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We present a model of deuteron stripping and elastic scattering which treats explicitly the contributions
from channels in which the deuteron is broken up into a relative S state and the target is in its ground
state. An adiabatic treatment of these channels leads to a description of deuteron stripping which resembles
the distorted-wave Born approximation, although a deuteron optical potential plays no role. The adiabatic
approximation is shown to give a good account of 21.6-MeV elastic deuteron scattering from Ni, at least for
surface partial waves, and is expected to apply to other nuclei in this mass and energy region, as well as
at higher energies. The calculations assume that the effective two-nucleon —nucleus interaction is the sum
of the nucleon optical potentials evaluated at one-half the incident deuteron kinetic energy. Some possible
corrections to this assumption are discussed.

I. INTRODUCTION

r lHE distorted-wave Born approximation (DWBA)..has had considerable success in describing (d,p)
and (p,d) cross sections' and polarization data. ' '
Reference 1 contains an excellent critique of the
DWBA method in its most sophisticated form, in-

cluding a discussion of the difhculties the method runs
into as the deuteron energy involved is increased from
12 MeV to the 20-MeV region.

It has often been remarked that some of the diAi-

culties of the DWBA may be associated with the in-

adequate treatment of three-body eGects, i.e., effects
arising from the breakup of the deuteron in the Geld
of the nucleus. It is clear that a complete assessment
of the DWBA treatment can only come from an
exact three-body calculation and considerable progress
has been made along these lines. ' However, in view
of the widespread use of stripping reactions as a tool
for nuclear-structure analysis, it is felt that the de-

velopment of an extension of the DWBA method is
desirable which, while not requiring an exact three-body
treatment of every stripping reaction, does contain
the dominant contributions from the three-body
channels.

In this paper, we examine the role of the coupling

*Royal Society (London) research fellow.
'R. J. Philpott, W. T. Pinkston, and G. R. Satchler, Nucl.

Phys. A119, 241 (1968).'T. J. Yule and W. Haeberli, Nucl. Phys. All'7, 1 (1968).
3P. J. Bjorkholm, W. Haeberli, and B. Mayer, Phys. Rev.

Letters 22, 955 (1969).
4R. D. Amado, Phys. Rev. 132, 485 (1963); A. N. Mitra,

ibid. 139, 81472 (1965); 150, 839 (1966); A. S. Reiner and A. I.
Jaffe, ibid. 161, 935 (1967); W. Bierter and K. Dietrich, Z.
Physik 202A, 75 (1967);R. Aaron and P. E. Shanley, Phys. Rev.
142, 608 (1966); J. V. Noble, ibid. 157, 939 (1967); A. I. Noble,
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j.

between the deuteron elastic and breakup channels
in an adiabatic approximation. ~ We are led to propose
a modified prescription for the analysis of stripping
and pickup reactions that involves only a minor modi-
fication of the standard DWBA matrix element.

It is a key feature of the DWBA that the predictions
for stripping reactions are closely linked with the
analysis of elastic deuteron scattering. In the method
proposed here, this link is no longer so direct and a
deuteron optical potential plays no role in the stripping
calculation. However, the physical picture involved
does have implications for elastic deuteron scattering.
We have therefore developed a theory of elastic deu-
teron scattering using our adiabatic approximations.
We have shown that, at least for the partial waves of
primary interest in stripping, the elastic scattering of
deuterons in the 20-MeU region for nuclei with A 50
is accounted for very well. We believe that this result
provides considerable justification for our prescription
for stripping involving deuterons in this energy region.

II. STRIPPING REACTIONS

A. Three-Body Model

It is well known' that when the explicit coupling
between nuclear states in both the incident and out-
going channels is neglected, the transition matrix
T(d, p) for a stripping reaction reduces to an expres-
sion of the form~

T(d, P) = f dl drL7c&
—

&(P) j*g*(n)V „Pt+'(P, rt), (1)

where 7f& '(P) is the usuais proton distorted wave, P(rt)

5 The sense in which we use the term adiabatic will be clarified
in Sec. II B.

See, e.g. , G. R. Satchler, in Lectures in Theoreticu/ Physics,
edited by P. D. Kunz, D. A. Lind, and W. E. Brittin (University
of Colorado Press, Boulder, 1965), Vol. VIIIC.

We also neglect the explicit contribution from proton exchange
terms.
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is the form factor associated with the initial and final
nuclear states, ' and V„„ is the neutron-proton inter-
action. The vectors R and r are, respectively, the
position vector of the center of mass of the neutron
and. proton relative to the target and the position
vector of the neutron relative to the proton. The argu-
ments of the wave functions in Eq. (1) denote the
spin and space coordinates of which they are functions.

Our primary concern here is with the function
f&+~(P, n) in Eq. (1).This function is the projection,
on to the ground state of the target nucleus, of the
many-body wave function appropriate to a deuteron
in the incident channel. It therefore has outgoing waves
corresponding to elastic deuteron scattering, breakup
of the deuteron without target excitation, as well as
the contribution to all possible stripping reactions not
involving target excitation. The equation satisfied by
P~+~ (p, ri) may be written

$E Tg H„—V—,(ri, —p)]f&+'(p, rl) =0, (2)

H„„=T„+V„~,

where T& and T, are kinetic energy operators, and E
is the energy of the system (E=Eg—ep, where Ed is
the incident deuteron kinetic energy and eo is the
binding energy of the deuteron). The effective inter-
action V,(e,p) has been studied in Refs. 9—11. In
this paper we shall assume, mainly on the grounds of
simplicity, that

V.(~, p) = V-(R+2'r)+V. (R—2'r)+V. (~), (4)

where V„and V„are nucleon optical potentials corre-
sponding to one half of the deuteron kinetic energy,
and Ve(R) is the Coulomb field of the target nucleus
evaluated at the center of mass of the deuteron.

A discussion of the corrections to the assumption (4)
will be deferred until Sec. IV B and we con6ne our-
selves here to two remarks only. In the first place, we
note that the interaction (4) gives rise to breakup in
the emcteur field of the target only. The contributions
to deuteron elastic scattering" and stripping" from
deuteron breakup in the Coulomb field are probably
very small for the reactions above the Coulomb barrier
which we shall be interested in. Second, we shall
neglect the nonlocality of the nucleon potentials. It
will be clear that, provided the ranges of nonlocality
of the V„and V„are not large compared with the
range of the e pforce, our-development is not altered

8 See Ref. 1 and references therein.
'W. F. Junkin and F. Villars, Ann. Phys. (N.Y.) 45, 93

(1967)."S.Mukherjee, Nucl. Phys. A118, 423 (1968) .
"N. Austern and K. C. Richards, Ann. Phys. (N.Y.) 49, 309

(1968)."C.F. Clement, Phys. Rev. 128, 2724 (1962); J. K. Dickens
and F. G. Percy, ibid. 138, B1083 (1965); G. Bencze and E.
Pietarinen, Phys. Letters 19, 586 (1965)."C. F. Clement, Nucl. Phys. 66, 241 (1965);F. P. Gibson and
A. K. Kerinan, Phys. Rev. 145, 758 (1966).

where
~ gs) is the deuteron ground state, we have

4'"(P, ~) = &4'"'(P &)+Qo4'"'(P &)

&o4'+'(p, ~) =de(r) xo(R),

(6)

(~)

where x, (R) describes elastic deuteron scattering. 's In
the DWBA, the explicit contribution from Qef&+& is
neglected.

(ii) In the evaluation of the matrix element (1)
the elastic wave function z&(R) is required for R lying
inside the nucleus. The extrapolation from the asymp-
totic region, where xs(R) is determined by the elastic
phase shifts, is performed by assuming that xs(R) can
be generated by an optical potential of a largely con-
ventional form with parameters adjusted to fit elastic
scattering data. "It has often been questioned how far
this is a realistic procedure for deuterons.

We first examine the neglect of the breakup corn-
ponent Qsg&+'. In this connection it is important to
note that the evaluation of the matrix element (1)
requires accurate knowledge of P&+&(p, n, ) only in a
very restricted region of configuration space, i.e., (a)
for r& range of V ~, (b) for R within the range of the
bound state neutron form factor g(e).

We first consider the case when V„„is a zero-range
force. In this limit, an immediate consequence of (a)
is that only the components of f&+&(p, rl) with the
neutron and proton in a relative S state give a con-
tribution to the stripping matrix element. ' Further-
more, if we assume that the spin-dependent terms in
the effective interaction V, (e, p) t Eq. (2)j are sym-
rnetric under interchange of neutron and proton space
and spin coordinates, " then it is easy to see that only
'5 states of I-p relative motion can contribute to

F. G. Percy, Phys. Rev. 131, 745 (1963)."F.G. Percy and B.Buck, Nucl. Phys. 32, 353 (1962).
"In the interest of clarity we have omitted explicit reference

to spin degrees of freedom.
' A recent review is P. E. Hodgson, Advan. Phys. 15, 329

(1966).' A. I. Baz, Nucl. Phys. 51, 145 (1964).
"In the approximation (4), this means we are neglecting the

difference between the spin-orbit terms in the neutron and proton
optical potentials.

in any essential way by the lifting of this assumption.
Unless otherwise stated, the calculations reported here
have been performed with the proton potential given

by Percy" and the local equivalent of the neutron po-
tential given by Percy and Buck. '~

B.Adiabatic Approximation

In the usual' DWBA treatment of the transition
matrix element (1) two approximations are made.

(i) The function P&+'(p, e) is replaced by its elastic
component. Thus, defining the projectors
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&,4 '+'(oo) =
coy '+'(oo),

&no4 o= —oooo,

eg&0 (9a)

(9b)

(~o I ~ ' ("))=0, &~"'(oo)
I ~ "(") )=~(k—k'),

(9c)

I 4o) (4o I+ f dk
I 0"'(oo) )(4"'(")

I
=1. (9d)

With the assumptions above concerning V.(&s, p), the
function f'(p, &s) in (8) denotes the contribution to
goat+&(p, os) from singlet-odd and non-S-wave triplet
eigenstates of H„„, and gives no contribution to the
stripping matrix element in the zero-range limit.

From Eqs. (2), (4), (8), and (9), we therefore have
at r=0

(E+.,—T,—V(Z) }y,(0)x,(R)+ f dk

XLE—eo—T&t V(R)]gt+—&(oo, 0)x(oo, R) =0, (10)

where
V(R) = V„(R)+Vo(R)+Vc(R). (11)

It is at this point that we introduce our adiabatic
approximation. We shall assume that the error in-
volved in replacing the quantity in square brackets
in (10) by

LE+so—T&t—V(R) ] (12)

is small. With this approximation, Eq. (10) becomes
a differential equation for ft+&(r=0, R). Thus, we
have

P&+&(r=O, R) =g(0) g(R), (13a)

LE+so Trr V(R) ]y(R) =0 — (13b)

ft+&(e, p). We can therefore write

4"'(P, ~) =do(r) xo(R)

+ f de&+&(e„r)x(e„R)+f'(P, n), (8)

where the pt+&(oo, r) are scattering states of the I-p
system which, together with po (the deuteron) form a
complete set of 'S states,

where
(K I V„y I yo )~DQI 1—(E/p) ],

Do——(K=O
I V„„I yo)

= f dr V„+o(r),

(16)

(17)

and 1/p is a measure of the range of V„„.
For Z(P, we also have, similarly,

sidered (Eq 20 MeV, A 50). Hence, for small R
where V(R) —90 MeV, the replacement (11) should
be a good approximation even for E&20 MeV. Well
outside the nucleus the inequality required would ap-
pear to be E))10 MeV. For this region, an obvious
source of error in the use of Eq. (13) is that the out-
going waves associated with the &c(oo, R) are treated
as all having the same wave number as the elastic
channel. Note, however, that we are only concerned
with the use of our approximation in the stripping
matrix element so that these errors are not likely to
produce large errors in stripping cross sections even
when the inequality E))10 MeV is only moderately
well satisfied

I
see point (b) above). Note also that,

at least for small-angle stripping, the smoothness of
the neutron form factor p(N) strongly favors terms in
P&+' with a wave number similar to that of the elastic
channel.

It is one of the main purposes of this paper to give
some justification for the adiabatic approximation from
a source other than stripping. We shall attempt this
in the following sections, but first we remark that it
is straightforward to insert a finite-range correction
into the formalism developed so far. We shall do this
in terms of a simple generalization of the approximate
treatment' found to be successful in the DWBA
theory. " It is clear that since by assumption the im-

portant breakup corrections are associated with wave-

lengths very similar to those of the elastic component,
we can assume that a similar approximate finite-range
treatment will apply.

The usual treatment" uses the approximation"

x(R) =xo(R)+ f W P~+&(oo, 0)x(oo, R)/Po(0), (13c) «I v-. I~'("))
and the stripping matrix element becomes

pT(d, p)]s.a.——Doo f dRLX& &(R)]op*(R)x(R), (14)

where
Doe= f dr V„„g(r) (15)

is the usual constant that appears in the zero-range
DWBA limit. '

It is dificult to put precise limits on the accuracy
of our adiabatic approximation. The replacement (12)
in Eq. (10) clearly requires that the range of values
of oo associated with relative S states in Pt+&(P, I)
should be small compared with the energy associated
with motion of the center of mass of the neutron and
proton. We shall produce evidence in Sec. IV that the
dominant z, satisfy @,&10 MeV for the reactions con-

= (K=o I V-. I 4 "&(oo) )I:1—(&/P')'], (18)

and we now need the additional assumption that P'=P.
This requires that the important oo in the expansion (8)
should lie within the region of validity of the effective
range expansion (shape-independent approximation).
However, since we shall still want to assume that only
relative S waves have a non-negligible overlap with
V „ in the stripping matrix element (1), this is not
an essentially new approximation.

It is now straightforward to show that the generaliza-

P. J. A. Buttle and L. J. B. Goldfarb, Proc. Phys. Soc.
(London) A83, 701 (1964); Q. Bencze and J. Zimanyi, Phys.
Letters 9, 246 (1964); F. G. Percy and D. Saxon, oNd. 10, 107
(1964l."J.K. Dickens, R. M. Drisko, F. G. Percy, and G. R. Satchler,
Phys. Letters 15, 337 (1965).

"We neglect tensor forces.
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tion of Eqs. (13) and (14) is

T(d, P) =Dp f dR fx&
—&(R)]*

C. Discussion of the Method

The numerical work involved in the evaluation of
(19) clearly differs little from that involved in a

20

-40

-60

20

~g ~ 0

where"

EE+ep—Ta Vc(R—) —V(E) j)t(R) =0, (20a)

V(R) = (K= 0 ) (V +V ) V
~ gp)/Dp (20b)

x(R) = (K=0
I V-. I 0"')/Dp

-exp(ilrq R) + (outgoing waves) (20c)

and Dp is given in Eq. (17).
In Eq. (19), Kq and K~ are momentum operators

which act on the "deuteron" and proton distorted
waves and can be handled in the usual manner. "

standard DWBA calculation. "However, the distorted
wave y has quite a different interpretation from the
elastic scattering wave function that appears in the
DWBA. The function x contains outgoing waves as-
sociated with breakup into low-energy relative 'S states
as well as elastic scattering. Thus, the potential V(R)
LEq. (20b) ) does not generate elastic deuteron scatter-
ing. Our present belief is that V is to be generated ac-
cording to Eq. (20b) with V„and V~ taken from
analysis of nucleon elastic scattering from the target
at E,/2.

We remark that in the limit that V„and V„are
real potentials, so is V, whereas, of course, the deuteron
optical potential would still be complex if the breakup
and/or the stripping channels were open. The physical
reason for this is that the adiabatic treatment of the
'5 states implies that if the neutron and proton appear
at the nuclear surface with a separation less than the
range of V„„then they do not drift apart to beyond the
range of V„„during the time it takes them to cross the
nucleus. Therefore, the flux associated with Pi+&(r, R)
and r&range of V„~ is conserved.

It is to be noted that our use of the adiabatic ap-
proximation has enabled us to bypass a discussion of
the questions raised under (ii) in Sec. II 3 concerning
the nature of the deuteron optical potential. The re-
mainder of this paper will be concerned with this
question. The results of stripping calculations per-
formed with our modi6ed prescription will be published
elsewhere. Preliminary results are very encouraging. ""

Finally, in this section, we add some remarks con-
cerning our use of the term "adiabatic. " Our approxi-
mation can be roughly stated to be the assumption
that, as far as small separations in relative '5 states
are concerned, the internal motion in the n-p system is
"slow" compared to the motion of its center of mass.
This is to be contrasted with the "adiabatic" treat-
ments used in Refs. 12, 13, and 27 which assume,
roughly speaking, that the opposite is the case."The
use of the term "adiabatic" which appears to be closest
to the sense in which we use it here is that of Berezhnoi
and Inopin. "There is also some amenity between the
"adiabatic" approximation used in our work and the

C) -20

6

-40
10

8{Fermi)
FIG. 1. The matrix elements 6V' (eJ„R) as functions of R

for e1,=2.5 MeV (dashed curve), eq=5 MeV (solid curve), and
e1, =10 MeV (dashed-dot curve). The nucleon optical potentials
used correspond to Ca' and Eq ——21.4 MeV.

2'In this paper, we use the bra-ket notation to denote inner
products in the space of functions of r only.

24A similar prescription was proposed earlier from a different
point of view by L. R. Dodd and K. R. Greider, Phys. Rev. 146,
675 (1966).

2'R. C. Johnson, J. D. Harvey, and F. D. Santos, Science
Research Council, Report No. RHEL/R. 170, 1968, p. 97
(unpublished); R. C. Johnson and J. D. Harvey (unpublished).

2' G. R. Satchler (private communication). We are grateful to
Dr. Satchler for communicating his results to us and for most
useful discussions.

2~ J. Testoni and L. C. Gomes, Nucl. Phys. 89, 288 (1966).
'8 We do not mean to imply that we consider the "adiabatic"

treatment of Coulomb breakup given, e.g. , in Ref. 12, to be a
bad approximation. For a discussion of this point see, e.g., S. T.
Butler, Nuclear Stripping Reactions (John Wiley @ Sons, Inc. ,
New York, 1957), p. 62 (footnote).

» Yu. A. Berezhnoi and E. V. Inopin, Yadern. Fiz. 6, 1197
(1967) /English transl. : Soviet I. Nucl. Phys. 6, 872 (1968)j.
We should like to thank Dr. M. B. Hooper for drawing our
attention to this work.
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FIG. 2. Differential cross
sections for d+Ni at Eq =
2j..6 MeV. The solid curve is
generated by V~~ and the
dashed curve by V00 as dis-
cussed in the text.

0. 01
60 110 160

"sudden" approximation of Tanifujis and Butler et pl.
It is to be noted, however, that, in contradistinction
to the latter authors, we place emphasis on an approxi-
mation to the three-body wave function inside the
range of V„~ only.

III. ELASTIC DEUTERON SCATTERING

A. Preliminaries

The application of our adiabatic approximation to
the treatment of elastic deuteron scattering is not as
straightforward as the case of stripping. The basic
difference is, of course, that the elastic component of
the three-body wave function P&+&(p, e) involves neu-
tron-proton separations of the order of the size of the
deuteron rather than of the order of the much smaller
range of V„„.The implications of this can be seen by
inserting the expansion (8) into the Schrodinger equa-
tion (2) . Taking the inner product of both sides of the
equation with

l po&, we obtain

fZ+oo —Tg Vo(R) —Voo(R)—Jxo(R)

= f dk Qo I
V~

I
0"'(")&x(o~, R)+ &yo I

Vx
l
4'), (2l)

where we have defined

V~(R, r) = V„(R+-,'r)+ V~(R—-', r), (22a)

(22b)

For sufficiently small eI, the contributions to the
3 M. Tanifuji, Nucl. Phys. 58, 81 (1964).
~' S. T. Butler, R. G. I,. Hewitt, B.H. J. McKellar, and R. M.

May, Ann. Phys. (N.Y.) 43, 282 (1967).

right-hand side from states other than relative 5 state
will be negligible. However, because of the loosely
bound structure of the deuteron, higher relative partial
waves have a strong overlap with the vector V~

l Po&
at somewhat lower energies eI, than was the case when
the overlap with V„„was being considered in Sec. III.
There are, nevertheless, a number of reasons why we
believe it is a good first approximation to ignore the
second term on the right-hand side of Eq. (21).

There have been a number of estimates of the con-
tribution to the deuteron optical potential from breakup
in the nuclear field. '~ "Both these authors use second-
order perturbation theory to obtain a deuteron optical
potential V~ in the form

(R l
Vg

l
R &= Voo(R) B(R—R )

+ f dk 9o I
V (R) I

e'+'(k)
&

X(R l (&—Tg oI,+io) '
l

—R')

X (P&+&(k)
l

V~(R')
l yo&. (23)

An important feature of this expression is that the
breakup contribution gives rise to a strongly nonlocal
correction to Vd. All estimates that we are aware of
make some effort to approximate this term by an
equivalent local potential. There are well-tried ways
of doing this for a certain class of nonlocal potentials
of not too large a range of nonlocality. ' Unfortunately,
the potential (23) is not of this type: for (Eg oo oI,)
not small, the Green function in (23) is a highly oscil-
lating function of

l
R—R' l. On the other hand, both

Q. BaumgQ, rtner, Z. Physik 204, 17 (1967).
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FIG. 3. The reflection coefficients
gI,I, generated by Vz~ (solid curve)
and Vpo (dashed curve) d+Ni at
Eq =21.6 MeV. 0.4"
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the estimates given in Refs. 27 and 32 lead to the con-
clusion that the breakup corrections are negligibly
small. " A crude treatment of the nonlocality of V&

is presumably more accurate for the intermediate states
of high oi in (23), i.e., for the contribution from non-
S-states of relative motion. We shall therefore appeal
to the results of Refs. 27 and 32 as a justification of
the neglect of the contribution from all except relative
S states on the right-hand side of (21). We shall,
however, treat the contribution from S states more
carefully than hitherto. In particular, we will not at-
tempt to find an equivalent local optical potential,
and our results will contain contributions to all orders
in the interaction V~.34

"The approach used in this paper and in the work of Refs.
27 and 32 should be carefully distinguished from the approach of
Sano LM. Sano, in Proceedings pf tke Irtterrtatiortal Conference og
Direct Reactions and lVNclear Reaction Mechanisms, edited by
E. Clementel and C. Villi (Gordon and Breach, London, 1965),
pp. 204—207j, who obtains large second-order breakup corrections.
Sano's calculation treats breakup in the ground state of the target
on the same footing as breakup in excited states of the target.
The contributions from the latter type of intermediate state are
included in the effective interaction V, (n, p) PEq. (2)] in our
approach. This point has been emphasized by Mukherjee (Ref.
10). See also Sec. IV C.

34 A preliminary version of the present treatment was given by
R. C. Johnson, in leternatsonal Conference on Xstclear Pkysscs,
edited by R. L. Becker (Academic Press Inc. , New York, 1967),
pp. 140—143.

B.Treatment of S-Wave Breakup

When the contribution from f' in Eq. (21) is ne-

glected, we obtain

(8+op—Ttt Vo—Vpp) yp(R—)

We shall also require the equation obtained by taking
the inner product of both sides of Eq. (2) with

I
P'+'(eo) ). We obtain

(~—eo —2'tt —Vc) x(eo, R) = (4 '"'(eo)
I Vtr I 4o)xo(R)

It is well known that a straightforward "coupled-
channel" approach to the solution of Eqs. (24) and

(25) is very difficult. "In our approach, we shall make
systematic use of the adiabatic approximation dis-
cussed earlier to obtain an approximate solution. The
basic ingredients of our analysis are as follows:

(i) The adiabatic approximation implies that very
large values of eI, do not play an important role in the
integral on the right-hand side of Eq. (24) .

"See, e.g. , R. G. Newton, Scattering Theory of W'aves and
I'articles (McGraw-Hill Book Co., New York, 1966), Chap. 17,
pp. 550—557, for a discussion of the three-body problem from this
point of view.
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(ii) For the restricted range of values of oi. of
interest the dependence of the matrix elements

(4o I V&r I
4'+& (oi) & on op can be factored out.

Figure I shows the typical behavior of the quantity

hvo(oo, 2) =DoL(K=0
I V„„I

y&+&(op) ))-'

&& (1+ / ) (gaol V~ I
4'"'(") &, (26)

as a function of &I, and E. We have used the potential
U„„given by Yamaguchi36 to compute the two-body
wave functions pp and g&+&(oo) and we have used the
nucleon optical potentials mentioned earlier.

It is clear from Fig. 1 that to high accuracy we can
write

(&+op
—2'z —Vc—Voo) xo(R)

=cavo(pp, E) f dk g(k)x(eo, R), (27)
where

g(k) = LDo(1+p»/oo) ) '(K= 0
I V., I

4'+& (oo) ). (28)

For oi,))10 MeV, the form (26) does not give a good
account of the dependence of (Pp I V&r I P(@,) ) on pp.

Hence provided such high energies do not play an
important role (adiabatic assumption) our approxi-
mation (27) should be accurate and insensitive to the
precise value of e~ in the range 0&~1,&10 MeV.

(iii) In order to obtain a closed system of equations,
we shall assume that the dominant dependence of
x(op, R) on o&, is determined by dropping the second
term in the right-hand side in Kq. (25), i.e. , we take
the energy dependence of x(op, R) from

x(op) = (&—op 2'&z Vc+zo) '(4'+'(oi)
I V&r I 4o&xo.

(29)

A sufhcient condition for the validity of this step
is clearly that the dominant component of P&+&(p, rz)

is the elastic component. We shall, however, only make
use of this argument in order to extract the energy
dependence of x(o&„R) and we shall make no further
use of perturbation-theory ideas. ton the basis of our
calculations, it is indeed found'~ that the elastic com-
ponent of &P~+& (P, rz) is dominant. )

We shall use the information contained in Kq. (29)
in order to simplify the right-hand side of (27). We
shall therefore need an accurate description of x(op, R)
only in the region AU'40 and, hence, for reasons
similar to those discussed after Eq. (15) above, we
can replace the energy el, in the Green function on
the right-hand side of (24) by oi, with small error.

With these approximations it is now straightforward
to show that Eq. (24) becomes

(&+op
—2'z —Va —Voo) xo

=~V(.—,) (K=o
I v„.Qo'

I
0&+»/D„(30)

"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954).
'7P. I. R. Soper, Ph, D. thesis, University Of Surrey, 1968

(unpublished) .

where

hv(op) = hvp(pp) (f dk
I g(k) I')

&&(f de
I g(k) I'(1+ / o) ) ', (31)

and

We have
Qo'= f dlr

I
0'+'(pp) &(4'+'(op) I.

(K=o
I v„„Iy+ (;)) '

s(k)/k

(32)

(33)

a=5.38 F, y()=1.71 F, y=0.2316 F '.
Equation (30) together with Kqs. (20) of Sec. II 3

provide a set of coupled differential equations from
which xo and hence the elastic scattering can be
calculated.

It is convenient to rewrite these equations slightly.
From Eq. (20c) and the definition (32), we have

X Xo+Xl (36)
where we have dered

x (R) =D, '(K=o
I V„Q,' I

P~+&). (37)

Equations (30) and (20a) can now be rewritten
(&d= &+oo)

(+d TB Vc Vpp)Xo=&v(pp)Xl (38a)

(+d TR vc I v—~v(po)))xi= (v—voo)xp (38b)

These equations are to be solved with the boundary
conditions'~

Xo(E) — -exp(zkd R) + (outgoing waves),

xi(&) :(outgoing waves),

in addition to a regularity condition at E=O and ap-
propriate modifications due to Coulomb forces. The
potentials appearing in (38a) and (38b) are defined
in Eqs. (22), (35), (26), and (20b). In the calcula-
tions reported in the next sections, we have used the
approximation

V(R) = V (R)+V„(Z). (39)

The formal solution of Eqs. (38) defines a deuteron
optical potential by

(8+op—Tiz Vg —Vd) Xp ——0, — (40)
where

(R I
Vd I

R')= Vpp(R)B(R —R')

+Av(pp, R) (R I (Ed Tri Vg——
—

I V—Av(op)+zp)) '
I R')LV(R') —Vpo(R')). (41)

and
k cotb(k) = —u '+-,'rpk', (34)

where b(k), a, and rp are, respectively, triplet n-p phase
shift, scattering length, and effective range. From (28),
(31), (33), and (34) we obtain (k'y'/&=op)

DV (op) =ya(1+pro) L2 (1+pa)+y'arp) 'hvo(pp)

0 3496 Vo(pp) ~ (35)

where we have taken
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Fzo. 4. Potentials used in coupled equations LEqs. (38)g with ~s=s Mev for d+Ni and E&=21.6 MeV.

This is a nonlocal energy-dependent potential and
we know of no reliable prescription by which it can
be replaced by a local potential with predicted param-
eters. It is, however, a simple matter to obtain the
elastic scattering by solving the coupled equations (38) .

IV. RESULTS OF CALCULATIONS

A. Surface Partial Waves

In order to test the theory outlined in Sec. III, we
have selected the reactions Ni(d, d)Ni at Eq=21.6
MeV. '8 For nuclei in this mass region, the observed
elastic scattering varies smoothly with mass number"
and in this energy region effects due to isolated states
in the compound nucleus are expected to play a minor
role. We are here well above the Coulomb barrier so
that Coulomb breakup effects are not expected to be
important. By the same token the angular distribu-
tions show considerable structure and provide a good
test of the theory. The energy region considered is of
considerable interest for stripping theory. '' It is for

» J. L. Yntema, Phys. Rev. 113, 261 (1959).
"See, e.g., the compilation of experimental data in Ref. 45.' J. L. Vntema and H. Ohnuma, Phys. Rev. Letters 19, 1341

(1967).

this reason that we have not considered higher energies,
although it is to be expected that the accuracy of the
adiabatic treatment would increase with energy, in
general.

In our calculations we use "average" parameters for
the nucleon optical potentials as discussed at the end
of Sec. II A. We, therefore, cannot expect to reproduce
effects arising from the detailed structure of particular
nuclei. For example, the Ca" data at 21.6 MeV"
show a marked difference from trends in heavier nuclei
and we indeed find that our model is unable to re-
produce these data. ' Rawitscher has pointed out" that
the stripping cross sections for Ca4'(d, p) Ca4' leading
to low-lying levels of Ca4' are unusually large. This may
be an example of the breakdown of our assumption
that relative 5 states of the neutron and proton are
dominant for processes involving the ground state of
the target.

We first consider the cross sections produced when
breakup effects are neglected and hence the elastic
scattering is generated by the Watanabe4' potential

G. H. Rawitscher, Phys. Rev. 163, 1223 (1967); Phys. Rev.
Letters 20, 673 (1968}.

4' S. Watanabe, Nucl. Phys. 8, 484 (1958).
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f',Fin. 5. Reflection coeKcients pcs
generated by V~~ (solid curve) and
the coupled equations with ~I,=5
MeV (dashed curve) for d+Ni at
Eq ——21.6 MeV.
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Vee(R) Lsee Eqs. (38)g. The properties of this poten-
tial have been considered many times, 4'3'" and a
careful comparison with the data was made most
recently by Percy and Satchler.

Figure 2 is a comparison between the predictions of
Vpp and the predictions of the optical potential V~II of
Percy and Perey4' for Ni." (The latter fits the data
very accurately. ) In the forward hemisphere, the agree-
ment is remarkably good. Although the relative heights
of the maxima and the depths of the minima are not
given accurately by Vpp, their angular positions are
essentially correct. Beyond 90', however, the agree-
ment is poor.

In order to examine further the features of Vpp

which produce these discrepancies it is instructive to
compare the reflection coeflicients tilqf= exp(2f8r~) j,
as a function of the angular momentum I of the deu-
teron center of mass, produced by Vpp and V~~. This
comparison is shown in Fig. 3 for L = J.Ke emphasize
several qualitative aspects of these curves.

4' See, e.g. , J.R. Rook, Nucl. Phys. 61, 219 (1965);I .J.Bloore,
ibid. 68, 298 (1965); E. CoRou and L. J. B. Goldfarb, ibid. A94,
241 (1967); J. Raynal, Ph.D. thesis, University of Paris, 1965
(unpublished); J. Raynal, Phys. Letters 293, 93 (1969).

44 F. G. Percy and G. R. Satchler, Nucl. Phys. A9'7, 515 (1967).
4' C. M. Percy and F. G. Percy, Phys. Rev. 152, 923 (1966).
'6 To signify that a quantity is calculated from Vz~ we always

use the abbreviation I'II.

(i) An outstanding feature is that the region in
angular momentum over which Re(tier, ) passes from
very small values to values close to unity ("the sur-
face region") is much larger for Vier than for Veo.

(ii) In the same region of angular momentum,
Im(terr, ) has a large bump in the Veo case which is
considerably suppressed in the curve corresponding
to V~II.

Both of the features (i) and (ii) are symptomatic of
the fact that the imaginary part of Vpp does not account
adequately for the way deuterons are absorbed in the
nuclear surface and they are associated44'" with the
deep minima observed in the Vpp cross section and the
lack of structure at large angles (Fig. 2) .

(iii) Both potentials produce reflection coefficients
which oscillate with similar amplitudes as a function
of 1. for 5 &6 ("the inner region"). As we shall see
below, the phase of these oscillations has an important
effect on the cross section. We note here that Vpp and
V&& produce oscillations differing in phase by about 90'.

We now turn to the results of calculations using the
coupled equations (38).4' (Figure 4 shows the quali-
tative features of various potentials which appear in

477hese calculations were performed with the factor 0.349
appearing in Eq. (35) replaced by 0.31.
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FIG. 6. Differential cross sections for
d+Ni at Eq ——21.6 MeV. The solid curve
is generated by V~JI and the dashed curve
by the coupled equations (with iI,=5
MeV) .
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the equations. ) The refiection coeKcients produced by
these equations are compared with those produced by
V+II in Fig. 5. It is immediately clear that the two
curves agree very well in the surface region and the
discrepancies mentioned under (i) and (ii) above are
largely removed.

Ke note, however, that the coupling to S-wave
breakup channels has a very small effect on partial
waves in the inner region. As we shall see below, this

is almost certainly the reason for the poor agreement
with the experimental cross section shown in Fig. 6.

The insensitivity of these results to the precise energy
eq at which the coupling potential AV(~q, R) $Eq. (35) $
that appears in the coupled equations is evaluated is
shown in I'ig. 7. This provides considerable justifica-
tion for our treatment of the continuum of S-wave
breakup channels given in Sec. III S.

It is well known that the optical potential deter-

l. 0

0. 6

0.3

FIG. 7. Diff erential cross sections for
d+¹iat Ep ——21.6 MeV generated by the
coupled equations with ~I,=2.5 MeV
(dashed curve), ~q ——5 MeV (solid curve),
and ~q =10MeV {dashed-dot curve) .
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Fzo. 8. (A) Changes in the dif-
ferential cross sections (for d+Ni at
8&=21.6 MeV) generated by Voo (no
coupling) when the real part of V00
is multiplied by 1.0 (dashed curve),
0.9 (solid curve), and 0.86 (dashed-
dot curve). (3) Comparison between
the cross section generated by V~~
(solid curve) and the cross section
obtained when Re V00 is multiplied by
0.9 (dashed curve).
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mined from fits to experimental data is not unique.
There is some evidence, however, that the different
families of potentials are associated with the same

set of phase shifts and that, therefore, definite physical
significance can be attached to the latter. ' It is for
this reason that we believe that the good agreement
with the p&z that we obtain for the surface partial
waves provides strong support for our treatment of
breakup. The surface partial waves are, of course, the
ones of most relevance to stripping. Note also that the

wave function to be used in the stripping matrix ele-

ment, according to the development in Sec. II 3, plays
an important part in the elastic scattering calculation.
It is clear, therefore, that the calculations reported

4'See, e.g., Ref. 17.

here give some justification for the adiabatic treatment
of the stripping matrix element discussed in Sec. II.

B. Inner Partial Waves

The situation as far as the small partial waves are
concerned is less straightforward. We have seen in
Sec. IV A that coupling to low-energy S-wave breakup
channels has a small effect on these partial waves.
This, of course, is physically reasonable and inspection
of Fig. 4 makes this clear.

We may be guided here by the fact that a simple
modification of the calculation produces a marked im-
provement in the situation. In Fig. 8, we indicate how
the scattering produced by Vss (neglecting the coupling
to breakup channels) is modified when the real part
of Vpp is multiplied by the factors shown. It is clear
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FIG. 9. ReQection coeKcients qL, L,

for d+Ni at Eq ——21.6 MeV, generated
by Vp~ (solid curve) and the
potential 0.9 Re (V )p+ppIm(Vpp)
(dashed curve).
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that the relative heights of the maxima in the forward
hemisphere and the magnitude of the average cross
section at large angles is very sensitive to small changes
in the depth of Voo. With a factor of 0.9 the 6t to the
data is considerably improved. More signi6cant, from
our point of view, is that this improvement is achieved
mainly by a modification of the contribution from the
partial waves in the inner region. This is shown in
Fig. 9 where it can be seen that with this factor the
qL~ for I (6 are in close agreement with the reQection
coefficients generated by V», while at the same time
the p« for I in the surface region are essentially un-
changed.

Figure 10 shows that when the coupling to breakup
channels is added in the agreement between the pre-
dicted p«and the z&I~~ is now very good for all I.
It is shown in Fig. 11 that the agreement between
cross sections is also now very much improved. A
comparison with Fig. 8 shows that the e6ect of the
coupling is to All in the minima at forward angles and
to produce the right type of structure at large angles,
as is to be expected from an improved treatment of
the absorption. 44

A similar modification of the real part of Voo was
found to be necessary by Percy and Satchler. ~ They
found that the potential Voo gives the real part of a

deuteron optical potential which yields good agreement
with elastic scattering data with no change in shape
but with a Io—2O% change in strength, when the
parameters of the imaginary part of the potential are
optimized. Their analysis did not determine the sign
of this correction, however. In our case we have kept
the absorption Axed and as given by the imaginary
parts of the nucleon optical potentials and the coupling
to breakup channels. Although an extensive search on
the eGect of keeping the real part of Vpo more at-
tractive was not made, the trends shown in Pig. 8
strongly suggest that the correction to our model is
repulsive. It is interesting to consider the most likely
source of this correction.

In the first place, our treatment of the three-body
Hamiltonian could be inaccurate. But precisely because
it is the low partial waves that are in question here, we
feel that this is unlikely. ' In any case, all calculations
we are aware of which start from a three-body Hamil-
tonian give a small attractive correction from breakup
to the deuteron optical potential ""'~

A much more likely possibility is that we are here
"It can be shown (Rei. 37) that the improvement in the fit to

experiment that is obtained by adjusting the reflection co-
efficients produced by the coupled equations to equal the gl.L,

~~
for L&7 is much smaller than the improvement achieved by
altering the real part of Vpp by &0 Pg.
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qL, z, for d+¹iat Eq=21.6 MeV.
The solid curve is generated by
V~~ and the dashed curve is
generated by the coupled equa-
tion (38) with Voo replaced by 0.9
Re (Voo)+o Im(Voo).
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probing the inadequacies of the three-body model Ham-
iltonian (effective interaction) we have assumed. Thus,
for example, in order to perform calculations in our
model it is necessary to come to a decision concerning
the nucleon optical potentials to be used. A limited
investigations~ performed with alternative nucleon
optical potentials" has shown that our results are not
significantly altered by this ambiguity. There is, how-
ever, an uncertainty in the energy at which the nucleon
optical potentials are to be evaluated. We have chosen
local potentials at the energy Ezj2. If we assume that
the energy dependence of the observed local nucleon
optical potential is entirely associated with nonlocality
of range small compared to the size of the deuteron,
it can be shown that this is a very accurate prescrip-
tion. '" This may be a reasonable assumption for the
real part of the effective interaction which according to
Austern and Richards" is dominated by the neutron and
proton Hartree-Pock potentials 5' However, Austern
and Richards" have shown that there are expected
to be definite corrections to the imaginary part of the
effective interaction we have assumed. These correc-
tions would remedy an obvious defect in the effective
interaction we have assumed: It cannot generate that
portion of the three-body wave function which de-
scribes stripping into bound states because the nucleon
optical potentials have fixed imaginary parts. It is to
be noted, however, that as far as stripping is concerned
the only use we make of the effective interaction is to
generate a three-body wave function to be substituted
in the right-hand side of matrix element (1). The
problem we have just mentioned becomes acute only
when the behavior of f&+'(p, e) for j r

~

far outside
the range of V „is considered.

A third correction to the effective interaction, which
is certainly present even to first order in the nucleon-
nucleon interaction, is the effect due to the Pauli ex-
clusion principle discussed in Refs. 9 and 52 and
estimated by Baumgartner" in a nuclear matter ap-
proximation. We have repeated Baumgartner's calcula-
tion with the Yamaguchi e-p interaction" and with
a simple Coulomb energy correction. We find that the
resulting real correction to Vpp is repulsive and very
sensitive to the Fermi momentum, the range of the
e-p force and the deuteron energy. For a 21-MeV
deuteron, we obtain results in the range +3 to +15
MeV. This effect is certainly of the order of magnitude
and sign required. We hope to return to a discussion
of this effect on another occasion.

Other higher-order corrections to the effective inter-
action have been discussed by Mukherjee. '
"I. Rosen, J. G. Beery, A. S. Goldhaber, and E.H. Auerbach,

Ann. Phys. (N.Y.) 34, 96 (1965);F. D. Becchetti, Jr., and G. %.
Greenlees, Phys. Rev. 182, 1190 (1969)."It should be mentioned here, however, that if nucleon optical
potentials evaluated at Eq, rather than Eq/2, are used to evaluate
V00 then the commonly assumed energy dependence of the nucleon
optical potential gives a repulsive coorection of 10 MeV to Voo."D. J. Thouless, Nucl. Phys. 75, 128 (1966).

C. Final Discussion

We have shown that for the reaction Ni(d, d)Ni
at 8~=21.6 Mev the scattering and absorption of
deuterons with angular momenta corresponding clas-
sically to the surface region of the target is accounted
for very well in terms of our model. It should be noted
that in this model by far the biggest contribution to
the reaction cross section is associated with the imag-
inary parts of the nucleon optical potentials that we
have assumed are present in the effective interaction.
The reaction cross section produced by Vpp alone is
.1735 mb. The reaction cross section produced by the
coupled equations is slightly less ('1693 mb) and in
close agreement with the reaction cross section gen-
erated by V~ql (1689 mb). This implies that the major
contribution to the deuteron reaction cross section
arises from inelastic deuteron scattering, stripping and
deuteron break-up and other channels involving excited
states of the target. The contributions from these
sources appear to be accounted for very well in terms
of the imaginary parts of the nucleon optical poten-
tials. In the model presented here, the main role of
breakup channels associated with the ground state of
the target is to redistribute the absorption among the
surface partial waves by producing more absorption
in the higher partial waves and less absorption in the
lower surface partial waves (see Figs. 3 and 6), i.e.,
by producing more absorption at large distances.

It is interesting to note that the elastic wave func-
tions generated by the coupled equations are very
similar to those generated by V&II for all partial waves.
We obtain no strong suppression of the wave functions
at short distances, in contradistinction to the work of
Ref. 41. Of course, according to the development of
Sec. II, the elastic wave function is not relevant to the
stripping calculation. It has been found"" that when
stripping calculations are performed using our modified
prescription results are obtained which are similar to
those obtained by suppressing the interior contribution
in a standard DWBA by large factors. '4'

Finally, we remark that the correction to the deu-
teron optical potential due to 5-wave breakup given
in Eq. (41) has some interesting properties. If the
coupling. potentials shown in Fig. 4 are approximated
by square barriers of height V and width 6, then it is
not difficult to show that the effect of the coupling
term in (41) is to add to the real part of Vz an equiva-
lent local term of order of magnitude

(M/5') O'V' sin2EsRs

in the nuclear surface. Here Ep is a measure of the
nuclear radius and &p is the local wave number in the
potential Vpp. The feature we wish to emphasize is that
this is a nonmonotonic function of the nuclear radius.
For V=5 MeV, b=2 F, and Es 2F ' (see Fig. 4)——
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the correction gives rise to oscillations as a function
of A'~' in the depth of Vq in the nuclear surface which
are similar in amplitude and wavelength to those
found by Percy and Satchler'4 in their accurate analysis
of the elastic data. Further investigations of this point
are planned.
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The structure of the "Si nucleus is studied using a variational procedure. The method of angular-
momentum projection from a deformed intrinsic state is applied, and each J~ state is projected from a deter-
minant which is variationally "best" for that state. This more general variational procedure includes
important vibrational correlations, which in "Si have hexadecapole character. The level spacings in the
energy spectrum improve considerably compared to those in the Hartree-Fock method followed by angular
momentum projection, and this leads to a much better agreement with the experimental spectrum. The
E2 transition probabilities, except for the 6+—+4+ transition, are also in good agreement with the experi-
ments.

I. INTRODUCTION

NUMBER of calculations' ' have been done in

.I recent years to study the low-lying states in "Si.
All the calculations which consider "Si to be deformed
and obtain the energy spectrum in either the SU(3)
model or the Hartree-Fock (HF) model have the
shortcoming that the energy spectrum is too dense

by about a factor of 2. Das Gupta and Harvey' dis-

cuss the possible reasons for this compression and sug-

gest that for the oblate HF solution there are residual
correlations (P vibration) which are of importance.
They then show that the states in "Si associated with
the oblate minimum can in fact be explained in terms

* Work supported in part by the National Research Council of
Canada (B.C.) and by the U.S. Atomic Energy Commission
(J.C.P.).' J. P. Bernier and M. Harvey, Nucl. Phys. A94, 593 (1967).

' S. Das Gupta and M. Harvey, Nucl. Phys. A94, 602 (1967).
3 S. N. Tewari and D. Grillot, Phys. Rev. 177, 1717 (1969).

of the rotation-vibration collective model, and suggest
that this additional degree of freedom should be in-
cluded in a many-body calculation.

Recently, Rowe4 has discussed several methods for
describing "vibrational" correlations in 6nite nuclei.
A comparison of these methods by Parikh and Rowe'
in the model of Lipkin et a/. ' has shown that the pro-
jected Hartree-Fock (PHF) approximation in which
the variation is carried out after projection, gives good
results for a whole range of situations. This goes from
the case where the nucleus is vibrational to the other
extreme where it has static deformation and includes
the transitional region in between. Similar results in

4 D. J. Rowe, Phys. Rev. 175, 1283 (1968).' J. C. Parikh and D. J. Rowe, Phys. Rev. 175, 1293 (1968).
H. J. Lipkin, ¹ Meshkov, and A. J. Glick, Nucl. Phys. 62,

188 (1965); X. Meshkov, A. J. Glick, and H. J. Lipkin, ibid. 62f
199 (1965); A. J. Glick, H. J. Lipkin, and N. Meshkov, ibid. 62,
211 (1965); D. Agassi, H. J. Lipkin, and N. Meshkov, ibid. 86,
321 (1966).


