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Operator multipliers of the Lippmann-Schwinger (LS) equation are used to obtain an uncoupled equa-
tion with calculable and unique solutions. The multiplier method is used as a basis for determining the
relation between various formulations of the three-body problem. The formal but calculable solutions of
the formulations of Faddeev, Lovelace, Rosenberg, Noble, and Newton are found to be identical in the
sense that the different formulations are completely equivalent because they all use the same multiplier.
They are also identical to the solution of the equation obtained by multiplying the L-S equation by an
operator whose inverse exists. We also present an equation for the exact three-body bound-state wave
function and put it into calculable form with the use of a multiplier. In a calculation that uses an incomplete
set of basis states (such as in the shell model), we find on rigorous grounds that it is appropriate to use
the ¢ operator of the residual interaction rather than the residual interaction itself. To indicate the wide
usefulness of the multiplier method, the exact distorted-wave formulation is obtained and put into cal-

culable form with the use of a multiplier.

I. INTRODUCTION

HE Lippmann-Schwinger (LS) equations are

found to be very useful in nonrelativistic two-body
scattering theory and serve as a natural starting point
in solving the three-body problem. However, it has
been an annoying fact that the LS equations for the
channel wave functions do not have a unique solution,!
and, further, that the Born series solution for the LS
operator equation does not converge.?

The work of Faddeev overcomes these difficulties in
many-body scattering theory.>-5 Weinberg® extended
this work with a new formulation of the three-body
problem as well as an excellent exposition of many-body
scattering theory from the point of view of functional
analysis, in which he points out that because of the
noncompactness of the kernel, the three-body L-S
equation is not amenable to a solution by any conver-
gent calculational scheme. (Solutions of the LS equa-
tion cannot be calculated and in the three-body case
the LS equations have then lost their utility. The
Faddeev equations do not suffer from this property.)
However, the formulation, which uses operator multi-
plier techniques, admits extra (spurious) bound-state
solutions that are not solutions of the original Schré-
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dinger equation (or the homogeneous LS equation).’
It was subsequently found that the spurious states
arise from the multiplier.?

A variety of specific three-body formulations other
than those of Faddeev and Weinberg have also ap-
peared in the literature: those of Lovelace,? Rosenberg,!?
Noble,"* and Newton.!> A method for treating the three-
body problem using rather arbitary operators as multi-
pliers of the LS equation was proposed by Sugar and
Blankenbecler.’® This method is applied in the formula-
tion of Noble.

In this paper we also obtain a formulation of the
three-body scattering problem by using multipliers.
Our method yields one uncoupled equation with a com-
pact kernel and the solution of our equation is identical
to the formal solutions of the formulations of Faddeev,
Lovelace, Rosenberg, Noble, and Newton. Our method
shows the connections between the earlier formulations
of three-body problems and establishes that they can
be obtained from the one common multiplier procedure.
Since our multiplier has no spurious solutions, we find
that none of the formulations mentioned above, except
for the Weinberg method, introduce spurious bound-
state solutions.

The wide usefulness of the multiplier method is indi-
cated when we consider the distorted-wave (DW) and
shell-model formulations. We obtain the DW formula-
tion with the use of a multiplier. The DW kernel is
made compact and the exact solution calculable with
the use of a multiplier. The new inhomogeneous term
indicates that in most reactions the operator whose
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amplitude is to be evaluated between the distorted
waves in distorted-wave Born-approximation (DWBA)
calculation should be the f operator rather than the
potential. We also obtain an equation for the exact
three-body bound-state wave function. By exact we
mean that the errors introduced by using an incomplete
set of basis states, such as in shell-model calculations,
are systematically corrected. Again, by using a multi-
plier, we find that the first term in a convergent solu-
tion is given by a shell-model (truncated-basis) calcula-
tion that uses the ¢ operator of the residual interaction
rather than the residual interaction itself.

In Sec. II we discuss the LS equations and point
out the common origin of their deficiencies; that is,
the solutions cannot be calculated by a convergent
scheme because the kernel is not compact, and, further,
the wave-function solution in a given channel is not
unique because other channel-scattering wave func-
tions satisfy the homogeneous LS equation.

In Sec. ITT we first discuss the conditions on the Sugar
and Blankenbecler method and emphasize that the
number of bound states should remain unchanged.
Then by using a specific multiplier which does not
introduce spurious states, we remove the noncompact
part of the LS kernel. This multiplier is expressed in
terms of a simpler multiplier that involves only one
pair interaction. This method provides one uncoupled
equation which yields calculable solutions for the total
Green’s function, the wave function, and the transition
operators. The inhomogeneous term of the new equa-
tion provides an impulse-type approximation for the
transition operators.

In Sec. IV we obtain formal, calculable solutions to
the Faddeev, Lovelace, Rosenberg, and Noble formula-
tions by uncoupling the equations with the use of
operator algebra. The Newton formulation is rewritten
for comparison with the others. All these solutions are
seen to be identical to each other and identical to the
solution of the multiplied equation obtained in Sec. III.
We also find that the Lovelace equations can be ob-
tained by multiplying the system of LS equations for
the transition operators by a matrix of operators. The
conditions on this matrix, in order to introduce no
spurious states, are the same as the ones imposed on
the operators that we used to multiply the individual
LS equations. In Sec. V we treat the DW and shell-
model formulations.

II. LIPPMANN-SCHWINGER EQUATIONS

It is known that the LS equation for the three-body
problem is unsatisfactory in that neither does it possess
a unique solution nor is it amenable to a solution by
any convergent calculational scheme. In this section
we introduce the notation, review how the unsatis-
factory properties arise, and point out the common
origin of these inadequacies.

THREE-BODY SCATTERING 857
Consider three spinless distinguishable particles with
no internal structure. The Hamiltonian is given by

3
H=HO+ Z Va,

a=1

where the three-body kinetic energy operator is Hy and
Ve is the pair interaction between the two particles not
labeled by «.

We define the Green’s functions as usual,

G(z)=(s—H)™, (1)
Go(2) = (3—Ho) ™, (2)
Go(2) = (3—Hy— Vo)™, (3)

where z is the energy of interest and is a complex num-
ber in the intermediate steps in scattering problems.
The Green’s functions satisfy the identities

G(2) =Ga(3) +Ga(2)v.G(2), «=0,1,2,3 (4)
Go(2) =Go(2) +Go(23) VaGa(2), a=1,2,3 (5)
where V= 33V, v,=V—V,, and V,=0.

Let ¢+ (E) represent a complete wave function with
outgoing-wave boundary conditions. The unperturbed
wave ¢, corresponds to the channel o, in which the
particle labeled o does not interact, and particles 8 and
v are bound via the potential V,. That is to say, ¢, is
a continuum eigenfunction of Hy+V,.

The LS equation for ¢, *(E) is

VYol (E) = ¢t lim Go(E-+ie) vt (E).

>0

(6)

LS equations can also be written for the transition
operators between the various channels

Tﬁa—= Z),x+ lim 'l)gGg(E-i—ie) Tﬁ,{". (7)
0

This is the operator for the rearrangement a4+ (8+v)—

B+ (a+7). The other transition operators are written

with the appropriate rearrangement of subscripts. In

future notation the limit e—0 will be implicit.

It is well known that the LS kernels Gov, or 1,Ga
of the integral equations (4), (6), or (7) are not com-
pact.® This is because of the fact that the kernels con-
tain terms in which one or another of the particles do
not interact (these are called disconnected diagrams).
Momentum conservation, which is required of the non-
interacting particle, is represented by a & function
which cannot be factored out of the integral equation.
In a coordinate representation there is no cutoff in the
integration over the coordinate of the noninteracting
(disconnected) particle.

Because the kernel is not compact, we face the first
difficulty with the LS equations, namely, that there is
no convergent calculational scheme for obtaining the
solution. Specifically, the problem is that neither a Born
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series nor a finite matrix representation of the resolvent
of the kernel will converge.®14

The second deficiency of the LS equations is that
Eq. (6) does not have a unique solution whenever there
is more than one channel. The other channel wave
functions ¥gt and ¢+ satisfy the homogeneous form
of Eq. (6).! Thus, to any solution ¢,™ we may add
arbitrary amounts of the other channel wave functions
Ygt or ¢t But this means that the desirable feature of
integral equations—that of combining the differential
equation and boundary conditions—is not present in
Eq. (6). The inhomogeneous term ¢, which is supposed
to establish the boundary conditions, does not do so in
all directions of configuration space.

Now a noncompact operator has a continuous spec-
trum in addition to a discrete one.® It is just these eigen-
vectors corresponding to the continuous eigenvalues of
the kernel that introduce the nonuniqueness arising
from other channel continuum states. The two defici-
encies of the LS equations are then due to the one
fact that the kernel is not compact.

III. USE OF MULTIPLIERS TO PRODUCE
COMPACT KERNELS

We wish to modify the LS equation in such a way as
to produce a compact kernel. We first examine a general
method proposed by Sugar and Blankenbecler.™

A. Discussion of Multipliers

The LS equation can be written in the symbolic
form

T=V+KT, (8)

where 7" stands for the unknown, whether it is the
transition operator, wave function, or Green’s func-
tion. The inhomogeneous term V is that appropriate to
the unknown 7', and the noncompact kernel is K. The
solution suggested by Sugar and Blankenbecler is

T=I[M(1—K)LT'MV. (9)

The conditions they impose on the otherwise arbi-
trary operators L and M are that M and
detM (1—K) L exist. The existence of the determinant
is necessary for the calculation of the solution by the
Fredholm or other matrix inversion technique. It can
be shown that the existence of the determinant is a
sufficient condition for the new kernel to be compact.
The existence of M~ is necessary so that the proposed
solution is a solution of Eq. (8). This is directly verified
by putting the solutions given by Eq. (9) into Eq. (8).

However, if M is arbitrary the solution for the wave
function as given in Eq. (9) with L= 1 contains spurious
solutions given by M (2)£(z) =0, where £(2) is assumed
nonzero. It may seem that these extraneous solutions
are possible both in the scattering wave function, in

147, V., Corbett, J. Math. Phys. 9, 891 (1968).
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which case £(z)=[1—K(z) ¢(2) —¢(z), and in the
bound-state wave function, in which case £(z) =[1—
K (z) 0 (2). A necessary and sufficient condition to en-
sure that M (z) annihilates no vectors is that M—1(z)
exists for all z as prescribed by Sugar and Blankenbecler.
However, we note that in order to produce a compact
kernel, /7! will annihilate (and M will be singular) on
the continuous spectrum of K. By the same token,
any continuum zeros of M must be annihilated by 1— K.
Therefore, if the new kernel is assumed compact, it is
sufficient to require that M~1(z) exists at discrete
values of z.

We now set M =1 and consider the solution with only
the multiplier L present:

T=I[(1—K) LTWV. (10)

By substituting this solution into Eq. (8), it is apparent
that a solution of the form (10) is a solution of (8), and
we are satisfied that (10) yields the desired solution of
the inhomogeneous Eq. (8). We now ask whether the
bound states, which satisfy the homogeneous form of
Eq. (8) can be obtained from a solution of the form
(10). If the criterion used for bound states is that they
occur at energies corresponding to the poles of Eq. (10),
there are still spurious solutions. Values of the energy
2, for which a ¢ can be found to satisfy

[1—-K(z) JL(2)¢(2) =0, (11)
yield poles in Eq. (10). Apart from the actual bound

states
[1-K(E) W (E)=0, (12)
there are possible spurious states given by
L(z)¢(z)=0. (13)

We see that neither of the operators L and M is
more or less arbitrary than the other. In order to pro-
duce no spurious poles, the inverses of both must exist
at discrete values of energy.

B. Application of Multipliers

We now apply the method of multiplying the LS
equation by an operator that makes the kernel compact.
First, we define the two-body ¢ operator:

tzx = Va+ VaGOla,
te=VatVaGaVo.

(14)
(15)

These are two-body ¢ operators in the three-body space,
i.e., the kinetic-energy operator for all three bodies is
included in the propagators. The #’s can be calculated
from Eq. (14) since the § function in the momentum of
the noninteracting particle can be factored from the
whole equation. From Egs. (14) and (15) we obtain
the useful relations

(1‘—G()Va) (1+Gola) = 1,
VoGa= tGo.

(16a)
(16b)
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In the LS equation (4), we use Eq. (5) to expand
G, to display the compact and noncompact parts of the
kernel:

(1= Gota— GoV aGate) G= G (17)

The noncompact part is Gova=GoV+GoV  since it is
the sum of two terms each made up of the one inter-
action which leaves one particle unconnected. The
other term in (17), GoVaGaVe= GotoGova, is already com-
pact since it is made up of products of two different
interactions and all particles are connected.’® We see
that if we use a multiplier L= (1—G,)* on Eq. (17),
the noncompact term will cancel™ and a solution of the
form of Eq. (10) will result:

G= (1—Gwa) " [1—GoteGova (1 —Gova) " ]Go-
The inverse of this multiplier is
[1—Go(2) v ]=Go(2) (z— Ho—y) .

The factor (z—Hy—7v,) is everywhere bounded if v,=
Vg+V, is finite everywhere. The factor Go(z) is un-
bounded only on the continuous spectrum of Hy. Since
the inverse of the multiplier is not unbounded at any
discrete value of z, the multiplier L= (1—Gg,)™! itself
can annihilate no vector at a discrete energy and thus
introduces no spurious bound states. )

However, (18) still is not in calculable form because
Gov, is not compact and therefore the factor (1—Gov,) ™
cannot be calculated. To overcome this we repeat the
multiplier procedure. The multiplier satisfies operator
identities of the type of Egs. (4) and (5),

(1—=Goe) = (1—GoVp) ™

(18)

+ (1=GoVp)'GoV ,(1—Gove) ™, (19)
which we rewrite using Eq. (16a):
[1— (14+Gotg) GoV 4 J(1—Gove) 1=1+Gets. (20)

Equation (20) is an integral equation for the multiplier
(1—Govs) L. The kernel of the equation is (14 Gotg) GoV
and it has the noncompact part GoV,. To put the solu-
tion of (20) into calculable form (i.e., involving resol-
vents of compact operators) we use an L multiplier
L=1+Got,. Using (14), the solution of Eq. (20),
which is of the general form of Eq. (10), is

(1'—G(ﬂ,‘a)'—l= (1+Goly) (I—Gothot.,)_l(l-}'Gofﬁ) . (21)

We see that the multiplier 14-Got, has no zeros by
noting that its inverse, which is obtained from Eq.
(16a), has no discrete poles. Then this multiplier in-
troduces no spurious solutions.

Of course, we could have expanded in terms of
(1—GoV,)! instead and used the multiplier 14Gfg to

18 The compactness is proved mathematically in Ref. 6, p.
B255, and in C. Lovelace, Sirong Inieractions in High Energy
Physics, edited by R. G. Moorhouse (Oliver and Boyd, London,
1964). :
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obtain another solution equivalent to Eq. (21), which
has the labels 8 and + interchanged. In either case, the
solution involves the resolvent of a compact operator,
GotgGoty or Got,Golg, and we can calculate (1—Gove)™,
which is the multiplier of the original LS equation.
We examine the properties of the multiplier further.
This will lead to a slight simplification of Eq. (18).
We define (1—Gove) ™! in terms of an unknown 7g,:

(1—Gova) (14-Gorg,) = 1.
This leads to an integral equation for 7g,:
(22)

We see that 7, is the ¢ operator for the two potentials
Vgand V,. It is the ¢ operator for all the interactions in
which particle a participates. We can evaluate g,
from Eq. (21) by using the operator identity

Tey= 'I)a-l— ’UaGoTﬁy.

(1—AB)'A=A(1—BA). (23)
We obtain
78y= (1—2,GolgGo) "4, (14Golg)
+ (115Gt 4Go) a(1+Got,), (24a)
or, alternatively,
Ty = Ly (1—GutgGuty) 7 (1+Gulg)
+ta(1—GotyGotg) "1 (14+Got,) .  (24b)

Now using (22) we rewrite (18) to obtain our final
calculable expression for G:

G= (14Gyrgy) (1—GutaGorgy)"Ge (25)

We can apply the same multiplier L=1+4Gyrg, to
the LS equation (6) for the wave function since the
kernel is the same as in Eq. (4) or (17). We obtain
the same form of solution:

«T(E) = (1+Gorgy) (1—GotaGorpy) e (26)

A very similar multiplier, 14-75,Go, can be used on
the LS equation (7) for the transition operators. To
eliminate the explicit appearance of potentials in the
kernel, it should be used as an M-type multiplier since
the kernel of Eq. (7) is v,G, instead of Gav,. This will
yield

Ta3_= (1_TﬁyGot¢Go)—l(1+Tg7Go) Ug. (27)

To summarize, we have used only multipliers that
annihilate no vectors and thus we have not introduced
spurious bound states. We have used the multiplier
(1—Gwa) ™ to put the LS equation into a form with a
compact kernel and the simpler multiplier (1—GyVg)™!
to put the expression (1—Gyv,)™! into calculable form.
The final expressions, Egs. (25), (26), and (27), in-
volve compact operators composed of two-body opera-
tors, e.g., tg, and one can solve for fg off the energy shell
in a variety of ways for reasonable potentials.'6

16 Reference 6, p. B234, and M. Scadron, S. Weinberg, and J.
Wright, Phys. Rev. 135, B202 (1964).
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C. Comments

It might be added that any L or M type of multiplier
of the form (1+Gorg,) (14-C), where C is compact,
would also do to render the equations into a form with a
compact kernel. To introduce no spurious solutions,
the existence of (14 C)~is required. An example® of a
multiplier of this form is (1—=GoVg)1(1—GoV )

At this stage it might not be untoward to present a
physical interpretation of Eq. (27), since it has an
especially simple one for elastic scattering:

Tou™ =78yt 76/GotaGo T 0o (28)
This is the elastic scattering operator for the system
a+ (B+v)—a+ (B+v). Equation (28) has a compact
kernel and the Born series can be made convergent.
We recall that the inhomogeneous term 74, is the ¢
operator for the sum of the two potentials Vg+V,.
The first term then inolves the scattering to all orders
of the particle @ from both the particles 8 and v, in-
cluding multiple-scattering terms. In higher terms the
rescattering within the bound system 8-y appears to
all orders of the interaction between particles § and v.
We note that if we neglect the compact operator GotgGoty
in the “Born” term of the multiplied solution for T,
we arrive at the single-scattering impulse approxima-
tion?”
T oo 2tgtt,. (29)
In rearrangement scattering the “Born” term of, for
example, Tg,~ is

( 1+7'a7GO) Va.

In the case of both rearrangement and elastic scattering
the process of removing the disconnected diagrams in
the LS kernel with the use of a multiplier results in an
inhomogeneous term that is just like the original transi-
tion operator, except that it is defined with a free
Green’s function. The new inhomogeneous term is then
an impulse-type approximation in which the binding
potential in the exit channel is ignored. The intermedi-
ate states in this new Born term are then eigenfunctions
of the exit-channel Hamiltonian.

The post form of the operator for the transition chan-
nel a goes to channel B is given by the LS equation

T, ga+= 1),9-}— Tﬂa'l'Ga“'Da.
The multiplier that makes the kernel compact is

(1+G(]T,37) .

In this case the new inhomogeneous term is an impulse-
type approximation in which the potential that pro-
duces binding in the entrance channel is ignored. The

17 The single-scattering impulse approximation was used suc-
cessfully by A. K. Kerman, H. McManus, and R. M. Thaler
[Ann. Phys. (N.Y.) 8, 551 (1959) ] to calculate elastic nucleon-
nucleus scattering at 100 MeV and higher.

A. KAZAKS AND K. R. GREIDER 1

intermediate states in this new Born term are eigen-
functions of the entrance-channel Hamiltonian only.

Iv. EXISTING THREE-BODY FORMULATIONS

In this section we examine the three-body formula-
tions of Faddeev,? Lovelace,? Rosenberg, Noble,"! and
Newton.? We show that the solutions of these formula-
tions are identical to each other and identical to the
solutions obtained in Sec. III with the use of the multi-
plier.

A. Faddeev and Lovelace Formulations

We first reproduce the Faddeev equations. The LS
equation for the transition operator for all three par-
ticles free is

Tow=V+VGyTw. (30)

Faddeev writes
Too=T1+To+Ts,

and obtains the following system of equations—the
Faddeev equations:

(31)

Ty=t+6G(To+T3), (32)
To=to+16Go( T1+T), (33)
T3=t3+13G0(T2+T1). (34)

The operators ¢; are given by Eq. (14) and ¢ is any of
the Greek subscripts used before.

To obtain a formal solution for 79 we can uncouple
Eqgs. (32)-(34) by simple operator algebra. Equations
(33) and (34) are used to obtain 7 and T in terms of
T1. Since fGotsGo 1s a compact operator, we can formally
solve for 7' and T in terms of 7. When T and T’ are
added we recognize that the two-potential operator 723
of Eq. (24) appears as follows:

TotTs=r1o5(1+GoT1). (35)
By using Eq. (35) in Eq. (32) we can solve for 7} since
hGoresGo is compact:
T1= (1—11G0T23Go)—111(1+G0T23) . (36)
Then from (31), using (35) and (36), it is an easy
matter to obtain
Too= 7o+ (14723Go) (1 —hGorasGo) T (14+Goras) . (37)

With this operator one can simply obtain the total
Green’s function from the standard relation

G=Go+GoTwGo
to produce

G= ( 1+G()T23) ( 1 - GothoTzs) G1. (38)

Solutions with the other permutations of subscripts are
obtained if we solve for Ty in terms of T or T5. We see
that this solution is identical to the solution, Eq. (25),
obtained with the use of the multiplier.



1 OPERATOR

The Lovelace equations involve coupling between
the different channel transition operators and can be
written in matrix form:

T P 0 tg ¢ ¥ Taa_
T Ba = to 0 17 Go Tﬁa_
T t 15 O T

1f we uncouple and solve this system as was done for
the Faddeev equations and again use only calculable
resolvents, we obtain

T vo= = (1—7agGol4Go) 1 (14-7agGo) Va- (39)
Again, this solution is identical to the solution, Eq. (27),
for transition operators that was obtained with the use
of the multiplier.

Thus the formal solutions of the Faddeev and Love-
lace equations involve only calculable inverses. They
are identical to the solutions obtained by multiplying
the LS equation. It is equivalent to say that the un-
coupled Lovelace equations are identical to the equa-
tions obtained by multiplying the LS equations for
the transition operators. They have the same inhomo-
geneous part and the same compact kernel.

Furthermore, we can obtain the system of Lovelace
equations by multiplying the system of LS equations
by a matrix of operators. This emphasizes the fact that
multiplying the LS equation by an appropriate opera-
tor effects a cure to the noncompactness of the kernel
in the identical way that the Faddeev or Lovelace
equations do. The system of LS equations, in matrix
form, is

1—9,Ge 0 0
0 1—25Gg 0
0 0 1—0,G,
Too Ve
X| Team | =| % (40)
Tya L8

With the use of Eq. (4) it is easy to verify that the
multiplier M, where

14+0,6 —ViG —V,G
M=| —V.G 149G —V.G |,
—V.G —ViG 14,6

acting on Eq. (40) yields the system of Lovelace equa-
tions. In order to introduce no spurious solutions, we
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ask that M1 exists. Again it is easy to verify that

1— vaGo VﬁGo VBGU
M= V,,Go 1— vao V.YG()
VaGo VﬁG(] 1—o ‘YGO

We see that every element of M~ exists. In fact, the
diagonal elements of M~ are the inverses of the multi-
pliers we use to put the individual LS equations into
a form with a compact kernel.

B. Rosenberg, Newton, and Noble Formulations

Noble! uses the same multiplier (1—Gw,)™ as an
M-type multiplier to solve for the total Green’s func-
tion. The advantage of using it as an L-type multiplier
as we have done is that only the two-body ¢ operators
appear in the result and there is no explicit dependence
on the potentials. Noble’s approach also differs from
ours in that in order to put the multiplier into calculable
form he breaks it up into a sum of two parts and obtains
two coupled Faddeev-like equations for them:

(1=Gwa) (A+Go(Xs+ X,))=1,  (41)

where the X’s satisfy
Xp=lgt1GoX o, (42)
X,=t,4+1,GoXp. (43)

We uncouple these equations to produce compact ker-
nels and solve them, to find that Xz+X,=7g,. Indeed
we would expect this result from the definition of 74,
and the identical definition of the X’s in Eq. (41).

Rosenberg!? solves for the elastic transition operator
T+~ and obtains an equation identical to our Eq. (28)
with the use of an operator identity [his Eq. (23)7].
He evaluates the 74, occurring in that equation exactly
as does Noble, i.e., by Egs. (42) and (43).

Using an operator identity of the type of Eq. (4) or
(5), Newton'? produces Eq. (21). Newton repeats the
procedure for the resolvent of an operator made up of
three terms treating the sum of two of the terms as one.
Newton’s equation (7) can be written, in our notation,
using Eq. (23), to obtain

[1—Go(Vi+ Vot V3) T = (14+Gorr2)
X ( 1— Got;;Gole) -1 ( 1 +G0t3) . (44)

From Eq. (4), with =0, we see that the above re-
solvent acting on Gy yields G:

G= ( 1+ Go’r]_z) ( 1— GolgGon)—le- (45)

This last result is exactly our solution, Eq. (23), to the
multiplied LS equation. Similarly, one can rewrite
Newton’s equation (8) to yield exactly Eq. (37) for Ty

Multipliers are already explicitly present in the
formulations of Faddeev, Rosenberg, and Noble. To ob-
tain the Faddeev equations (32)—(34), one must use
the three expressions 14-Gyf; as multipliers. Each one is
used separately to obtain one of the Faddeev equations.
Similarly, to obtain the two coupled equations of Rosen-
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berg or Noble, one must use two of the expression 1+
Got; as multipliers.

In summary, we have shown in this section that the
apparently different formulations of Faddeev, Love-
lace, Rosenberg, Noble, and Newton yield solutions
identical to each other and identical to those obtained
from the multiplied LS equations which has no spurious
bound states. The method of making the kernel com-
pact in the various formulations is in effect the same as
the multiplier method. An intrinsically different solu-
tion would result if a more complicated multiplier of
the form (1+4Gyrgy) (14C), where C is compact and
(14 C) L exists, were to be used. The different formula-
tions have effectively used the simplest multiplier,
simplest in the sense that it immediately removes the
noncompact part of the L-S kernel. The multiplier
method is a straightforward and general way to put
scattering equations into calculable form. It is not clear
which formulation is the most practical from a calcula-
tional point of view. It does seem that the uncoupled
equation is more useful for making approximations.

For completeness we must add that a field-theoretic
formulation of the three-body problem was introduced
by Amado.®® Rosenberg!® has shown this approach to be
equivalent to the Lovelace formulation with separable
interactions.

V. DISTORTED-WAVE AND SHELL-MODEL
FORMALISMS

In this section we discuss two methods often used as
approximations in three-body problems. With each of
these we use the multiplier method to obtain a calcul-
able integral equation with compact kernel for the
appropriate operator. In this manner we can explicitly
determine what skould be the first-order term in a
calculationally convergent series.

A. Distorted-Wave Formalism

Both the undistorted-wave and the distorted-wave
(DW) Born series have been shown to be divergent in
general 2202 We will show how the multiplier method
can be used to remedy the divergence by removing the
noncompactness in the integral equation for the DW
transition amplitude.

Greider and Dodd have derived the integral equation
for the exact transition amplitude in the DW forma-
lism?0:

T = w5 T (va—Wa) wa g (15— w5) GsTpa~,  (40)

where w, and wg are the distorting potentials in the
initial and final channels, respectively. The wave opera-
tors that will distort the unperturbed states ¢, and ¢g
are w,T and wg~. They are defined by

wat=1+4[1/(E—Hy— Vo—wati€) T

18 R, D. Amado, Phys. Rev. 132, 485 (1963).

197, Rosenberg, Phys. Rev. 134, B937 (1964).

20 K. R. Grider and L. R. Dodd, Phys. Rev. 146, 671 (1966).
21T, R. Dodd and K. R. Grieder, Phys. Rev. 146, 675 (1966).
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and
wgt= 14w/ (E— Ho—Vs—wsg+ic).

The presence of the distorted wave xo"=ws"¢, in the
entrance channel « is calculationally convenient, but
does not affect the kernel of Eq. (46). Therefore, it
does not affect the convergence of the DW series for
Tga; for clarity we temporarily set w,=0, or w,m=1, in
what follows.

We rewrite Eq. (46) to yield

[1—ws ™t (vp—wp) Ge* 1T pa = w5 e (47)

It is an easy matter to show that Eq. (47) results when
the LS equation is multiplied by wg~t, if we use the
relation

wg”‘T= 1—|—w5—"w,gG,g+.

The multiplier introduces no extraneous bound states
since the only zeros of wg™" arise from the zeros of
z— Hy— V. Since the potential Vg is a two-body poten-
tial, it cannot produce a three-body bound state.

We note that so far the distorting potential wjp is
arbitrary.? In actual DW calculations in which the
DW functions are taken from experimental data, the
distorting potential wg is taken to be either V, or V, or
something that approximates them.? If we choose
wg= V4, the new kernel in Eq. (47) becomes

wB‘T V7G5= wg_TVyGo ( 14+ VﬁGﬂ) .

We see that every term involves a product of at least
two different interactions except for one term, V,Go.
This term is not compact. The use of the DW formalism
has removed all but one of the noncompact terms of the
LS kernel.

However, the DW equation can be made compact
with the use of the multiplier (1—V,Go)~. (This is
essentially the procedure used by Dodd and Greider.?)
This multiplier introduces no spurious solutions, and
it can be used to multiply the LS equation before one
multiplies by wg". This yields an equation with a
compact kernel whose inhomogeneous (corresponding
to the Born) term is given by

wg’"T ( 1— V'YG()) ~17Ja.

If the distorting potential had been chosen as wg=V ,,
the multiplier (1—VGo)* would be necessary. We see
that in order for the DW kernel to be compact, the
potential not used in distorting the exit channel must be
used in a multiplier of the form (1—V,Gy)™* or (1—
VGo)™. (In the post form of the transition operator
Tg.T, a similar multiplier involving the potential not
used in distorting the entrance channel is required.)

We now put back the distortion w,* in channel « to
obtain the inhomogeneous term for 7's,~, and set wg=
Va:

wg T (1—=V ,Go) ™ (va— wa) ot

To further clarify the nature of this inhomogeneous
term, we consider the specific process of a knockout
reaction, like a (p,n) reaction on a heavy nucleus.
The three-body model for this process requires that w,
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be set (approximately) equal to Vg2 and the in-
homogeneous term becomes

wi T (1= V,Go) ™V ywat = wg tywat. (48)
This term is then the first term in a series solution of the
DW equation with a compact kernel. It is of importance
in any DW calculation since we know that any exact
solution of an integral equation is possible only if the
kernel is compact. Furthermore, we know that a vector
series and a matrix-element series are guaranteed to
converge if the operator series is convergent.! The ¢,
is the first term in the operator series and Eq. (48) is
the first term in the matrix-element series. Use of ¢,
rather than the usual Born term V, is appropriate in
calculations based on a convergent formulation, and
calculations using ¢, have been performed with some
success.”? From the definition of ¢, in Eq. (15), we see
that the usual DWBA would be valid if V,G,V, could
be shown to be negligible compared to V.

B. Shell-Model Method

Next we consider a three-body shell-model calcula-
tion. The three bodies are two extra-core nucleons and
an inert core. We obtain an exact integral equation for
the wave function, examine its kernel, and make the
kernel compact with the use of a multiplier. We then
use the lowest-order term of the equation with the com-
pact kernel to obtain the expression that should be used
in a standard shell-model calculation.

We assume that each extra-core nucleon #; and #, is
bound to the core via the potential U; and U,, respec-
tively, and that the two nucleons interact with each
other via the potential V. Further, we assume that we
know the wave functions and the energy levels of the
two nucleons outside the core when V'=0; that is, we
know the solutions of the Schrédinger equation (the
basis states) for each nucleon separately bound to the
core via the shell-model potential U; or Us,. In the usual
shell-model calculation a finite number of these basis
states are used, and a linear combination of the product
wave functions is then diagonalized with respect to V
to obtain the energy of the system.

We want to correct for the fact that only a finite
number or a truncated subset of the complete set of
basis states is considered. Since among the excluded
states are the continuum states of each nucleon in the
field of the core, we suspect and will show below that in
an exact formulation disconnected diagrams (noncom-
pact kernel) will appear. These diagrams can be dealt
with by our multiplier method.

We can write the exact three-body bound-state wave
function as

\bng‘/’;
g= (E—Hy—U—U,)™~

The complete set of basis states consists of the eigen-

22VP. A. Deutchman and I. E. McCarthy, Nucl. Phys. Al12,
399 (1968).

where
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functions | ) of Hy+ Ui+ Us:

(Ho+ U1+ Uz) | 1.>=6,' i 1>.
Let P denote the projection operator which projects
out the small finite number of bound states used in a
normal shell-model calculation,

N

P=3|i)l, (49)
where NV is the number of basis states chosen. We then
write

Y= Py+Qy

or

‘p: P¢+ng‘p’
where

Q0=1—P.

Since () is a projection operator on the eigenstates of
Hoy+ Ui+ U, and g is the Green’s function for the same
operator, Q and g commute. Neither P nor Q, however,
commutes with V. We wish to obtain an integral equa-
tion for ¥ in which Py is the lowest order, i.e., in-
homogeneous term. We write

Y= Py4-g0Vy
and expand g according to

8= G0+Go( U1+ Uz)g
to obtain the integral equation for ¢,
[(1—=GVA4GoPV —Go(Ur+Us) gQV W= Py. (50)
The inhomogeneous term Py is the approximate
wave function obtained by truncating the complete set
of basis states. Now P as normally used in shell-model
calculations is defined in Eq. (49) and is expressed in
terms of states | <) which exponentially go to zero as the
coordinates of particles 1 or 2 become large. Thus, PV
involves at least two interactions and is a compact
operator. From previous arguments, we know that

Go(U1+ Uz) gQV= G()T1260QV

is compact. Then the only noncompact term in Eq.
(50) is GoV and we can remove it with the multiplier
(1—GoV)1=1+4Got. If we are only interested in the
lowest-order term of the multiplied solution to use in
the shell-model calculation, it does not matter whether
we use an L or M type of multiplier. For simplicity we
use an L-type multiplier, for which the solution is

¢= (1+Got) [1/(1+G0Pt—‘G0T12GoQt) ]P¢ (51)
This is a calculable expression for the solution
¥=[1/(1—¢QV) 1PgVy. (52)

If we consider only the lowest term, we have
Y~ (14+Got) Py.

This is the first term in the solution of the equation
with a compact kernel. We see that ¢ should be cal-
culated from y~PgV (14+Got) Py=PgtPy instead of
from y~PgV Py.

Alternatively, we can ask what is the form of the
effective interaction operator Vs, that will produce
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the exact wave function ¢ from the truncated repre-
sentation for g, i.e., what is Vg if
(1— PgVeff)\b: 0
yields the exact wave function given in Eq. (51). Since
we can write Eq. (52) as
Y=PgV[1/(1—gQV) W,
and using the calculable expression for (1—gQV)—!
from Eq. (51), we obtain
Y= PgV (14Got) [1/ (14 Go Pt— Gor12GoQ1) .
We then see that the effective operator which permits
the use of a truncated representation for g, and yet
yields the exact wave function, is
Vets= t[1/(1+GOPt—G0T12GOQIf) :l
Neglecting the compact operator in the denominator of

Vs, we see that the wave function should again be
approximately calculated from the lowest-order term:

Yy~ Pgt.
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We see that the ¢ operator of the residual interaction
rather than the residual interaction potential is the one
that appears in a convergent formulation of three-body
shell-model calculations if only a finite set of basis
states, Py, is used in the diagonalization of the residual
interaction. Calculations that use an approximation for
the ¢ matrix have recently been performed by Hodgson.?
He finds that there is no definite improvement over a
calculation that just employs the potential. Kuo and
Brown? make use of the second Born term in the series
for ¢, i.e., t=>~V+4VGiV. They use core polarization
states in the intermediate states of the term VG,V.
This implies that Kuo and Brown have included a
structure in the core and have departed from a strict
three-body shell-model interpretation of the problem.
At any rate, they find the second Born term to be im-
portant.

2 R. J. W. Hodgson, Phys. Rev. 156, 1173 (1967).
24T, T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
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A detailed study of the wave properties of the nuclear optical model is presented to elucidate the problem
of barrier penetration by charged particles and to remove some of the mystique of optical-model calcula-
tions. The wave properties and the concomitant penetration are most straightforward for square wells,
for which the resonance, reflection, and penetration are easily ascribed to separate factors. We show that
the wave properties of more general diffuse-edge optical potentials achieve a similar simplicity by the
construction of an equivalent square well (ESW) which has the same resonance, penetration, and absorption
factors as the optical potential, but which differs in its reflection factor. A general construction of the ESW
is given, and we apply it to the following problems: (1) the very narrow single-particle resonances of real
optical potentials that occur at energies far below the Coulomb barrier, (2) the nuclear absorption cross
sections in the presence of barriers, (3) the calculation of absorption cross sections at astrophysical energies
(extreme barrier penetration) employing optical models fitted to data at higher energies, and (4) the value
of the nuclear radius and sum-rule limits appropriate to the analysis of nuclear reactions. In some cases of
extreme barrier penetration, the ESW fails to yield all the properties. For example, cases are described
where the bulk of the absorption may attain in the distant “tail”” of the imaginary term in the optical
potential: The corresponding reaction rates can yield information about the behavior of the nucleus at

distances much beyond the normal nuclear radius.

1. INTRODUCTION

HE behavior of most nuclear reactions at low
energy— particularly those of interest for astro-
physical systems—is dominated by Coulomb and
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angular-momentum barriers. Early treatments'™® of
such reactions employed a simple picture: the “black-
nucleus” or “black-box” picture. In this picture, a
bombarding particle was viewed as passing through
known Coulomb and angular-momentum barriers up to
the nuclear radius. At the nuclear radius, it was ab-

1 G. Breit and E. P. Wigner, Phys. Rev. 49, 519 (1936); 49,
642 (1936). :

2H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937).

8V. W. Weisskopf and D. H. Ewing, Phys. Rev. 57, 472

(1940); J. Blatt and V. W. Weisskopf, in Theoretical Nuclear
Physics (John Wiley & Sons, Inc., New York, 1952).



