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The approximate treatment of the nonlocality of the optical potential describing scattering from a set
of N nonoverlapping potentials is shown to lead to erroneous effective local potentials. The difficulty is
circumvented by constructing a local two-body ¢ matrix which leads directly to a local potential.

I. INTRODUCTION

HE scattering from a set of N nonoverlapping po-

tentials »(r—r;) is completely determined by the
single potential phase shifts! or by the on-shell { matrix
t(E, kg', kg). The optical potential describing scatter-
ing from NV such potentials? moving with wave functions
¢i(1;) is given to order N1 by

anm%MWEkMW&—m, (1)
F(g) = N—lzl exp(—ig-1) | ¢i(r) [*dPr
= [exp(—iq-1)p(r)d*r. (2)

To obtain Vopt(k, ko) in configuration space it is
necessary to know {(E, k, ko) off the energy shell, i.e.,
when

k| = | ko| Zke= 2mE/T?)"2.

However, the scattering will be independent of this
off-shell behavior if we do the calculation properly.
Unfortunately, the off-energy-shell extrapolation leads
to a nonlocality in the optical potential, since in general
{(E, k, ko) is not only a function of | k—Xkq | but | k+ko .
This nonlocality is usually treated approximately® and
an effective local potential is derived which depends
on the off-shell energy behavior of ¢ through the de-
rivative ¢/ (E, kg, kg), where

V(E,k k)= (9/9k)1(E, k, k). (3)

In this paper we indicate that this approximation
procedure destroys the property of independence of the
scattering on the off-shell behavior of ¢ and is therefore
inappropriate to this problem. We remove this difficulty
by constructing a local two-body ¢ matrix rendering
approximations unnecessary. The optical potential is
local.

r(Ekk)= X (2041)Py(k-ko)ti(kg, kr)

! even,odd

II. NONLOCALITY OF OPTICAL POTENTIAL

The nonlocality of the optical potential is measured
by the value of ¢/ (E, kg, kg) .2 In this section we show
that there is a wide range for ¢’ (E, kg, kg), even though
l(E, kE, kE) is fixed.

The wave function x describing the scattering from
a single potential v(7) is given by

X(kE', I') = exp(zkE-r)

__L/‘ exp(—ik'-1)t(E, k' kE)
272 kgt— k"¢

This equation for x(7) involves ¢ off the energy
shell because Eq. (4) determines x inside the potential
region which we will denote by r<a.

It is well-known that there are many potentials which
will give a wave function ¢, equal to x for r>a, but
different from x for r<<a. All will have the same { matrix
on shell. It is intuitively obvious that ¢’ (E, kg, kg) will
differ for each of these and that an effective local po-
tential which is just a linear function of the number ¢’
will lead to different answers for the scattering, con-
trary to the known exact solution of the problem. If
the reader is convinced that this is a difficulty, he may
skip to Sec. III. The rest of this section is devoted to
constructing ¢ matrices which illustrate how bad this
can be.

From Watson?* we have the equality

© 11 (B'7) m (k'Y ) 2R

(4)

— =4, (ker")j1(ker), (5

i), T o ie Jm(ker’)ji(ker),  (8)
where

m—I=even integer>0  and  >7">0.

With Eq. (5) in mind, we define a # matrix 7 such that

X fajmi<k7)¢E(7)jmi(kor)7’2(17'//ajmi(kaf)goE(r)jmi(kEr)r?dr. (6)
0 0
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1See L. H. Schick [Rev. Mod. Phys. 33, 608 (1961)7] for a review and earlier references.
2 K. M. Watson, Phys. Rev. 89, 575 (1953) Rev. Mod. Phys. 30, 565 (1958).

3 See, e.g., B. Mulhgan, Ann. Phys. (NY) 26,

159 (1964); _T F. Reading, Phys. Rev. 156, 1116 (1967). Here it is shown that

an effective local potential V,(r) is given by V.(r) = —21rh2m—‘p(r) XNt(E, kg, kg) [1—2xNp(r)¢'(E, kg, kg) .
4 G. N. Watson, Theory of Bessel Functions (Cambridge University Press, New York, 1952), 2nd ed., p. 429.
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In Eq. (6), ¢g(r) is some function zero for r>a and
m* is an even (odd) integer taken to be mt(m™) if [
is even (odd). If we take m* to be greater than the
maximum / value important in the scattering, we can
now use Eq. (5) to show that
(i) ¢(kg, 1), given by
¥(kg, ) =exp(ikg-1)
1 /‘ exp(—ik’-r)7(E, k', kg)
27 kg — ke

has the same form for r>a as does x(kE, 1), ie.,
T(Ey kE,) kE) =t(E: kE,y kE') 5
(ii) the nonlocal optical potential V, is

Vr=NF<k—k0)T(E: k: ko) 5
(iii) by choosing m* to be asymptotically large we
can find an effective local potential through 7/, where
T’(E, kE, kE) =2 E mitl(kg, kE) (21-}—1) (8)

! even,odd

@k, (7)

Now, by arbitrarily increasing m* or m~, we may
make | 7’ | as large as we like. This 7/ is arbitrary and
effective local potentials calculated from it are arbi-
trary. However, once again we emphasize that if we
calculated the scattering with V. exactly, we would get
the same answer to order N~! whatever the value of m=.

III. A LOCAL { MATRIX

We avoid the difficulty of approximating a nonlocal
potential by constructing a 7 which is already local, i.e.,

7(E, k, ko) =7(E, k—ko).
This automatically leads to a local optical potential®

V(E k k)=V(E q=NF(¢9)r(E,q), (9)
where
q=k—‘ko.
We write 7(E, q) as

7(E, @) = [ exp(—iq-1) or(r)d*r
=§ (214-1) PiL1— (¢2/2k*) Jta(km, kg).  (10)

This form has been studied in relationship to Regge
poles and the function 7(E, q) is well defined.® To cor-
rectly identify ¢(kg, r) with x(kg, r) in the region
7> a, it is necessary that ¢(7) is zero for > a. We may

5 The reader will note the similarity between this expression
and that found by Glauber [see R. Glauber, in Lectures in
Theoretical Physics, edited by W. E. Brittin et al. (Interscience
Publishers, Inc., New York, 1958), Vol. 1.

% See, e.g., R. C. Newton, The Complex j-Plane (W. A. Ben-
jamin, Inc., New York, 1964).
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show that this is the case for a nonsingular potential
v(7) by noting that for sufficiently large ! we may use
the Born approximation to determine /;(kg, kg). Thus,

(—2m/4xti?) [ 72 (kgr)v(r)r2dr={ jP(kur) o (r)r*dr,
for all / sufficiently large.* This implies that
o(r) = — (Zm/4xti*) v(r)

in the region near r=ga, hence the result.”

We have not been able to give a convincing proof
that 7(E, ¢) is the only local ¢ matrix we can write
down. However, it does not matter if it is not, since
it is well defined in terms of the on-shell properties of ¢.
Calculations with V, are now straightforward.

IV. CONCLUSION

To apply this theory to scattering from real nuclei
we have to convince ourselves that consecutive colli-
sions occur with nucleons that do not overlap. The
constant density property of nuclei makes this state-
ment valid to order N7, i.e., repulsive core correlations
and the exclusion principle ensure that most nucleons
are interacting with only one or two nearest neighbors
at any one time. Recoil effects make no intrinsic differ-
ence to the conclusions drawn from scattering from
potentials.? However, we must, of course, correct the
impulse approximation.®

As far as practical applications are concerned this
theory removes a stumbling block noted by Reading
and MacKellar® in the 90-300-MeV energy region for
nucleon-nucleus scattering. There it was found that
t' was very sensitive to the assumed effective mass m*
of the struck target nucleon. Now we can ignore the
nonlocality altogether. Its sensitivity no longer presents
a problem. Finally, we note that the optical potential at
small 7 is sensitive to 7 (E, ¢) at large ¢ and that 7(E, q)
will be dominated by the Regge amplitude in that
region. Hence, information on optical potentials for
small » may give information about Regge trajectories.
This is not off-energy-shell information, since once all
the phase shifts are known the Regge trajectory follows
in principle, though not necessarily in practice.
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