curve with short dashes is for f=1 in Eq. (4.1) . Curve with long
dashes is for the additional approximation (4.2). Exact values
from Y. C. Lin.

0.08

0.04

0.02 '

X, fm

FIG. 4. Comparison of approximate (solid curve) and exact
(dashed curve) densities in an analytic potential (text, Sec.
IV A). Exact curve courtesy Y. C. Lin.

its use is suggested by the appearance of the erst three
terms of its power-series expansion in (3.17). The
function f(y', zs) is to be guessed from its ftrst three
terms in y, which have been calculated. The second and
third terms seem of about equal magnitude and al-
ternate in sign; thus a geometric series is hazarded forf:
1/f(y', sp) ~1+(3y'/20) sp

—2Lsr:I/2 Ai( —s/ )2$

)(Ls&1/2 Aj( s&)2+s& 1/2 Aj ( s&)2

—z2
—2/' Ai( —z/;) Ai'( —s/ )P' (4.1')

The accuracy of using (3.17) for p even in the
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y=s (3~s~)"'
I
r—r'

I
. (4.2)

interior of the nucleus, and the usefulness of the ex-
trapolation (4.1), have been tested by comparing their
numerical predictions with the computer calculations
of wave functions in a potential done by Lin, and re-
ported in his thesis at Cornell" as well as in Bethe's
paper. ' Lin used a potential U'(x) = —40 MeV (1—e*~') s,

with a=1.2 fm, filled to Es ———8 MeV (the sign of x
used here is the reverse of Lin's notation); he set
U(x) =0 for x)0. A comparison of his results with
those of the present theory are shown in Figs. 4 and 5.
According to this test, the theory developed here may
be relied on for finding p(r, r') at least to the classical
turning point of the most energetic nucleon (—0.7
fm in this example). The new approximation is more
accurate than the relation between mixed and ordinary
densities of the classical (Slater) approximation, viz. ,
f= 1 and kz determined by the local density, which is
also shown in Fig. 5.

In order to obtain a useful expression for the single-
particle potential, it is desirable to make the exchange
energy, as far as possible, a function of the local
density, as it is in the Thomas-Fermi model of Bethe.
The form (4.1) for the exchange density may be
further modified to eliminate the potential from the
definition (2.2) of y, taking instead

Then p(r, r') may be expressed in terms of the local
density p(R, R), except for the dependence of f on
s~. This redefinition does not reduce the accuracy of
(4.1), as is shown by Fig. 5, which also compares the
approximation (4.2) to Lin's results in the test case
described above.

Thus, it is still possible to write the total nuclear
potential energy Bz* as a sum of a local-density ex-
pression plus long-range corrections. De6ne

F(p, I
r—r'

I, ss) =f(y', s&), (4 3)

and let g"(r, p) be the nuclear effective force between
unlike particles, g (r, p) between like particles; gD is
the direct force and gx is the space-exchange force."
Then I introducing different neutron and proton densi-
ties 1V(r) and P(r), and their corresponding wave-
number integrals s„and s„$, the total potential energy
of the nucleus is

Wr* ——fd'rp(r) W*(X(r), P(r) )

+ (1+2lc) '(Wii+ Wx)+coulomb, (4.4)

where W*(p) is the potential energy per nucleon of
uniform nuclear matter, and t/t/'D and gx are the
inhomogeneity corrections to t/t/p*. .

1 , 1V(r)+Ã(r') &

d'r d'r' .tV(r) X(r')g&' r—r',
2 2 j jV (r) gri' —(r r', X(r))—

, P(r)+P(r') l+P(r) P(r')g~ r—r',
2 j P(r) gD'(r —r', P(r) )—
, P(r)+jV(r') , P(r)+E(r)+2P(r) $(r')gD" r—r', — iV(r)gri" r——r',

Wx= —-,'fdsRfdsrIN(R)'S(X(R) r)'gx'(r, 1V(R))L1—F(X(R) r s (R) )']
+P(R) 'S(P(R), r)'gx'(r, P(R) )I 1—F(P(R), r, s„(R)) j

+21'(R)P(R) S(1V(R), r)S(P(R), r)gx" (r, I jV(R)+P(R) j/2)

&&L1—F(1V(R), r, s (R) )F(P(R), r, s„(R)))}. (4.6)

correlations between nucleons are taken into
account by means of the density-dependent inter-
action g(r, p), as has been explained in Ref. 5.

The manipulation leading to (4.4)—(4.6) is crucial
to the formulation of a simple statistical theory of the

» In terms of the spin-parity components of the nuclear force
described in Ref. 5, the direct and exchange forces for like and
unlRe nucleons are gn' ——(g.,+3g«)/4, gx'= (g«—3g«)/4; gn"=
(g„+3g +g„+3g,)/8, gx"= (g„+3g,—g„—3g~,)/8, where s
means spin singlet, t means spin triplet, e means even L, and o
means odd L. The use of direct and exchange forces defined in
this way takes account of the antisymmetrization of the wave
functions, as well as the space-exchange nature of the force.

nucleus, because it is only when the total potential
energy may be written as a functional of the local
density, that there isa local wave equation for the single-
particle wave functions O'. If the exchange density
cannot be simplified, then the variational problem of
minimizing the total energy with respect to the wave
functions leads to a nonlocal wave equation of the
Hartree-Fock type,
E%'(r) =—(fis/2M) P@(r)+4'(r) fd'r'p(r')gr&(r —r')

+fdsr'p(r, r')gx(r —r')+(r')+derivatives of g(p).
But when the exchange energy has been written in terms
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of only the local density p(r), then the variation of that
expression leads to a Hartree-type local wave equation

~(r) = —(&'/2~) ~'+(r)++(r) 9/&p(r))li'r*(p).

Such a local wave equation has been assumed in the
formal development of Sec. III.

The expression obtained above for W&* is not quite
entirely dependent on the local density, It also depends
on the wave-number integrals s„and s„. Their values
affect the contributions to the energy from the region
close to the classical turning point of the most energetic
particle, as was shown in Eq. (3.18). The dependence
of s„and s„on the density distribution would con-
tribute a correction to the inhomogeneity correction
to the single-particle potential { Eq. (4.9)). Because
the integrals de6ning s„and s„range only over the
region from the point at which the mixed density is
being computed, to the classical turning point of the
most energetic nucleon, almost all the additional con-

tribution to the single-particle potential will be localized
in the region very near ep. In this region of very low
densities, the nuclear-matter potential energy W*(p)
is not very well known either, so it seems unjustifiable
to include the very complicated variation of t/I/'& with
respect to s„and s„ in computing the single-particle
potential.

If that variation is ignored, then the potential seen
by a neutron or proton is found by taking the variation
of Sp* with respect to its explicit dependence on
E(r) or P(r). The result for the neutron single-
particle potential is

U„(r) ={8/BE(r)){{E(r)+P(r))W*(E(r), P(r) )I

+(1+2m) 'LU D(r)+U»(r)), (4.7)

where U„~ and U„~ represent the inhomogeneity cor-
rections arising from the direct and exchange po-
tentials, respectively:

D( ) d' ' E(r')gn'! r—r', !+P(x')gn" x—r',

, P(r)+E(r)l. . .t', E(r)+E(r')l—E(r)g&'(r —r', E(r) )—P(r) gi~" r—r',
2 j '

k
'

2 j!+-,'1V(r) E(r') hn'! r—r',

, P(r')+E(r)& , P(x)+E(x)+P(r')hn" r—r',
2 j!

—E(r) hei'(r —r', 1V(r) )—P(r) hii"! r—r',
2

(4.8)

U„»(r) = — d'r' E(r) S(1V(r), r')'g»'(r', E(r) ){1—F(E(r), r', r„(r) )')

+P(x) 5(P(x), x')5(E(x), x')g -I x',
t', P(r)+1V(r) &

!L1—F(P(x), ","(x))F(E(x), x', s-(x) ))

+E(r) '5'(1V(r), r') 5(E(r), r')g»'(r', E(r) ){1—F (1V(r), r', z„(r) )')

+P(r) E(r) 5'(E(r), r')5(P(r), r')g»" r',, P(r)+E(r)1
2

I! 1—F(P(x), x', s.(x) )F(E(x), x', s-(r) ))

+-,'1V(r)'5(E(r), r')'h»'(r', E(r) )Li —F(E(r), r', s„(r))')+-,'P(r) 1V(r) S(P(r), r')S(E(r), r')

Xh»"! r',
t', P(r)+1V(x)

— L1—F(P(r), r', s„(r))F(E(x), x', z„(x)))—E(r) 'S(E(x), r')'g»'(r, E(r) )

XF'(E(r), x', s„(r))F(E(r), r', s„(r) )—P(r) E(r) S(P(r), r')S(E(r), r')g»"! r',f, P(r)+1V(r)1

XF'(1V(r), r', s„(r))F(P(r), r', s„(r)) . (4.9)

Here h(r, p), F'(p, r, s), and S'(p, r) are the derivatives
with respect to density of g(r, p), F(p, r, s), and
S(p, r), respectively. The prescriptions of Ref. 5 have
been followed for the density dependence of the neutron-
proton force. Similar expressions may be obtained for
the proton potential.

The new statistical model of the nucleus is seen to
consist of two sets of equations: (3.17) and (4.1)-
(4.3) to find the density and mixed density in a po-
tential U(r), and (4.7)—(4.9) to calculate the po-
tential due to a given density and mixed density. The
relations for ending the density from the potential
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should be corrected for the fact that the nuclear
surface is spherical rather than planar. '4 This cor-
rection has not been made in the present work. On the
other hand, the spherical geometry is easily handled
correctly in the step of finding the potential due to a
particular density and mixed density. To learn the
numerical predictions of the statistical model for a
given nuclear-matter energy surface W*(iV, P) and
long-range density-dependent interaction g, it is
necessary to iterate the steps

potential —+density —+potential

until self-consistency is achieved. The eigenvalues E„
and E„, the neutron and proton Fermi energies, are
to be determined in the step potential —&density by
the condition that the resulting distributions of neu-
trons and protons have the desired norms.

B.Region of Very Low Density

In the region beyond the classical turning point of
the most energetic nucleon, the classical density and
mixed density vanish. Thus there is no quasiclassical
motivation for the form (4.1), which, in fact, cannot be
applied s&nce kp is imaginary, and though it would still
be possible to use (4.2), that form does not prove very
accurate beyond the last classical turning point LFig.
5(c)7. On the other hand, the correction to the ex-
change potential in this part of the surface is too large
to ignore. Lin's result I Fig. 5 (c) 7 suggests that beyond
the classical turning point a~ it might be acceptable
to use the same dependence of p(r, r') on

I
r—r'

I

as it has at up. This has been done in the numerical
work reported below; it should be emphasized that it is
purely an ad hoc procedure. On the other hand, because
of the treatment of this low-density region (see next
paragraphs), almost none of the numerical results are
affected by this assumption.

For the ordinary density p(R) =p(R, R) beyond
nr, the form (3.17) is not as appealing as it is in the
interior region. The arguments associated with Eq.
(3.19), applied here, show that at large x the density
approaches the classical limit of zero density with
8r 2 exp( —2

I
8r I); that is, the decrease of the non-

classical density is made especially rapid by the fact
that there are few waves with k, near kr. Just as in the
interior, the coeKcient of this surviving term depends
on the shape of the potential. However in the low-
density region it is this coefficient that is of interest,
whereas in the high-density region it was sufficient to
know that the coe%cient was small. For example, in
the linear potential treated above,

p(&)—(vr'I16~') (23l1944)
I
~r

I

' exp( —2
I

Or I)

as x—+~

'4 D. Thouless (to be published).

while for a step potential, the density approaches

p(x) (yr~/]6~ ) I
Pr

I

2g—2~~&~, as x~~.
For a potential like that encountered in the nuclear
surface, the coefficient will lie in between. In the
test case discussed above, at x=0 the exact density
is not quite twice the value given by the expression
derived from a linear potential (3.17) .

Therefore the linear potential expression for the
local density must be treated skeptically in the region
beyond exp, because it must be expected to under-
estimate the density in this region. In the numerical
work described below, Bethe's recommendation

p= pg exp( —2yFr), Pp= ( Er)'"—
has been followed, since he examined a fairly realistic-
ally shaped potential. p2 has been chosen so that this
tail is fit at the classical turning point of the most
energetic particle, which occurs at a density of about
0.003 neutrons of protons per fm'.

V. APPLICATION TO ' 'Pb

A. Numerical Procedures

A numerical investigation of the procedure described
in Sec. IV has been carried out for "'Pb using an
electronic computer. The nuclear-matter calculations
of Ref. 5 were taken as a basis for this computation.
The position-space interaction potential g, derived
there was employed. Its density dependence was
approximated as A(r)+B(r) p'~' at each value of the
relative separation r; the coefficient functions 2 and 8
were determined by matching the tabulated potential
at kg=1.0 and 1.4 fm '. The defect integral k was taken
as 0.136.

The effective potentials g, have about 6 MeV too
little attraction at saturation. About 2 MeV of this
deficiency has been traced' to the fact that states of
high relative angular momentum J& 2 are more
attractive than predicted by the one-pion-exchange
potential, which was used for these states in computing
g, .Much of the remaining attraction has been accounted
for as effects of higher-order short-range correlations
in Brueckner theory. In order to obtain reasonable
numerical results it is necessary to include this at-
traction in an appropriate manner. This is conveniently
done in the present theory by adjusting W(p). The
adjustment of W(p) corresponds to adding a zero-range
part of the interaction, of the strength necessary to
give the desired nuclear-matter binding. Because the
many-body diagrams of Brueckner theory are expected
to have a strong density dependence, the adjustment
to W(p) may also have a strong density dependence.
For the numerical work reported here, no additional
density dependence was added to W(p). Instead, a
constant —4.7 MeV was added to each of the five
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values of 8' calculated in Ref. 5. To obtain inter-
mediate values and derivatives, Lagrange interpola-
tion in p was used, with an added point 8'=0 at p=0.
The resulting binding-energy curve W(p) is shown in
Fig. 6.

The symmetry energy was taken as

WB= 31 MeV(kp/1. 4 fm i) ~p2(1 —1.7p')
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FIG. 6. Nuclear-matter binding energy per particle TV (p),
and chemical potential p NM (p) = 8//8p (ply) . The results of
Ref. 5 have been augmented by —4.7 MeV per particle, except
at p=0.

where P= (N P)/—(N+P), and k~ is related to p=
1V+P. This form and these coefficients were found in
Ref. 5. The Coulomb exchange energy was treated
in local-plane-wave approximation [f=1 in (4.1), but
with (4.2) as well); it was less than —0.4 MeV per
proton and so could be crudely approximated.

The density and potential were evaluated at each
of 27 radii, varying in 6 steps of approximately 0.8
frn and then in 20 steps of about 0.3 fm. The intervals
were chosen so that the last point of the radial mesh
occurred at the classical turning point for the most
energetic neutron; below this density, as remarked
above, an exponential tail was used. For the protons,
the tail's decay constant was y~= (C—E~)'I', where
C was the Coulomb potential at the last radius treated;
the proton tail was fit at the classical turning point
corresponding to the proton Fermi energy E„. The
potentials U and Ux were transformed into integrals
over the relative coordinate r—r', which were evalu-
ated by Simpson's rule. The integrands were evaluated
at 41 values of the cosine of the angular coordinate
and 79 values of the radial coordinate (21 values from
0.05 to 1.05 fm, them in larger steps to 6.85 fm) .

Protons
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FIG. 7. Density distributions in "'Pb inferred from experiment.
Proton density from Ref. 15. Neutron density from Ref. 16.

B.Potentials for Experimental Densities

The potentials U„(r) and U„(r) were calculated for
the experimentally inferred density distributions of
protons" and neutrons, " which are reproduced in

Fig. 7. To, 6nd a potential from a density distribution,
it is necessary to know the wave-number integrals
s„and s„[Eq. (4.9) j, which are integrals of the po-
tential being computed. Therefore a guess at the
potential was made in order to begin the calculation;
its wave-number integrals were used to calculate a
new potential, and so on until the potential was
roughly self-consistent as indicated by the fact that it
did not change from iteration to iteration at any point
by more than about 2% of its value near the center of
the nucleus. The neutron and proton Fermi energies
were estimated by their removal energies of —7.375
and —8.034 MeV, respectively'; they should be some-
what more negative because of rearrangement effects.

The resulting single-particle potentials for the
experimental density distributions are shown in Fig. 8.
Figure 9 shows the local nuclear-rnatter potentials
B(W*p)/BE and 8(W*p)/BP, and the Coulomb po-
tential seen by the protons. The inhomogeneity cor-
rections U and U are graphed in Fig. 10.

C. Role of Ux in the Surface

Special attention is due the inhomogeneity cor-
rection Ux arising from the space-exchange force. In

"J.B. Bellicard and K. J. van Oostrum, Phys. Rev. Letters
19, 242 (1967).The distribution used is their fit with m =0.14.' H. A. Bethe and P. J. Siemens, Phys. Letters 27B, 549
(1968).

J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nucl.
Phys. 67, 1 (1965).
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FIG. 8. Single-particle potentials U„(solid cur ve) and U„
(dashed curve) resulting from experimental density distributions,
according to Eq. (4.7).
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the surface it is as large as the inhomogeneity cor-
rection UD due to the ordinary (direct) force, though
it disappears more rapidly in the interior. Previous
theories have taken account of only U~.

Because the present theory's expression for the
density so rapidly approaches the Thomas-Fermi
expression, the discussion of Sec. II D applies to it as
well. There it was shown that, because of a condition
on the derivatives of the potential at the point where
the density reaches the minimum p& of the nuclear-
matter chemical potential, a theory with only the
direct-force inhomogeneity term UD has no possibility
of giving a reasonable density distribution. The ex-
change correction U~, however, revives hope for the
theory, because it has a positive derivative in the region
of the "shoulder" of the density distribution. This
positive derivative is just what is needed to meet the
objection of Sec. II D.

FIG. 10. Inhomogeneity corrections to single-particle potentials
of neutrons (solid curves) and protons (dashed).
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Thus the beginning of the rise of Ux must be closely
correlated with the place at which the density passes
through p». The critical nature of this correlation makes
the model very sensitive to the properties of g and 8'.
If either g or S' is changed, the wave-number integrals
will also change, which can strongly affect the size
and position of the maximum of Ux.

The g and 8' investigated here do not make Ux
quite large enough where the density passes through
py. As a result, when densities are calculated in the
potential of the experimental distribution, they have
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FIG. 9. Contributions to single-partic]e potentials due to
derivative of local nuclear-matter energy density, 8(Wp~)l/NIT
(solid curve) and 8(5'p*) /M' (dashed curve).
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Frc. 11. Density implied by Eqs. (3.14)—{3.16) from potentials
of Fig. 8.
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about 0.3 fm too large a half-density radius, as Fig.
11 shows. Also, the proton eigenvalue E„=—2.51 MeV
is incorrect, though E„=—7.97 MeV is approximately
right. When the potential Ux is calculated from the
new distribution of Fig. 11, both the large radius and
the high proton Fermi energy help to move the peak
of Ux to a still larger radius. This makes it harder to
satisfy the condition of Sec. II D. It also makes the
density distribution of the next iteration have a still
larger radius. Thus the procedure does not converge
for the forces used.

VI. DISCUSSION

Because the Thomas-Fermi theory does not include
enough of the physics of wave functions, it fails as a
nuclear model in two ways. First, because it does not
allow the wave functions to anticipate their classical
turning points, it has singular solutions. Second,
because it has an inadequate treatment of the space-
exchange contribution to the potential energy, its
continuous solutions could never rise to a sufficient
central density to take advantage of the full binding
of nuclear matter. Both these failures are remedied
by the model developed in Sec. IV, which uses ap-
proximate wave functions.

The new statistical model is sensitive to the force
and to the nuclear-matter saturation curve employed.
The exchange inhomogeneity correction Ux is especially
sensitive to the low-density region, because the phase
integrals s„and s„emphasize the region near the last
classical turning point. The size of the potential U~
is very sensitive to s', because Ux depends on the
product of the rapidly varying factor p' and (1—Fs).
The latter of these factors contains an oscillatory
component; the position of its peak relative to the
decrease of p2 determines the magnitude of the peak
of U~. The resulting sensitivity to the shape of W at low
density is disconcerting because 8' is not well known in
this region. This sensitivity is probably an artificial
feature of the model. Since the model is so sensitive to
U~, it may not have been justifiable to neglect the
variation of s„and s„ in constructing Eq. (4.9) for U».
Perhaps if this variation were taken into account, the
behavior of Ux would be made less critical.

It is not clear whether the disappointing numerical
results of Sec. V are to be blamed on the statistical
model or on the interaction of Ref. 5. Particularly
puzzling is the excessively large difference in proton
and neutron potentials near the center of the nucleus,
which is undoubtedly responsible for the poor proton
eigenvalue. Some difference between neutron and
proton potentials is to be expected, because the sym-
metry energy attraction will not completely compen-
sate for the Coulomb repulsion felt by the protons.
But the difference show'n in Fig. 8 is unexpectedly
large.

It is encouraging that the central proton density
of the inferred charge distribution (Fig. 11) is about
right. Probably the neutron density is also acceptable,
since a recent improvement in the measurement of
the isobaric analog energy" implies that the neutron
surface should be about 0.1 fm farther out than it is
in the distribution cited above. Thus in the interior
region, the experimental density is nearly self-con-
sistent. This seems to indicate that the saturation
density of 8' is correct as used here, that is, without
additional density dependence from higher-order
diagrams.

It is not certain that the normalization conditions
are sufficient to determine the Fermi energies E„and
E„.Since the new model is asymptotic to the Thomas-
Fermi model in the interior of the nucleus, it is also
vulnerable to the argument that the interior region
cannot determine the Thomas-Fermi eigenvalue. The
reason for this is that in the interior, the inhomogeneity
terms U~ and Ux vanish; thus the Thomas-Fermi equa-
tion becomes merely

There will be at least one density p which satisfies
this equation for any E& greater than the minimum
value of pNM. Nor does the normalization condition
help, for if a solution of a given surface shape and
interior density has the wrong number of particles, a
new solution with the desired norm can be obtained by
shifting the surface radius in or out, changing the
volume of the uniform-density interior region till the
nucleus contains the right number of particles. Perhaps
the stringent requirements on the region near the
minimum of pNM are sufficient to fix the eigenvalues;
but if that is the case, then the central density is
determined by a surface condition, which is an un-
acceptable circumstance in the limit of a very large
nucleus.

Thus it appears that there remains a degree of
freedom in the statistical model, associated with the
choice of the Fermi energy Ep. This added degree of
freedom was removed in the Thomas-Fermi model by
Bethe's observation that the eigenvalue must equal the
energy per particle. A corresponding condition is lack-
ing in the new model. If, in fact, the Fermi energies are
not suKciently determined, then the numerical behavior
of the theory has good cause to be puzzling.
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