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the exact wave function zfz from the truncated repre-
sentation for g, i.e., what is V,qq if

(1—PgV, tt) P= 0

yields the exact wave function given in Kq. (51). Since
we can write Kq. (52) as

S=PgVL1/(1 gQV—) j4
and using the calculable expression for (1—gQV)
from Kq. (51), we obtain

P= PgV(1+Gpl) [1/(1+GpPl GprtpGoQl)]f

We then see that the effective operator which permits
the use of a truncated representation for g, and yet
yields the exact wave function, is

V,tt= t[1/(1+GoPt GortsG—oQt) g.

Neglecting the compact operator in the denominator of
V ff we see that the wave function should again be
approximately calculated from the lowest-order term:

Q~Pgtf.

We see that the t operator of the residual interaction
rather than the residual interaction potential is the one
that appears in a convergent formulation of three-body
shell-model calculations if only a finite set of basis
states, Pf, is used in the diagonalization of the residual
interaction. Calculations that use an approximation for
the t matrix have recently been performed by Hodgson. "
He finds that there is no definite improvement over a
calculation that just employs the potential. Kuo and
Brown" make use of the second Born term in the series
for t, i.e., t V+VGpV. They use core polarization
states in the intermediate states of the term VGOV.
This implies that Kuo and Brown have included a
structure in the core and have departed from a strict
three-body shell-model interpretation of the problem.
At any rate, they find the second Born term to be im-

portant.

"R.J. W. Hodgson, Phys. Rev. 156z 1173 (1967).
24 T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
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A detailed study of the wave properties of the nuclear optical model is presented to elucidate the problem
of barrier penetration by charged particles and to remove some of the mystique of optical-model calcula-
tions. The wave properties and the concomitant penetration are most straightforward for square wells,
for which the resonance, reflection, and penetration are easily ascribed to separate factors. We show that
the wave properties of more general diffuse-edge optical potentials achieve a similar simplicity by the
construction of an equivalent square well (ESW) which has the same resonance, penetration, and absorption
factors as the optical potential, but which differs in its reflection factor. A general construction of the ESW
is given, and we apply it to the following problems: (1) the very narrow single-particle resonances of real
optical potentials that occur at energies far below the Coulomb barrier, (2) the nuclear absorption cross
sections in the presence of barriers, (3) the calculation of absorption cross sections at astrophysical energies
(extreme barrier penetration) employing optical models fitted to data at higher energies, and (4) the value
of the nuclear radius and sum-rule limits appropriate to the analysis of nuclear reactions. In some cases of
extreme barrier penetration, the ESW fails to yield all the properties. For example, cases are described
where the bulk of the absorption may attain in the distant "tail" of the imaginary term in the optical
potential: The corresponding reaction rates can yield information about the behavior of the nucleus at
distances much beyond the normal nuclear radius.

1. INTRODUCTION

l BHE behavior of most nuclear reactions at low.energy —particularly those of interest for astro-
physical systems —is dominated by Coulomb and
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angular-momentum barriers. Early treatments' 3 of
such reactions employed a simple picture: the "black-
nucleus" or "black-box" picture. In this picture, a
bombarding particle was viewed as passing through
known Coulomb and angular-momentum barriers up to
the nuclear radius. At the nuclear radius, it was ab-

' G. Breit and E. P. Wigner, Phys. Rev. 49, 519 (1936);49,
642 (1936).

2H. A. Bethe, Rev. Mod, Phys. 9, 69 (1937).
3V. W. Weisskopf and D. H; Ewing, Phys. Rev. 5'7, 472

(1940); J. Blatt and V. W. Weisskopf, in Theoretical Nuclear
Physics (John Wiley R Sons, Inc., New York, 1952).
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sorbed by the "black box." This early picture was
based on the short range and great strength of the
nuclear forces.

During the last two decades, a microscopic model of
nuclear structure has emerged which has changed our
view of nuclear reactions and of barrier penetration. In
spite of the short range and great strength of nuclear
forces, it has been found that, in zero order, nuclei may
be regarded as composed of neutrons and protons
moving in orbits or shells and interacting with moder-
ate potentials of finite range. The single-particle orbits
or shells are those of an appropriate average potential
well. The vestiges of such a single-particle picture
remain in nuclear reactions. The neutrons and protons
at low energy exhibit "giant" resonances4' at the
position of the single-particle levels of the average
potential well. The resonances are broadened by
nucleon-nucleon interaction, and, at high energy, the
observed resonances resemble' those of the Ramsauer-
Townsend effect in the electron bombardment of
atoms.

The optical model of nuclear reactions accounts for
the observed single-particle eRects. ~ In the optical
model, the interaction of a bombarding particle and a
target nucleus is depicted in terms of a complex po-
tential well. The real part of the potential refracts the
incoming waves and the imaginary part absorbs them.
The magnitude of cross sections is determined by the
magnitude and shape of the optical potential. When
Coulomb and angular-momentum barriers are present,
the whole real potential of the system is the sum of the
real part of the optical potential with the Coulomb
potential and centripetal potential. Our aim in the
present paper is to understand the formation of the
compound nucleus in the presence of barriers and
optical potentials. The absorption of waves by the
imaginary part of the optical potential yields the
compound. -nucleus formation cross section, and the
barriers dominate the behavior of the wave amplitudes
in the absorbing region.

The formation of the compound nucleus has the
following aspects, which are treated in subsequent
sections of this paper:

(1) On the one hand, the optical model is a wave
model and deals with the simple properties of wave
penetration, refraction, reQection, and absorption.
On the other hand, the optical potentials in common

' H. H. Barschall, Phys. Rev. 86, 431 (1952).
5 See, for example, E. Almqvist, D. A. Bromley, J. Kuchner,

and E. Vogt, in Proceedings of the International Conference on
Nuclear Structure, Eingston, edited by D. A. Bromley and E.
Vogt (University of Toronto Press, Toronto, Canada, 1960),
p. 736.

'K. W. McVoy, Phys. Letters 17, 42 (1965); Ann. Phys.
(N.Y.) 43, 91 (1967); see also J. M. Peterson, Phys. Rev. 125,
955 (1962).

7 H. Feshbach, C. E. Porter, and V, W. Weisskopf, Phys. Rev.
96, 448 (1954); G. R. Satchler, in Internctionu/ Nuclear Physics
Conference, Gutlinberg, edited by R. L. Becker et cl. (Academic
Press Inc. , Neer York, 1967), p. 1.

usage~ have many phenomenological parameters. In
order to understand how variations in the parameters
affect cross sections, it is useful to describe the re-
lationship between the parameters and the basic wave
properties.

(2) Many of the reactions of interest in astrophysics
occur at such low energy that they are rarely measured
in the laboratory. In such cases, it is tempting to use an
optical model which 6ts the more abundant data at
higher energies to calculate the desired rates. Thus, the
optical model serves as an extrapolation formula.
Our analysis of the wave properties for the nuclear
optical model allows us to understand the factors
affecting the extrapolation.

(3) The early black-nucleus models are still fre-
quently employed, particularly in astrophysical
calculations where a very large number of reaction
rates are required in a single calculation. The optical
model is then often too cumbersome. It is therefore
useful to know the relation between the cross section
of the black-nucleus model and the corresponding cross
sections of the optical model. We develop such relation-
ships (Secs. 2, 3) as part of a general connection
between diGuse-edge potentials and square wells.

(4) The theory of resonance reactions'' is a very
general and powerful framework for describing nuclear
reactions. It has been successfully applied to the
analysis of compound-nucleus resonances and to the
cross sections of the statistical theory of nuclear re-
actions' in which averages are made over the com-
pound-nucleus resonances. It provides a justification"
for the description of the average cross sections by an
optical-model potential. Nonetheless, the resonance
theory has some of the undesirable features of the
early black-box picture. For example, it relies ex-
plicitly on the use of a definite nuclear radius. Many
of the common results of the resonance theory imply
a square edge to the nuclear surface. In an earlier
article, "one of us tried to show how the diffuse edge of
the optical model couM be accommodated in the
general resonance theory for neutron reactions. That
accommodation is extended in the present article
(Sec. 4) to cover reactions involving Coulomb and
angular-momentum barriers.

(5) In seeking to describe all nuclear rea, ctions with
the physical ideas of the optical potential, we need to
reexamine the value of the nuclear radius. In the
several decades during which the simple black-nucleus
picture was employed to describe nuclear reactions, the

'L. Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. U.S.
27, 281 (1941);E. P. Wigner, Phys. Rev. 70, 15 (1946); 70, 606
(1946); E. P. Wigner and L. Eisenbud, ibid. 72, 29 (1947); T.
Teichmann and E. P. Wigner, ibid. 87, 123 (1952) .

fl A. M. Lane and D. Robson, Phys. Rev. 151, 774 (1966).
'0 E. W. Vogt, in Advunces in Nuclear Physics, edited by M.

Baranger and E.%. Vogt (Plenum Press, Inc., New York, 1968),
Vol. 1, 261.

» A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys. Rev.
98, 693 {1955)."E.W. Vogt, Rev. Mod. Phys. 34, 723 (1962).



866 MICHAUD, S CHERE, AND VOGT

usual choice of radius' was 8= 1.4 (AP'+A'") fm.
Here, A~ is the atomic weight of the target nucleus and
A2 that of the bombarding particle. The nuclear radius
of the optical model is determined quite sensitively by
the fits to the diffraction patterns of elastic scattering
data, and it turns out to be much smaller, e.g., for
nucleons, its value is approximately 8= 1.25 A&'~' fm
(In turn, the nuclear-charge radius as measured in
elastic scattering is smaller still; the charge radius
is E.= 1.09 A~'~' fm. The small difference of this radius
from the normal radius of the nucleon-nucleus inter-
action lies in a number of effects, such as core polari-
zation, which are beyond the scope of the present work. )
There is an overwhelming amount of recent evidence
suggesting that the smaller optical-model radius is the
right one. Why was the earlier model wrong for several
decades, particularly for reaction rates involving
barriers where the cross section depends quite strongly
on the choice of nuclear radius? Our elucidation of
the optical potential suggests a fairly universal ex-
planation. The early black-nucleus model implied a
square nuclear edge and therefore had an unrealistic
amount of wave reAection. It compensated for this
attenuation of absorption by an appropriate increase in
the nuclear radius.

Some preliminary results of our present investigation
were described briefly in an earlier paper. " In our
present paper, we try to give a complete account of all

aspects of barrier penetration and the other wave
properties within the scope of the optical model.

We begin our analysis (Sec. 2) with a comparison of
the wave properties for diffuse-edge optical potentials
and for similar square wells. The motive for bringing
square wells into the analysis is twofold: First, the
various cross sections for a square well can be written
in the simple, familiar forms which make possible
easy evaluation of the wave properties; second, for a
square well, the basic wave properties are easily
separated —barrier penetration occurs only beyond the
square-well radius, reQection occurs at the square-well
radius, and absorption and resonance within the square-
well radius. The vehicle for the comparison (Sec. 2)
is the absorption cross section. The comparison yields
the dominant result of our work. It is found that for
each diffuse-edge optical potential an equivalent
square well can be defined uniquely. The cross sections
of the diffuse-edge potential have the same simple form
as those of its equivalent square well, with all the basic
wave properties clearly separated. The only quanti-
tative difference between the wave properties or cross
sections of the two wells is shown to reside in the
penetration and shift functions. The conventional
square-well penetration and shift functions apply to
the diffuse-edge well when they are multiplied by a re-
Aection factor that depends on the surface thickness and

"E.W. Vogt, G. J. Michaud, and H. Reeves, Phys. Letters
i9, 57O (~'965).

reduced mass but not on the charge, energy, or angular
momentum of the bombarding particle. Thus, the
breakdown of the optical model into basic wave proper-
ties is achieved by means of equivalent square wells.

In Sec. 3, we carry out, for diffuseedge optical
potentials, the explicit construction of equivalent
square wells and determine the corresponding re-
Qection factors. In Sec. 4, we show that our analysis
of wave properties based on the behavior of absorption
cross sections (Sec. 2) also applies to purely real
wells. The sharp resonances of a diffuse-edge real
potential are given approximately in terms of the
sharp resonances of the equivalent square well when the
penetration factor and shift function of the latter are
multiplied by a known reRection factor. In Sec. 5,
we describe the behavior of general optical-model
absorption cross sections and the circumstances under
which there are some departures of the wave properties
from those which may be dealt with in terms of equiv-
alent square wells. In Sec. 6, we use our analysis of the
basic wave properties of the optical potential to discuss
the uncertainties in the conventional approach of
astrophysics to the problem of extreme barrier pene-
tration. In Sec. 7, we discuss a number of conclusions
resulting from our work, including the place of the
nuclear radius in the analysis of nuclear-reaction data.

The optical model has a firm foundation only for
nucleon reactions, but it has also been found to be a very
useful tool for describing heavy-ion reactions. It is
more ambiguous for heavy ions—the resonance effects
that are the strongest signature of the optical model
are largely missing in this case—but it can accom-
modate the strong absorption and the diffuse nuclear
edge that are of importance for heavy ions. Therefore,
the optical model is perhaps the best simple model for
dealing with heavy ions. Because of the mass and charge
of the heavy ions, many of their basic wave properties
are more complex than those of nucleons. Such re-
actions serve as a useful measure of the success of our
approach. Although we shall seek to be general, most of
our results will be illustrated with a particular case:
the interaction of n particles with "S. This example
offers extreme barrier penetration and is typical
of the astrophysical reaction rates to which our results
might be applied.

Recently, a modified version of our methods was
applied to an extreme case of barrier penetration —that
of cx decay in heavy nuclei. " Other applications are
suggested in the following sections.

2. COMPARISON OF ABSORPTION CROSS
SECTIONS OF DIFFUSE-EDGE OPTICAL

POTENTIALS WITH THOSE OF
SQUARE WELLS

In order to display the basic wave properties of
diffuse-edge optical potentials, we shall compare them

"L. Scherk. and E. W. Vogt, Can. J. Phys. 46, 1119 (1968).
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W(r) =—Wp{1+expP(r—Ep)/&} ', (2)

which is called "volume absorption, " or, alternatively,
W(r) is chosen to be larger in the region of the nuclear
surface (this choice is called "surface absorption").
In the main part of our discussion, we will choose
volume absorption in order to be specific. In Sec. 5, we
will discuss in some detail the effect of the shape of
W(r) on the wave properties. The depth parameter Wp

typically has a value of 2-5 MeV for nucleons and
somewhat larger values for heavy ions.

We have chosen to concentrate on the principal
terms {Eq. (1)$ of the optical potential because the
other terms, which we neglect, do not modify our main
results concerning wave properties. For example, the
spin-orbit coupling term which is proportional to
1 s (where 1 is the orbital angular momentum and s
the spin) makes the optical-model phase shifts depend
on both 1 and j (j=l+s). Our treatment below,
then, also must be carried out separately for each
value of l and j.Similarly, the isotopic-spin term, when
important, makes it necessary to treat neutrons and
protons on a common footing and leads to unusual
cross-section. contributions such as the "quasielastic"
(p, r/) reactions. We could also accommodate such
terms in our analysis. However, to clarify the wave
properties we will ignore such refinements and deal
only with the dominant terms of )Eq. (1)j.

The optical potential of Eq. (1) {.or the Woods-
Saxon potential that the particular well shape of Eq.
(1) is frequently called] will be shown to exhibit all
of the basic wave properties such as barrier penetra-
tion, resonance, reflection, and absorption. The most
straightforward manifestation of these properties
occurs in the absorption cross section, and we therefore
choose to begin our analysis with it.

For any reaction channel a(a labels the pair of re-
action products and their state of excitation) de-

with square wells for which the wave properties are
much more perspicuous. We begin by choosing and
parametrizing those terms of the modern nuclear
optical potential that are of interest to us.

For most scattering and absorption cross sections, the
principal terms of the optical potential may be written

V(r) = —V,{1+exp{(r—8,)/ag} '+iW(r). (1)

Here, Vo is the "depth" of the real part of the potential
and has a value in the neighborhood of 50 MeV for
nucleons and considerably more for heavy ions; Eo
is the nuclear radius whose value is about 1.25 A'I'
fm for nucleons (where 2 is the atomic weight of the
target nucleus) an.d a slightly larger value for heavy
ions; u is the "surface thickness, "which has a value of
about 0.5 fm for nucleons and heavy ions, and iW(r)
is the imaginary term of the optical potential that
leads to absorption. The imaginary term is usually
chosen to have a shape either like that of the real term,

scribed by an optical potential with phase shifts
8 ~, the absorption cross section is

o (abs) = (p/k. ') Q (2l+1)T((a),

where
T&(a) =1

I exp(2i8 &) I' ~

The T~(a) are called nuclear transmission functions.
All of the properties of the absorption cross section are
those of the transmission functions or, equivalently,
those of the phase shifts. Therefore, the numerical
calculation of the absorption cross section is straight-
forward —one needs merely to integrate the Schrodinger
equation containing the optical potential to a large
distance, where the decomposition of the wave function
into incoming and outgoing waves yields the phase
shift. But the numerical solution does not display the
wave properties. To see these, we first examine the
transmission functions of a complex square-well po-
tential.

The transmission function of a complex square well
of depth —(Vp+iWp) and radius R may be written

(For a derivation of this result and a detailed discussion
of nuclear transmission functions see pp. 281—295 of
Ref. 10.) Here P/ is the usual penetration factor (used
in nuclear-reaction studies)

PI=k R /P'P(k R )+GP(k 8 ) g, (6)

where Ii~ and G~ are, respectively, the regular and ir-
regular Coulomb wave functions of the channel 0..
The S~ are the usual shift functions of nuclear-reaction
theory

rPrdPr/dr+rGidGi/dr)
p2+G2

in which the b & are boundary-condition numbers de-
termined by the resonance properties of the well (see
below). Finally, we have f &(=—f /n'+if~P ) related
in the following way to the logarithmic derivative of
the wave function inside the square well j&(K r):

The f ~ are complex numbers because the E are com-
plex:

E'~—=L(2m~/5') (E+Vp+iWp) J". (9)

The quantities f & refer to the properties of the square
well, while the quantities I'~ and S~ refer to the external
properties. The transmission functions LEq. (5) ]
clearly exhibit absorption and barrier penetration in
separate factors. The manifestation of resonance and
reflection requires further analysis.

To exhibit the "resonances" of . the transmission
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functions of the square well, we take the real part of
the potential and And the normal modes or resonances.
The normal modes are solutions of the Schrodinger
equation, which vanish at the origin and satisfy a
suitable boundary condition at the square-well radius.
If we write the solutions as A„ij i(K~tr), where A~i is
a normalizing constant and Kpi= [2m—~6 '(E„i+Vp) j' '
is the discrete value of the wave number for which the
following boundary condition is satisfied:

(10)

The correct value of the boundary condition number
b & is that which makes the shift function [Eq. (7) $
vanish at the energy of interest. "The normal modes
have single-particle energies;

E„i=(5'/2m„) K„P—Vp.

The f i are given quite generally in terms of spherical
Bessel functions of complex arguments. Alternatively,
we can give them in terms of the normal modes or
resonances of the real part of the potential. By using
the completeness of the resonances, we find

'8"
11f i —=prsi=Q . .. ( )

(Ei,—E)yi„' +"si (E') dE'

„(Eii,—E)'+ Wp' E' E—
where I' stands for the principal value of the improper
integral and y~„ is the single-particle reduced width.
If we choose the boundary condition number to be
b i

—I (which woul——d be correct for neutral particles
in the low-energy limit), then y&„'——5,'/m R '. The
quantity si defined by Eq. (11) is usually referred to
as the strength function.

The nuclear strength function of Eq. (11) clearly
exhibits a resonance structure. Using the corresponding
value of f ir in the transmission function [Eq. (5)j
or in the absorption cross section [Eq. (3)j shows that
these resonances also are expected to appear in the
data. There is much evidence for them in low-energy
nucleon absorption. For heavy ions, the values of 8'0
are larger and the values of E„closer together, so that
the data do not usually exhibit resonances.

The reQectivity of the square well can be traced to
the penetration factor. For l=0 absorption of neutral
particles, we have no Coulomb or angular-momentum
barriers, and, therefore, the penetration factor [Eq.
(6)j becomes Pp kR . Near threshold, t——he strength
function remains finite, but I'0 vanishes as E ".This
vanishing of I'0 can be traced to total reQection of the
wave approaching the square-well radius from either
side.

Having displayed absorption, barrier penetration,
resonance, and reRection for square wells, we now seek
to compare the corresponding quantities for di8use-edge
wells with our earlier results. It might appear reasonable

4Pi/KR

(1+Pi/KR )'+ (Si/KR )' (14)

= [4k/K j(1+kK)'$ for s-wave neutrons.

At low energies (k«(K), all the transmission functions
of the black-nucleus model (even those for s-wave
neutrons) are very small because of wave reflection or
wave penetration. At higher energies (P~kR, k—&K),
the black-nucleus transmission functions approach
their maximum value of unity.

Like the square-well model, the black nucleus has
more reQection than a real nucleus. To understand the
wave analysis of the black nucleus, we can compare it
to a wave-guide problem" in classical electromagnetic
theory. The bombarding wave approaches the nucleus,
which is treated like a resonating cavity. The cavity
is tuned so that waves propagate inward at the cavity
entrance E with the given wave propagation number
E. The tuning to accomplish this is not easily dupli-
cated by a potential-well model. Just as it is difficult to
build resonating cavities which are tuned in a certain
way for all wavelengths, it is impossible to make
optical-model potentials for which the black-nucleus
conditions apply at all energies. The black-nucleus
transmission functions completely lack the resonances
of the square well: The square-well transmission
functions oscillate about the black-nucleus trans-

15M. Austern, A. Prakash, and R. M. Drisko, Ann. Phys.
(N.Y.) 39, 253 (1966).

to begin with a decomposition of the transmission func-
tion, as in Eq. (5). There is no feature of the decompo-
sition of Eq. (5) that does not apply to an arbitrary
well shape. Ke can always choose a matching radius,
evaluate Pi and Si for that radius (taking account of
the modification of P& and 5& by the tail of the complex
potential), and evaluate the logarithmic derivative

f i for the complex potential at that matching radius.
Indeed, we can even decompose the logarithmic deriva-
tive of any well to exhibit the resonances as above.
But how do we choose the matching radius' How do
the penetration factors, strength functions, resonance
energies, etc. , depend on well properties' In our
answers to these questions will reside our analysis of
wave properties.

Before adapting our exposition to diRuse-edge
potentials, we illustrate the decomposition of the
transmission function [as in Eq. (5)j by the black-
nucleus model, which is not a potential model at all.
In this case it is assumed that there are only incoming
waves for r&R . Replacing ji by e 'x" in Eq. (8) and
choosing b ~= 0, we then have

f.i =i/KR. .

Using this value off i in Eq. (5), we obtain the black-
nucleus transmission functions
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NORMALIZED RESONANCE STATES
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I"zo. 1. Comparison of the low-laying resonant states of the square well and of the corresponding diEuse-edge well for s-wave neutrons.
Once the depth and radius of the square well are adjusted so that both wells have a resonance with the same reduced width at 8=
—0.43 MeV, all other low-lying resonances in the two wells occur at very closely the same energy and with very nearly the same re-
duced width (expect for the reduced width of the resonance at E= —53 MeV) . It is then possible for a square well to reproduce the
interior properties of resonance of a diffuse well. The diGerence between the two wells is then contained only in the penetrability and
shift functions.

mission function if we choose E to have the same
value for both. The two transmission functions have the
same mean value. We show below that the transmission
functions of a realistic nuclear optical potential have
a larger mean value than both of the above models
because the diffuse nuclear edge gives less reflection
than a square edge. The black nucleus suffers the same

unrealistic reflection because of the sudden change in
the wave number at R . Thus the black-nucleus model
fails to a considerable degree in its main objective of
optimizing nuclear absorption.

Much of the above wave analysis can be adapted
at once to a realistic nuclear optical potential. For
example, the decomposition of the transmission func-
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FIG. 2. Comparison of 72 of protons for di8erent values of the surface thickness a. Because the transmission functions are close to
1, it is necessary to compare ~& to obtain the reQection factors. The v & are obtained from the transmission functions by using T&=
Tf) (1+re/4)'. It is seen that by multiplying r&(a=0) by a factor f(a), independent of energy, that one gets an excellent approximation
to v2(a &0) . The interior of the two wells must then have very similar resonance properties. Only the penetrabilities vary. It then seems
possible, as it was for neutrons, to replace a diffuse well by a square well.
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Fio. 3. The shape of the real potential for s-wave protons (s'S+p) . The Coulomb potential (V,) does add a radius-dependent term.
However, its radius dependence is much weaker than the radius dependence of the nuclear potential (Vow) . In first approximation,
the Coulomb field adds only a constant term that does not change the re6ection properties of the two wells. Protons should behave
like negative-energy neutrons. As is the case for neutrons, it should then be possible to find an equivalent square well (VFaw) for
changed particles. The difference between the two wells should again reside only in the reflection factor. This is vindicated by I'ig. 2.
In this example, the nuclear potential is chosen to have a Woods-Saxon shape with depth 50 MeV, radius 3.96 fm, and surface thickness
0.5 fm.

tion as in Eq. (5) still applies except that Pi, S&, and

f, i are modified, and the choice of a matching radius at
which these three quantities are to be evaluated is no
longer obvious. The decomposition is valid for an
arbitrary choice of matching radius, but, for our pur-
poses, a well-defined choice will turn out to be useful.
For an arbitrary radius we can find P& and 5& from the
logarithmic derivative of an outgoing wave O~,

rdOi/dr rdFi/dr+i rdGi/dr

Oi Fi+i Gi

(for large r)
= Si+b.t+iPg

(at the matching radius) (15)

simply by making the analytic continuation of the
logarithmic derivative to the matching radius, as
indicated. Similarly, f & is still given by Eq. (8) if,
in Eq. (8), we replace j& by the appropriate regular
wave function of the optical potential.

There are two important factors which narrow down
the choice of matching radius in such a wave analysis.
First, the nuclear surface of realistic potentials is still
quite sharp Ltypically, a/Rs in Eq. (1) has a value of
0.1j. Second, the resonance conditions themselves do
not allow much freedom of choice. Considering the
nucleus as a wave guide, we think of setting up normal
modes or resonances. If we include in our definition
of the wave guide part of the transmission channels
that lead into it, then the resulting large —artificially
large —dimension of the guide gives it unusual proper-
ties. Even when our wavelength is close to that of one
of the artificial normal modes, the one-mode ap-
proximation is poor. In the nucleus, the one-level
Breit-Wigner formula breaks down. We must choose the
matching radius to lie reasonably close to Ep.

In an earlier work, "one of us showed that for s-wave
neutrons there existed a very simple correspondence
between the optical potential [Eq. (1)g and a square
well of very nearly the same radius. Figure 1 shows the
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resonance behavior or that diferent phenomena occur under the Coulomb barrier. It will be seen ln the next sections that most of the
energy variations of the ratio come from choosing two wells which do not have the same interior properties. Absorption in the barrier
will be seen to become dominant only at very low energy (E(1MeV in this case) .

important features of the correspondence. With the
radii the same, the depth of the square well is adjusted
so that the resonances near zero energy coincide for the
two wells. With this choice it turns out that all of the
resonance energies and all of the reduced widths of the
two wells are the same. The two wells have exactly
the same resonance proper ties. But the penetration

functions and shift functions of the two wells are dif-
ferent. For the square well, the bracketed term of
Eq. (7) is equal to l at low energy, and, therefore, it is
naturaV' to choose b ~

——l so that S~=O. For the dif-
fuse-edge well, one obtains b I, by calculating the
analytic continuation of the bracketed term and by
choosing b & so that S& vanishes at low energy. The
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correspondence of Fig. 1 is obtained with this choice.
The penetration factors of the two wells differ by a
constant factor f which is nearly energy-independent.
As shown first by Peaslee, "f can be well approximated

by
f=~Ka coth~Ka, (16)

which has a value of about 2.5 for the optical potentials
in common use for nucleons. The factor f accounts for
the difference in reAection of the diffuse edge and
square edge.

For s-wave neutrons, the correspondence between
the optical potential and its equivalent square well

extends to all cases, from real wells with narrow
resonances to complex potentials with broad peaks in
the transmission functions. In all cases, the square-
well results apply also to diffuse wells if we merely
multiply the square-well penetration function and shift
function by the refiection factor f. Thus the whole wave
analysis is established for the diffuse-edge wells.
The correspondence of Fig. 1 was established for
purely real wells. It extends to complex potentials
too because we can include an imaginary term of
square shape in the real logarithmic derivative simply
by replacing E by E—iWO. Thus, Eqs. (11) and (12)
apply to the diffuse-edge well also. The shape of the
imaginary term is of little consequence because there
is little refiection from the imaginary term (see, how-
ever, Sec. 5). When the transmission functions are
much smaller than unity, they can be well approxi-
mated by

T=4~P(s' f. (17)

Here, they clearly show the common resonance and
penetration factors of diffuse-edge and square wells
and the reAection factor that distinguishes them.

The earlier analysis applied to s-wave neutrons, and
it is not at all clear that in. the presence of Coulomb
barriers it is possible to decompose the transmission
functions into wave properties in quite the same
simple way. It turns out to be so for protons, as we
show on Fig. 2. Here, transmission functions are shown
well below the Coulomb barrier for d-wave protons.
The radii of all the wells are the same, but the well
depths are adjusted to make resonance energies coin-
cide roughly. /The adjustment procedure is the
following: If V(r) is the real part of the optical po-
tential, the

V(r)r dr

"D. C. Peaslee, Nuc1. Phys. 3, 255 {1957).

is taken to be constant for all potentials. ] Although
there is strong barrier penetration here, the relation
between the various transmission functions is still that
of Eq. (17).

It is not dificult to understand why the same

prescription works for protons. Figure 3 shows the sum

of the nuclear and Coulomb potential for the optical
model and its equivalent square well. The point is
that the Coulomb potential varies little in the surface
region (encircled). Within the surface region, we might
approximate the Coulomb potential as being constant.
Then our refl. ection problem is exactly like that for
s-wave neutrons of negative energy E—8, where 8 is
the barrier height. The earlier analysis would apply to
this case.

It was surprising to us that the simple relationship
between diffuse-edge wells and square wells appeared
to break down completely for heavy ions. Figure 4
shows a similar ratio of tra, nsmission functions for
"S+'He. The expected refiection factor in this case is
f=4.6, according to Eq. (17), but the ratio of trans-
mission functions is much larger. Moreover, it varies
strongly with the energy and depends strongly on the
orbital angular momentum.

There is a simple way in which the wave analysis
for heavy ions is restored to the simplicity of that for
nucleons. We explained that the matching radius for
the optical potential had to be chosen to be reasonably
close to Eo, the midpoint of the surface. But it does not
need to be exactly Eo. In Sec. 3, we show that if we
choose R =Ro+hR with hR—clearly defined and
evaluated —we again get results as simple as those of
Eq. (17). The role of AR is important for heavy ions
and not for nucleons because the more massive heavy
ions have wave functions which oscillate more rapidly
(the wave guide commences earlier).

3. CONSTRUCTION OF EQUIVALENT
SQUARE WELLS

For arbitrary optical potentials of the kind in Eq.
(1), we wish to construct equivalent square wells

(ESW) in order that we may display the basic wave
properties of the potential. According to the approxi-
mate view of nuclear reactions depicted on Fig. 3,
Coulomb barriers have no great effect on the refl.ection
of a diffuse-edge optical potential, nor do angular-
momentum barriers, as we shall show below. The
problem of displaying the wave properties is then re-
duced to the case where we have s-wave neutral par-
ticles. According to earlier work, " the ESW for the
case of s-wave neutral particles is independent of the
energy of the particles or of the absorptive (imaginary)
term in the optical potential. We can therefore con-
struct the ESW using the scattering of zero-energy
s-wave neutral particles in only the real part of the
optical potential. The depth, radius, and reAection
factor of the ESW constructed in this way are ex-
pected to apply to all the other, more complicated,
cases as well. In later sections, we show to what extent
the ESW is universal, and to what extent it enables us
to display the basic wave properties for all cases.

Having reduced the construction of the ESW to the
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Fro. 5. A diffuse (solid} and a square (dashed} potential well
and the corresponding s-wave zero-energy wave functions. The
depth and radius of the square well were chosen so that it had a
resonance at 8=0 and so that the reduced width of that resonance
would be the same as that of the diffuse well at the square-well
radius. The interior properties of the two wells will then be the
same as can be seen from Fig. 1. The wave function of the diffuse
well continues to rise outside of the square-well radius. As dis-
cussed in the text, this can be related to the penetrability of the
diffuse well and the differences between the square and diffuse
potential can all be related to the ratio Ppnw( ~ }/pnw(Rasw} j',
whether we be studying narrow resonances far below the Coulomb
barrier (Sec.4} or the transmission functions of complex potentials
(Sec. 5). The diffuse potential has been chosen to have a Koods-
Saxon shape with interior wave number E, radius Ro, and surface
thickness a.

case of zero-energy s-wave neutral particles of mass m
in the real part of the optical potential, we proceed,
for all masses, in the way that was shown for neutrons
in Fig. 1. Since the ESW is purely real, it has only two
parameters, its depth V~ and its radius E~. On the
other hand, the real part of the optical potential
[Eq. (1)j has three parameters Vp, Rp, and a. We need
two conditions to fix V~ and Rj.

Both wells can have resonances at zero energy. For
example, if we keep the depth of either well 6xed and
vary the radius (as we would do in proceeding through
the Periodic Table), resonances occur at zero energy
whenever the radial wave function has zero derivative
beyond the well. Since the resonances greatly affect
the scattering cross section, we must choose equivalent
positions of the resonances in the two wells if we want
the wells to have equivalent properties. Making the
positions of the resonances coincide fixes one of the two
parameters of the ESW.

A second condition is obtained from the widths of
the scattering resonances. A conventional difFuse-edge
potential has much larger widths than a square well,
a fact which we associate with reQection. For each well,
we can write the width F„) (l=O in our case), where rl,

is the number of nodes of the s-wave resonant wave
function, as a product of a penetration factor, and a
reduced width

I ap 2+0+F0 p

where the two factors are each evaluated at a suitable
matching radius E.. For the square well, it is natural
and necessary to choose E=E&, and for this choice we
have P,=kRt and y„s' ——))is/mRts. For the diffuse-edge
potential, we can easily exhibit a resonant wave func-
tion (as in Fig. 5) by varying Rs until the wave function
has zero derivative far beyond the well, but there is
arbitrariness in the choice of the matching radius R.
The width itself is independent of the choice of E,
but the penetration factor and reduced width are not.
At this stage we make a choice. (The choice is not
entirely an arbitrary one any more than the choice of
the matching radius in the E-matrix theory, for which
the radius must be that of the actual nucleus if the
resonance formulas are to have reasonable convergence
properties. ) We wish to associate the difference in
widths (the reflection} with the difference in penetra-
tion of the two wells, and, therefore, we choose a
matching radius R such that the optical potential and
its ESW have the same reduced widths at the common
matching radius. Fixing the position and reduced
width of the ESW determines V~ and E~.

The application of the above two conditions to the
construction of the ESW is illustrated on Fig. 5. For a
given optical potential, we fix Vp and u, and then vary
Ep to find all of the resonances. We then have a dis-
crete set of values of Ep and the corresponding resonant
wave functions (as shown in Fig. 5}.Next, we begin
with a square well with an initial choice of Rt( Rs),
and fix V& so that we also get a zero-energy resonance
in the square well that has the same number of nodes
as the diffuse-edge resonance. For this initial choice,
we compare reduced widths of both wells at the same
matching radius R=Rt. If P p(r) is the radial wave
function of the resonance, the reduced width is given
by12

F„e(diffuse well) =fF„e(square well) . (20)

Since the reduced widths of the two wells are the same,
this yields

Ps(diffuse well) =fPe(square well) =fKRt. (21)

y s'= (fis/2n)R) I P s(R) 3' f o'(r)dr . (19)
0

It is the square of the amplitude of the normalized wave
function at the matching radius. If the two wells do not
have the same reduced width for the initial choice of
Rt, we vary Rt (always adjusting Vt so that the reso-
nance positions of the two wells coincide exactly) until

they do. In this way, we achieve a unique value of the
depth and radius of the optical potential. This con-
struction holds only for those values of Ep which cor-
respond to resonances, but we can interpolate the con-
struction in between resonances.

The reRection factor is a direct result of the above
construction of the ESW. It can be defined by
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The comparison of Eqs. (20) and (21) employed
"natural" widths, not the observed widths of narrow
resonances. We give a complete discussion in Sec. 4 of
the relative values of observed and natural widths for
various wells.

We can evaluate the disuse-well penetration factor
directly from Eq. (6) if we replace F& and Gi by F&

and G~, where the latter are the radial wave functions
of the optical potential that behave at large distance
like usual radial wave functions (Fi and Gi, respec-
tively) in the absence of a potential. In our case,
Fo= sinkr and Go= coskr, so that, at zero energy,
F0=0 and Go ——1. Therefore, we find

f= LGp(R)/Gp(R) 7= 5p(" )/Gp(R) j'
= L4'&i&&(~ )/Kin(R) 1 = 8'sir&(~ ) /4'~p««(~ )] i

(22)

since 6'0 is proportional to the diffuse-well resonant
wave function of Fig. 5, and the resonant wave functions
of the two wells are normalized to the same amplitude
at the matching radius in Fig. 5. Then f is just the
square of the amplitude ratio of the resonant wave
functions at large distance, as indicated in the figure.

If we remember the definition LEq. (6)$ of the
penetration factor and employ the conventional
definition of an incoming wave Ii PIi =Fi iGi)— —
we can give a similar physical meaning to the re-
flection factor that is valid at finite energy. The
conventional penetration factor may be written

Pi kR(FP+GP) '=——kR(IiIi*) '.
For a diffuse-edge well, we replace I& by its analytical
continuation II,, yielding

7 w

5-

0,4-

0,3-

zR
Ro

0.2-

R
=Ol8 Ol4 Ol0

O. I6 O, I4

6

where

Pi kR(IiIi*) '=——fkR(IiIP) —'

f=IiIi*/IiIi*. —

0.0-

d'll —(KpRp) '
dx' 1+expL(x—1) (Rp/a) j (24)

The intensity of the incoming wave at large distance
needed to yield a given intensity at the matching
radius is f times bigger for a square well than for a
diffuse well. The reflection factor that we determine is
related to wave reflection.

In the above construction of an ESW for a particle of
mass m and an arbitrary optical potential, only two of
the four parameters (Vp, Rp, is, rip) are independent.
This can be seen from the radial equation with the
optical potential V [Eq. (1)j.

5' O'P Vp P=F.. (23)
2m dr' 1+expL(r —Rp)/uj

At zero energy, the right-hand side vanishes, and we
can write Eq. (23) in terms of two dimensionless
parameters

O. I

'
KRp/sr

I

IO
I

l5

Fro. 6. The value of nR/Rp and of the reflection factor f, as a
function of a/Rp and E

Rp/sf=�

(2mVpRp /Vs'') "].This is the
most frequently used section of Fig. 1 of Ref. 13. For a wider
range of values, the reader is referred to Ref. 13. AR and f allow
one to determine the cross sections and the resonance width of
diffuse wells, once those of square wells are known.

where
x= r/R„

Kp'= 2' Vp/ft'.

(25)

(26)

Thus, Eo determines only the scale of the abscissa in
Fig. 5. The two important parameters are EGO and
Rp/a. If we find f and the ESW for all choices of these
two parameters, we have covered all cases.

We carried out the construction of the ESW and the
associated reflection factor for a large range of values of
KpRp and a/Rp. The depth of the ESW is not important
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32S+a

REFLECTlON

FACTOR

'0 40
E, MeV

5.0 9.0

FIG. 8. The ratio of diBuse-edge optical-model transmission functions to equivalent square-well transmission functions as a function
of the energy for 32S+cx. The di8use potential is that of Fig. 4, and the equivalent square well has been calculated from Fig. 6 (AR=
0.58 fm) .The reflection factor (f=4.62) is the ratio obtained at zero energy in the absence of Coulomb and angular-momentum barriers.
It is seen that, if one chooses a correct value of AR for the ESW the observed reQection is insensitive to charge and centripetal barriers
over a wide range of energies and is in close agreement with the reQection factor. In contrast, it was seen in Fig. 4, for a different square
well (BR=0), that the observed reflection depended strongly on all these factors. /The dashed lines give the corresponding ratios for
rs=2s. ((I'&)/D) connected to the transmission functions by the approximate relation T&=r&/(1+-', r&)'.j

variation of the reRection factor, so that the notion of
a constant reflection factor becomes a good approxima-
tion. The corrections to the reQection factor will be
further discussed in Sec. 5. The prescription for the
KSW is obviously quite successful in this case.

For protons, a particles, and "C nuclei, we can apply
Fig. 6 to conventional optical potentials. This is done
in Fig. 9, which shows the value of f and hR for these
particles as a function of the bombarding nucleus. The
results for f are also compared in Fig. 9 to the ap-
proximate reflection factor LEq. (16)] derived by
Peaslee for s-wave neutrons.

4. SINGLE-PARTICLE RESONANCES FOR
REAL POTENTIALS

The most straightforward case in which the ESW
constructed in Sec. 3 can be applied to display the wave
properties of optical potentials is for the elastic scatter-
ing resonances of real potential wells. The ESW was
constructed from a matching of the resonances of
neutral particles at zero energy. We now go to finite
energy and also add Coulomb barriers, much as one

might do in analyzing the scattering of n particles
from light nuclei. In later sections, we go further still
and add absorption to the picture (Sec. 5) . The
interest here is to show how well a zero-energy neutral-
particle prescription applies to a realistic potential
with barriers. The results will be useful in generalizing
the forrnal many-channel theory of nuclear reactions
(Sec. 7) to take into account the finite surface thickness
of nuclei.

We begin with a real nuclear potential which might
be suitable for ssS+n. Choosing the Woods-Saxon
form [Eq. (1)j, we expect Vs to be about 75 MeV,
E, to be 1.25 A"'+1.6, and a to be 0.5 fm. (This value
of the radius is commonly used for optical-model
analyses of O.-particle reactions. Its difference from
1.25 (Ai'i'+ A i'is) or from the more fundamental
radius of 1.09 (Ai'i'+As'is), which is suggested by
electron scattering data, is neither justified by the data
nor important for our discussion. ) We flx a at 0.5
fm and E'0 at 5.5685 fm. The Coulomb barrier has a
height of 8.3 MeV at Ep. Therefore, any o.-particle
resonances at a few-MeV energy will be very narrow.
For purposes of illustration, we chose a Axed resonance
energy E„,=3.0 MeV and varied t/'o in the vicinity of
75 MeV to obtain a single-particle d-wave resonance.
Figure 10(a) shows such a resonant wave function
obtained for Vo ——64.9 MeV. At backward angles
where Coulomb scattering is minimum, the scattering
cross section is that of the Breit-Wigner formula

4cr I no

dQ 4k' (E„s—E—6„s)s+rs1"„s'
(28)

where A„s is the level shift. Figure 10(b) shows the
scattering cross section near the energy of the resonant
wave function of Fig. .10(a) . The single-particle
resonance of the optical-model well is 1.5 keV wide for
this case.

In 6nding the single-particle resonance of an optical-
model potential, we have completely specified the
parameters of the potential. Therefore, we can at once
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exhibit resonances. The resonance of the KSW is con-
siderably narrower than that of the optical model, a
fact which might be ascribed to reQection. We wish to
enquire in some detail how the optical-model resonance
properties can be described in terms of the ESW
resonance properties after taking account of reflection.
In order to do so, we need to factor the resonance
widths into penetration factors and reduced widths,
and we need to analyze the behavior of the level shift.
In such a factorization, a part of the optical potential,
the "tail" beyond the matching radius, modi6es the
shift and penetration factors from their conventional
forms [Eqs. (7) and (6), respectively). A rederivation
of the Breit-Wigner formula (see Ref. 12, for example)
shows that I'& and 5& still are given by Eqs. (6) and (7)
if we replace FI, and 6& by their analytic continuations
F& and 6& to the maching radius. Denoting these by
Pg and 8), we have

I no 2PO+no p

l.4- uC
~ o= —&op o'. (30)
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Just as in Sec. 3, the matching radius of both wells for
the factorization is the ESW radius 8~=6.25 fm. The
reduced widths are obtained from the resonant wave
functions by Eq. (19). In turn, the resonant wave
function is found to be that wave function which be-
haves like the irregular solution 6& far beyond the
potential. The boundary condition number b& of the
level shift function LEq. (7)j is still to be chosen to
make the left shift vanish at E=E„,. However, both
P& and 8& are functions of the energy, and, therefore,
we need to retain both I'„0 and 6„0 in the Breit-Wigner
formula.

There is no doubt about the validity of the one-level
approximation in our case. The "S+cr resonances are
about 10 MeV apart compared to the width of 1.5 keV.

The energy dependence of the level shift can be taken
into account approximately by using a Taylor series
for the shift about the energy and retaining only the
lowest nonzero term

o=dA o/dE
~
~=@ (E oEo) . (31)

Fro. 9. nR and f for p, a, 4He, and "C incident on target
nuclei of di6erent masses. The diffuse potentials used had E0——

1.25 Ar"'~, 1.6+1.25 Ar'~~, and 1.25 (12u~+Ar'~') and Vo ——50,
75, and 100 MeV, for nucleons, a particles, and ' C, respectively,
and a=0.5 fm in all cases. AR and f were obtained from Pig. 6.
We have also plotted with a dashed line (- —-) the approximation
to f obtained by Peaslee for s-wave neutrons PEq. (16)g. The
agreement is seen to be quite close for neutrons and protons.

use I'ig. 6 to construct the ESW. In the present case
the ESW has a radius of 6.25 fm and a depth 'V~ ——

56.3 MeV in order that it yield an n-particle resonance
with 6ve nodes at 3.0 MeV. The ESW and its resonant
wave function are shown in Fig. 10(a) and the cor-
responding scattering cross section in Fig. 10(b) .

Clearly, both the optical potential and its ESW

Combining Eqs. (31) and (28), we can write the single-
level resonance formula in the following way:

Jo (I'-o)'
dQ 4k' (1 dh„o/dE) (E—E„o)—'+ rsI'„oo

The effect of the energy dependence of the level shift
on cross sections was erst noted by Thomas'~ and is
described in detail by Breit, ' who has also computed
those cases where approximation (31) fails. Thomas'r
has suggested that if Eq. (31) were a good approxima-
tion (as it should be for the extremely narrow res-

17 R. G. Thomas, Phys. Rev. 81, 148 (1951).
"G.Breit, in Haedbuch der Physi'k, edited by S. Flugge

(Springer-Verlag, Berlin, 1959), Vol. XLI, p. 1.
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onances within a Coulomb barrier), the energy de- found for our problem from Fig. 6. The ratios are
pendence of the level shifts be associated with the
reduced widths (i) f'= rd ff /rzsw'=—fpf 'fd =3 22,

(y„s') '= y„s'/[1 dA„s—/dE ~s=s„—,j. (33)

r„,'=2I', (~„,') = r„,/(1 da„,/dE), —

so that the single-level formula attains the simple form
appropriate in the absence of level shifts

da 1 (r„ii') '
dQ 4k' (E—E„ii)'+-', (r„,') ' (34)

In comparing the resonance properties of the real
optical potential and its ESW, there are a number of
ratios that might be related to the reQection factor of
5.2 [or more precisely 4.4 at 3 MeV from Fig. (7)j

In fact, he then found that the reduced widths of his
calculation for a square well with Coulomb barrier
were in close agreement with those appropriate to a
square well without Coulomb barrier (i.e., fi'/mR' ).
With this association, we may naturally define the ob-
served widths of the calculation

(ii) f, = (vdiif) '/(v—ESW) '= 1.91,

(»i) fr=~diff/I'EBW 2341

(rv) f.= [1 (d&-o" /—dE) —1.=...3/

[1—(dA ii '"/dE) ~g s„,)=0.727,

(v) fjq)'= (vd rr')'/O'H—sw')'=1 3&,

(Vl) f= rd'fr/rzss = 4.46—,

(35)

where the numbers refer to our special case of "S+
'He at 3 MeV. The first ratio f' of the observed widths
differs by an appreciable amount from the zero-energy
zero-barrier result of 5.2, while the ratio f of the one-
body widths F„o is in moderately good agreement with
these results and in excellent agreement with the one
obtained at E=3.0 MeV [from Fig. (7)j. It must be
remembered, however, that introduction of the surface
eGects into the channel widths will, in general, involve
an adjustment for the energy dependence of the level
shift (f'=faf).
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To show this let

& i(R}—= f (d/d&) pR& i '(R) dm i/«7 ) is=8. ,

a„i'(R) —=
t (d/dE) (RG)—'(R) dG)/dr) ) lg z„„

where R is an arbitrary matching radius, N„&(r} is the
normalized wave function appropriate to the eth
l-wave resonance at energy E & of the one-body po-
tential, and 6& is the analytic continuation of the
irregular l-wave Coulomb function. Since the one-level
approximation applies, we have, near resonance,
a„i(R}=y„i '(R) . Moreover, suppressing the indices
(ri, i), it is easily shown that [a(R) /a(Ro) ]=
a'(R)/u'(Ro), where Ro is the radius of the calcu-
lation. Since a(g'ff) (R„)=a(Hsw)'(R„), we have [Eq.
(36)]

f = I'diii /I'Esw

=vdiff (Rao)/7Esw (Roo)

=
l vdiff (Ro)/7Esw (Ro) ]l ~diff (Ro)/(izsw'(Ro) ].

In fact, in the example of o'S+n, the ratio of Eq. (36)
turns out to be 3.26 while f' has the value 3.22 of Eq.
(35). The observed widths of the real diQuse-edge po-
tential can then again be stated in terms of the param-
eters of its KSW

I1 if fI'Esw

by the positive solution of the simple quadratic equa-
tion

cf" f'+ (f cf)— —
where

c=dh„,msw/dE
~
z=z„o.

— (38)

Hence, we may state the widths LEq. (37)] of the
diffuse-well entirely in terms of the parameters of the
square interaction and of the standard reflection
factor f, obtained from the zero-energy zero-barrier
case. l In an earlier calculation on n-decay rates in
heavy nuclei, " it was of heuristic value to define an
KSW in a slightly different manner. To have chosen the
KSW to have the parameters suggested in Sec. 3 would
have yielded a reRection factor consistent with that
found for neutral particles at zero energy, but (as we
have shown in the present analysis) this reQection
would have been divided between the interior aspects
(reduced widths) and exterior aspects (penetrabilities)
of the n-decay problem. Our point was that previous
authors had treated the penetrabilities correctly but
had not accounted for the enhancement of the wave
function in the nuclear surface effected by the diffuse
nuclear edge. In fact, this enhancement explained the
anomalous radii which had plagued earlier n-decay rate

It is interesting to note that the factor f' enters in
a simple way into the level shift

dd o '"/dA lE s„, f'd——h„o~sw/dF lg=L;„,. (36)

calculations (which had generally taken the nuclear
interior to be square). This was most easily displayed
by constructing an ESW from first principles, that is,
in the manner of Sec. 3: The radius and depth of the
KSW were chosen so that the resonant wave functions
of the diffuse and square well had the same number of
nodes and the same amplitude at the KSW radius.
The radius of this ESW was found to be considerably
larger than that of the diffuse-well, explaining much of
the anomaly in the previous calculations. )

5. COMPLEX OPTICAL POTENTIALS

We wish to extend our treatment of barrier pene-
tration to the case of complex opt,'cal potentials. As in
the case of barriers and real optical potentials (Sec. 4),
the combination of barriers with complex potentials
will be shown to exhibit many of the simple wave
properties present where there are no barriers at all.
Again, there are some straightforward modifications of
the simple wave properties brought about by the
introduction of barriers. As in our earlier discussion,
we shall use the example "S+n to illustrate the main
points.

In the absence of barriers, the addition of an imagi-
nary term to a real optical-model potential introduces
absorption, it broadens the wave resonances, but it has
an almost negligible effect on wave reQection. " The
imaginary term is normally chosen, both for nu-
cleons and heavy ions, to have a small magnitude
compared to the real term. Therefore, the reflection
from the imaginary term is small —indeed, the ab-
sorption and scattering cross section of a complex
potential well are relatively insensitive to the shape of
the imaginary term. For the same reasons, we expect
the same kind of changes when, in the presence of
barriers, we add an imaginary term to the opti. cal
potential. Absorption enters the picture, the resonances
broaden, but the wave reflection should remain rela-
tively unchanged.

At low energy, the wave reQection properties manifest
themselves most directly in nuclear transmission
functions. In Fig. 8, we showed a straightforward
application of the zero-energy zero-barrier results to
the transmission functions for "S+n. The success of
the model of Sec. 3 appears to be greater for the trans-
mission functions than for the widths discussed in
Sec. 4. In order to elucidate to what extent the ratio of
the transmission functions should be related to the
reAection factor, we have calculated that ratio over a
wide range of energies and for reactions involving
widely different Coulomb barriers. To analyze those
results, we examine the effect of introducing a square
and then a diffuse absorbing part to the potential.
We find that the reflection properties are negligibly
affected by the presence of an imaginary potential,
but that, if the absorbing potential has a diffuse edge,
an important fraction of the absorption may take place
much beyond the normal nuclear radius.
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The nuclear transmission functions are calculated
exactly by means of Eq. (4) from the complex phase
shifts of complex potentials. In turn, the phase shifts
are calculated directly from numerical integration of
the wave equation to a point well beyond the nuclear
radius, where the numerical solution is matched on to
standard Coulomb wave functions. The exact trans-
mission functions found in this way can have their
wave properties exhibited as in Sec. 2. If we adopt the
form (5) for the transmission function, with the ap-
propriate modifications made for diffuse-edge po-
tentials as discussed in Sec. 2, a simple choice of the
boundary condition numbers b& is one which makes the
shift function S~ vanish. %ith this choice we have

Ti r(/(1+——r (/4}',

where 7~ is defined by

ri=4~fP(si.

(39}

(40}

Here, I'~ is the penetration function, s~ the strength
function, and f the reflection factor discussed in Sec. 2.

The result PEq. (39}j for the form of the trans-
mission function explains the results of Fig. 8, both the
simple ratio of transmission functions at low energy
and also the corrections pertaining at higher energy.
At low energy, far below the barrier, r~/4 is much
smaller than unit, so that T~ ~~. The ratio of the
disuse-edge transmission function to that of the
KSW then should be equal to the reQection factor.
This is found to be so in Fig. 8. At energies approaching
the top of the Coulomb barrier, it is not the trans-
mission functions themselves but rather the ratio of
r& that should equal f. Again, this is found to be verified

by Fig. 8. These results and many other similar results
that we obtained but cannot show here justify our claim
that the KSW should be independent of both the
Coulomb and the angular-momentum barriers. A com-
parison of Figs. 5 and 8 shows the importance of AE.
in the choice of the KS% for heavy-ion reactions.

Although the dominant wave properties of complex
wells are given in the discussion above, there are some
minor and some major corrections in certain cases.
Two minor corrections (each less than 10% in our
standard 32S+u reaction} arise from resonance effects
and from reQection by the imaginary part of the
potential. The former of these manifests itself in a
slight energy dependence of the strength function when
Eq. (39) is fitted to calculated transmission functions.
Although minor for most heavy-ion reactions the
resonance corrections can become very large if the
value of 8"0, the depth of the imaginary term in the
potential, becomes smaller than the single-particle
level-spacing in the real part of the well. The reQection
induced by 8'0 is small in all cases of practical interest.
It can be shown that a rough estimate of this effect
is to replace Vo by ( V0'+ Wo'} '~' in Peaslee's formula,
LEq. (16)g for the reflection factor.

A major correction to optical-model analyses con-
cerns absorption deep within the barrier, which occurs
at energies very far below the Coulomb barrier. It
follows from an application of Green's theorem to the
wave equation" that the transmission function T~ is
exactly proportional to the integral of the imaginary
par t of the potential

W(r) Ptg)*dr, (41)

where 8 is the height of the barrier and 8 is the energy.
The absorbing potential LEq. (2)j for r—Ro))G
falls off as t. "~'. Therefore, the contribution to the
absorption from the region within the barrier becomes
important at energies such that 2E approaches the
value of a '. If we take a standard value of 0.5 fm for
a, we find 2Ka=0.23 )m(B-E)]'" where m is the re-
duced mass (in units of the proton mass) and (8-E)
is in MeV.

The absorption within the barrier is of great im-
portance for many heavy-ion reactions. Its magnitude
can be estimated by means of Eq. (41) . In our standard
case of 32S+n at 3 MeV, 16% of the absorption occurs
beyond the KSW radius. This absorption does not
obey the normal rules: It is not subject to a correction
due to reQection, and it tends to increase linearly with
the value of H/"0. It is important to remember that the
effect on the transmission functions of absorption in
the barrier is opposite to that of the energy dependence
of the reQection factor. As we go down in energy from
the top of the barrier, the absorption in the barrier
tends to increase T&, while the energy dependence of f
decreases 7&. For many commonly used optical po-
tentials, the two effects nearly cancel. More im-
portantly, it suggests that some astrophysical reaction
rates will be dominated by the tail of the imaginary
part of the optical potential. In such cases the optical
model loses its utility in extrapolating from measure-
ments at high energies to astrophysical rates far below
the barrier. Conversely, it raises the prospect that
absorption cross-section measurements at low energies
can provide important information about nuclear
densities far beyond the nuclear radius.

An extreme example of barrier absorption is shown in

'9M. A. Preston, in Physics of the Nucleus t', Addison Wesley
Publishing Co. Inc. , Reading, Mass. , 1962),

where c is a constant and Pt is the radial wave function,
obtained by numerical integration of the wave equation
with the optical potential. In certain cases, important
contributions to the integral of Eq. (41) occur well
beyond the normal nuclear radius. The point is straight-
forward. %ithin the barrier, the wave function in-
creases exponentially:

(42)

(43)
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FIG. 11. Fraction of the absorption as a function of radius for disuse potentials with parameters appropriate to the reactions 'Pb+
a(solid) and ' S+n (dashed) .The radii used for the Woods-Saxon wells are indicated by vertical lines. The relative amount of absorption
in the barrier is seen to be greatly increased by the extreme barriers associated with heavy nuclei. In fact, at low energies ( 7 MeV),
all absorption occurs in the barrier if we use a conventional Woods-Saxon shape for the imaginary potential (with a radius Ro of 5.568
fm for 3 S+a and of 8.8 fm for 'O'Pb+0, ) . Hence, the nature of the imaginary potential in the barrier region is critical in describing
absorption cross sections. If the absorption described by the figure is, in fact, physical, the equivalent square-well model would fail
badly since most particles would be absorbed before reaching the nuclear surface.

Fig. 11 for the '"Pb+cr reaction at an energy of 8
MeV, appropriate to the inverse of the 0. decay of
"'Po. Here the absorption is important at twice the
nuclear radius, at values of r comparable to Rs+15a.
Many optical-model programs in current use would
throw away the barrier absorption because they match
the numerically integrated wave functions to Coulomb
functions at too small a radius.

6. USE OF OPTICAL MODEL
IN ASTROPHYSICS

Current efforts by astrophysicists to determine the
late stages of evolution of the stars and to determine
the early history of the universe according to the
"Big Bang" theory require the knowledge of a large
number of charged-particle reaction rates.

According to the Big Bang theory, '0 matter would

2 R. V. Wagoner, W. A. Fowler, and F. Hoyle, Astrophys. J.
148, 5 (1967).

have emerged from thermodynamic equilibrium at
very high temperatures (T) 10' 'K) and would have
cooled down as it expanded. The amount of nuclear
transmutations occurring as the matter expanded, the
energy release during that time, and the temperature
at which the nuclear reaction rates become too slow to
allow any more nuclear reactions to occur depend
sensitively on charged-particle reaction rates. On the
other hand, once the stars, in their deep interiors,
have burned all their hydrogen and all their helium,
"C and "O are expected to burn until, a.fter their
exhaustion, "Si decomposes itself into o. particles
which, adding themselves to "Si seed nuclei, form the
iron peak."

The "C+"C and the "0+"0 reactions have been

~' J. W. Truran, A. G. W. Cameron, and A. Gilbert, Can. J.
Phys. 44, 563 (1966); D. Bodansky, D. D. Clayton, and W. A.
Fowler, Phys. Rev. Letters 20, 161 (1968); W. D. Arnett, Astro-
phys. Space Sci. 8, 180 (1969).
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studied in the laboratory, ""but not at quite as low an
energy as they are expected to occur at in the stars.
One needs an understanding of the physics of the
reactions to extrapolate downwards with accuracy, or
to evaluate, at least, the uncertainties of the extrap-
olation. Many other needed charged-particle reactions
have not been measured, especially (a, p), (n, e),
(n, y), and (p, 7) reactions for target nuclei with
masses around and above '8Si. Some of those reactions
probably will never be measured since they involve
unstable target nuclei. Theoretical determinations of
those rates, based on the optical model, have been
used by astrophysicists.

In principle, they could have solved the Schrodinger
equation of the Woods-Saxon optical model for each
channel and for each nucleus. Because of the large
number of rates needed, they have relied upon square-
well black-nucleus calculations. The accuracy with
which the equivalent square well replaces a diffuse
well vindicates their efforts, but it also shows the re-
lationship between the radius obtaine&4 by fitting
scattering data to an optical model and the radius one
should use in absorption cross sections. By fitting ex-
perimental reaction cross sections for (e, p) reactions
(for 32&At„«t&60) and for (p, n), (p, y), and
(a, y) reactions (for A 35) to black-nuclei cross
sections, Truran et al.'4 determined a radius 8=1.2
(Ae'I'+At'Is) fm, where As is the mass number of the
projectile and A& is that of the target. From electron
and elastic scattering data, one rather expects Eo=
1.25 A'~' fm for protons and neutrons, and 80=1.09
A'~'+1.6 fm for rr particles. From Fig. 9, one should
add to obtain the ESW radius DR=0.1 fm for protons
and neutrons and DR=0.7 fm for o. particles. The
radius obtained by Truran et a/. is seen to be larger
than the scattering one for nucleon channels and very
nearly the same for n channels. Part of the discrepancy
probably comes from the artificial reAection occurring
in the black nucleus. If the reAection factor is used to
multiply the penetrability, the radius needed to fit
the (rs, p) reaction measurements is smaller. The rr-

channel radius is also reduced, however. We have made
calculations, using diffuse-well transmission functions,
of the reactions ' Al(P, a) "Mg and "P (p rr) "Si.
Comparing these with the experimentaP5 cross sections
points to an a-channel radius Rs ——1.09A'I'+1.6+0.4
fm, in good agreement with the radius for particle
scattering.

It is then possible to relate the parameters to be
used in reaction cross-section calculations to those
obtained from electron, meson, P, m, and 4He scattering

2 J. R. Patterson, H. Winkler, and C. S. Zaidins, Astrophys. J.
157', 367 (1969).

2' J. R. Patterson, H. Winkier, and H. Spinka (private com-
munication) .

2' J. W. Truran, C. J. Hansen, A. G. W. Cameron, and A.
Gilbert, Can. J. Phys. 44, 151 (1966)."P. M. Endt and C. Van der Leun, Nucl. Phys. A105, 1 (1967).

by nuclei. Formulas like Eq. (C-60) of Fowler and
Hoyle" may be used if one replaces P by fP, that is, if
one multiplies the penetrability, or equivalently the
strength function, by the reQection factor. The radius
to be used is then the one obtained from scattering
experiments plus the AR, from Fig. 6 or Fig. 9. One can
use Eq. (C-60) of Ref. 26 to estimate the uncertainty
in the reaction rates caused by the uncertainty in the
parameters of the optical model.
g; Changing the depth Vs of the potential has only a
second-order effect: The first-order effects in Eq.
(C-60) are due to reflection, and they are cancelled by
the dependence of f on Vs. The effect of the surface
thickness a is more profound. Increasing it by 25%
will generally increase the f factor by 25%, but, more
important, it will sometimes, as for "S+4He, increase
AR by a factor of 2 (see Fig. 6). All important un-
certainties can then be related to the radius Eo of the
diffuse well and to the AR needed to obtain the radius
of the ESW. For "S+He at T= (3.0X10') 'K, it can
easily be calculated, using Eq. (C-60), that changing
the radius from 8=5.6 to 8=6.6 fm increases the
reaction rate by a factor of 5.0. Uncertainties in the
radius and the surface thickness then seem to introduce
uncertainties of a factor of 5.0 in the reaction rates
involving 4He channels.

In the preceding discussion, it was assumed that the
optical model is a proper representation of the 4He

reaction channels. We can also study how sensitive the
value of (on) is on the underlying physics. To this end,
we have used as our optical potential

V(r) = —VsI 1+exp[(r—Rs)/a„j} '

"—iWe I 1+exp[(r —Re) /a„j }
—', (44)

and we have varied a~ while keeping a~ constant. This
represents one of the ways in which the commonly used
optical model can be modified to represent different
hypotheses as to matter distribution and the location
of the compound-nucleus formation.

Numerical calculations have been carried out for
"S+n, "Ti+n, and "C+"C with avWatr. The ratios
Tq(arr/av) /Tt (ESW) are presented in Fig. 12.
Whereas the equivalent square well is a good ap-
proximation to the diffuse well for a~=ay, it breaks
down completely if a~&a&. The cross section is then
dominated by absorption in the barrier, as can be seen
for "C+"C in Fig. 13. The low-energy cross section
obtained with the black nucleus could then easily be an
underestimate by another factor of 5. This is expected
to be important, especially for 0. particles incident on
nuclei with large Z (Z&20). However, the data avail-
able for n-particle channels in reaction cross sections
at low energy are for s'P (p, cr) "Si, ' Al (p, n) '4Mg,

26W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. QI, 201
(1964).
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Fjo. 12. Ratios of transmission functions for a variety of reactions. Even in the presence of moderate barriers LFig. 12 (a) ), the
arrier absorption is seen to depend strongly on the surface thickness of the imaginary potential. In fact, even a slight increase in the

barrier t Fig. 12 (b) g is seen to considerably enhance the barrier absorption. On the other hand, it is rather insensitive to the reduce
mass LFig. 12 (c) j. In all these cases, the ESW model is seen to have considerable validity provided we choose a conventional surface
thickness for the imaginary potential (aw=av=0. 5 fm). In the presence of the extreme barriers associated with heavy-ion reactions
and n-particle scattering from heavy nuclei LFig. 12 (d) j it is seen that the ESW model fails badly even for conventional surface thick-
nesses. Hence, it is of crucial interest to understand the details of the imaginary potential in the barrier if one wishes to extrapolate
high-energy data to the energies of interest to astrophysics.
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FIG. 13. Fraction of the absorption as a function of the radius for a diffuse potential whose real and imaginary parts have Woods-
Saxon shapes with parameters appropriate to the reaction "C+"C.The comparison of the absorption for s waves (solid) and g waves
(dashed) shows that the relative amount of absorption that occurs in the barrier is increased when the barrier is heightened. It is
also seen that increasing the surface thickness aw of the imaginary potential (dotted) considerably enhances the relative amount of
barrier absorption. Hence, low-energy absorption cross sections may yield detailed information about the shape of the absorptive
potential in the nuclear surface. (The energy is 4 MeV. )

and "Cl (p, a) "S. (Since the Q value of those re-
actions is positive, the transmission function for protons
is approximately equal, at a given energy in the
compound nucleus, to that for 0, particles. The +-
particle transmission function is reasonably large and
is not expected. to show absorption in the barrier. )
Fitting these with black-nuclei cross sections and then
extrapolating to higher mass numbers completely
neglects the possibility of absorption in the barrier.
More experimental data are needed to permit reliable
estimates of m-particle channels at 3&40.

The "C+"C results indicate how sensitive the cross
section of the "C+"C reaction is on the detailed shape
of the optical model chosen. A 20% increase in the
diffuseness parameter of the imaginary potential
increases the cross section by a factor of 5 at E 3
MeV. Only a model that would represent closely the
physics of the "C+"C system could be hoped to permit
any extrapolations. The recent results of Ref. 22 may
indicate that the optical model is too crude a tool.

V. GENERAL CONCLUSIONS CONCERNING
NUCLEAR REACTIONS

Our analysis of the role of the optical potential in
barrier penetration suggests a number of general con-
clusions about nuclear reactions. They concern the role
of the radius in resonance reactions, the value of the
nuclear radius in reactions, and the use of absorption
cross sections far below the barrier to probe the tail
of the nuclear-density distribution.

The many-channel theory of resonance reactions
appears to have a much more complicated geometry
than the one-channel potential-scattering problem
whose wave properties we described in Sec. 4. We shall
show that it is reasonable to decompose the scattering
matrix in a manner such that each reaction channel
possesses the one-channel potential-scattering prop-
ties. Then we can use our earlier results for the one-
channel case to remove many of the artificial square-

-well aspects of the resonance-theory results. A similar
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where the 0, are phase shifts and the Aqq the com-
ponents of a matrix whose inverse is

(A ') u, = (R—&)&u, +~u, —(i/2) 1'~~" (46)

This form of the framework is completely general: It
applies to all approximate forms from the Breit-
Wigner formula to the Hauser-Feshbach theory. The
question is, how do the level parameters change when
a reaction channel is assumed to include an average
Woods-Saxon potential.

The square-well interaction is easily adapted to the
ordinary reaction theories. For a square well, both the
partial widths and the level shift can be factored in a
manner that separates out the many-body features of
the problem and in a manner that clearly displays the
wave properties associated with the average inter-
action:

I'x, ——Sx &F'& = S)„&28((p'&)',

hx= —Q Sx,"S((y'")'.

(47)

(48)

The spectroscopic factors Sq,& are essentially statistical
coefficients which measure the probability for finding
the compound nucleus in the particular mode specified

by the channel number c. Since they depend on averages
over the nuclear volume, they are insensitive to the
details of the nuclear surface. Thus, the eRects of the
surface inliuence only the one-body aspects of the
problem, the single-particle widths F'& or the cor-
responding single-particle reduced widths (y'&)'. There-
fore, the transition from a square-average interaction
to a Woods-Saxon interaction affects only the single-
particle width. The single-particle width is affected by
the diffuse edge in the manner discussed in Secs. 2 and
3. Thus, the insensitivity of the spectroscopic factors to
the precise value of the matching radius makes our
wave analysis apply to each reaction channel sepa-
rately.

The conventional treatment of nuclear reactions by
the black-box or resonance theories is essentially a
square-well treatment. Because of this fact, the nuclear-
radius required in this treatment to fit observed re-
action rates was artificially large. For several decades, -
the usual value of the nuclear radius for nuclear re-

treatment for nuclear reactions without barriers was
given in an earlier paper by Vogt."

The general theory of nuclear reactions' provides a
framework in which all cross sections can be described
in terms of level parameters. The relation between
cross sections and level parameters is made in two steps.
First, the cross section a;, , for an initial channel c
and a final channel c', is written in terms of statistical
spin factors and collision-matrix components. Next,
the collision-matrix components V„. are written in
terms of level parameters

U„=expLi(Q, +0,.)](8„.+i Q Fx, '"Fg, .'"Agg ), (45)

and for heavy ions

Z= ~.25~,~~3 fm (50)

or perhaps
8= 1.25(Ag'~'+Ay'") fm

E= 1.09(A~'~'+A2"') fm.

(51)

(52)

For both nucleons and heavy ions, the difference in the
radii is usually between 1 and 2 fm. It is our con-
clusion that the larger radii were a result of the square-
well treatment.

Before embarking on an explanation of the differences
between old and new radii, we make some remarks on
the current fashions. The charge radii of nuclei, as
measured by electron scattering and mesic atoms, are
1.09&(A'~' fm. If this is taken to reAect the nuclear
density as well as the charge, a nucleon should feel the
same radius —the same value should apply to the
optical potential. Similarly, 1.09 (A&'"+A2'") should
then be the radius for heavy-ion reactions. Now, there
are some additional effects which tend to increase the
optical-model radius slightly and to make it slightly
dependent on the shell structure. The first is core
polarization —an incoming nucleon pulls the target
nucleons toward it. The second is the neutron excess in
the surface of a nucleus —an excess that leads to the
isotopic-spin term in the optical potential. Such a term
means that the density extends beyond the charge.
Both of these effects can be estimated only roughly
and depend on the particular nucleus involved. Their
magnitude roughly justifies the small amount by which
current radii exceed the charge radii. There is some
experimental uncertainty in the radii as well. Although
the wave resonance effects determine the product
VOTO' very accurately (perhaps to 1%), we know of no
experiment that unambiguously determines the radius
of the real part of the optical potential to anything like
this accuracy. Therefore, the choice for nucleons of
1.253'~' is not only a reasonable choice but also has
about a 10% uncertainty. By the same token, an n-

particle radius of 1.6 is also reasonable.
From our analysis of wave properties, we see that

there are several ways in which the change from an
optical potential to a square well modifies the radius.
First, there is the difference in reflection between the
wells, which can be compensated for by a difference in
radii; second, there is the wave oscillation in the tail
of the real part of the optical potential that leads
(Fig. 5) to a difference in radius between the optical
potential and its equivalent square well; third, there
is absorption in the tail of the imaginary part of the
potential.

actions was
=1.4(Ag'"+A2'") fm (49)

where A~ is the atomic weight of the target nucleus
and A~ that of the bombarding particle. On the other
hand, the usual optical-model radius for nucleons is



NUCLEAR OPTICAL MODEL AND %AVE PROPERTIES

A reassessment of the old analyses needs to examine
only the heavy-ion absorption cross sections for which
the dependence on the nuclear radius is unambiguous.
For nucleons, it has turned out that there are size-
resonance effects which vary through the Periodic
Table (see Fig. 2). For n particles and other heavy
ions, all the size-resonance effects are washed out,
(particles reaching the nucleus are absorbed). Early
evidence'~ for the large radius came from charged-
particle reactions'~ as well as neutron reactions.

In the black-nucleus model for n-particle absorption,
the strength function was shown (Sec. 2) to be that of a
square well. It has no giant-resonance structure, but
neither does the diffuse-edge optical-model potential
suitable for n-particle reactions. We might therefore
be tempted to say that the black-nucleus radius should
be chosen to be that of the ESW of the appropriate
optical potential. In such a choice, the AR of Fig. 9
has a value of about 0.5 fm. But such a choice ignores
wavereQection. From Fig. 9, the reRection factor for
0. particles has a value between 3 and 5. The trans-
mission functions far below the barrier are directly
proportional to the refI.ection factor. To enhance the
black-nucleus transmission functions by a factor of
3 to 5, we can increase the nuclear radius, thus increas-
ing the penetration factor. The required increase in
the radius is about 0.5 fm. (The penetration factor at
an energy E far below the Coulomb barrier 8 depends
on the nuclear radius roughly as

P=kRG '(kR) ~ M exp( —2kR),

where

k= L(2m/5') (8 E)7". —

For n particles, k typically has values between 1.0 and
2.0.} Thus, the wave oscillation (AR 0.5) and the
wave reAection together account for the 1.0 fm dif-
ference between the black-nucleus radius and that of
modern optical potentials. The early analysis of n-
decay rates in heavy nuclei required similar anoma-
lously large radii that have been brought into agreement
with modern values by our wave analysis. "In our view,
there is no evidence at all that any nuclear reacti. on
rates require anomalously large radii or that they throw
into question the individual particle picture of nuclear
structure.

The sum-rule limits associated with reduced widths
are square-well values that need to be modified to

take into account the reflection factor of a diffuse-edge
well. According to Eq. (20), for any reaction channel
we can write a single-particle width as

2PE(p~~) 2Plf (ysw' ) ' (53)

where Pq is the conventional penetration factor $Eq.
(6) 7 and (y'&) ' the single-particle reduced width of the
well. Equally, we can write

(54)

where f is the reflection factor discussed above and
(ysw'&)' is the single-particle reduced width of the
ESW. It is (ysw4') ' that has the conventional sum-rule
value of 5'/mRss where Rs is the radius of the ESW.
Therefore, a true single-particle level should have a
reduced width exceeding the conventional sum-rule
limit by the reflection factor f, which typically has a
value between 2 and 5. Our work shows that this factor
applies to all charged-particle reactions as well as to
neutrons and gives quantitative estimates of f

Far below the barrier, the absorption in the tail of
the optical potential can dominate the whole ab-
sorption process. We have warned of the dangers of
using conventional optical models to calculate reaction
rates that are dominated by their tails. We can, how-
ever, turn the argument around and suggest that the
measurement of absorption cross sections far below the
barrier be used to determine nuclear properties at
large radii. This is a problem of considerable importance
in modern nuclear physics because of 6ssion isomerism, "
mesonic atoms, " and the general question of nuclear
clusters in regions of low density. From our study, it is
clear that any nuclear density (whether of nucleons or
other clusters) extending to large radii can dominate
the absorption process. It would be very interesting
and valuable to perform nuclear reactions with intense
beams at low energies to examine, say, the probability
of n-particle absorption in the bombardment of many
light nuclei. Similarly, experiments with proton or
heavy-ion beams might also yield anomalously large
cross sections. Is "0 much more tightly bound than
"Ne or "MgP Does the distant tail of the nuclear
density in the latter present nucleons or o.-particle
clusters' It is likely that the kind of surprises found in
the "C+"C reactions" will abound in many other
cases. The results may also change many of our notions
concerning stellar reaction rates.
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