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A formalism, proposed previously, which represents a generalization of the separable-potential model is
applied to the four-nucleon system. It consists essentially in approximating the off-shell nucleon-deuteron
scattering amplitude—as obtained in the separable-potential model—again by separable expressions. We
arrive thereby at effective two-particle equations which are solvable by standard methods. The determina-
tion of the required separable terms is studied in detail. A first attempt to solve approximately our final inte-
gral equations is made. The results demonstrate the applicability of the method.

1. INTRODUCTION

T is well known that, in the separable-potential

model,! the two-particle problem is immediately
reducible to an algebraic equation, while the three-
particle problem can be reduced to an effective two-
body theory.>® Moreover, as we have pointed out
previously,” the separable-potential approximation
leads in the general n-particle case to effective (z—1)-
body equations.® This observation suggested the pos-
sibility of approximating by separable terms not only
the original two-particle interactions, but also the
“potentials” obtained in these effective equations.®®
Repeated application of such a procedure allows us to
reduce the dimension of the original problem, step by
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step, providing us finally with manageable equations.”
In particular, after two steps we obtain algebraic equa-
tions for the three-particle problem, while use of the
same separable terms leads in the four-particle case to
effective two-particle equations. After angular momen-
tum decomposition, these are one-dimensional equa-
tions.

We recall that the justification of the separable-
potential approximation is given by the fact that the
kernels of (genuine and effective) two-particle equa-
tions are of the Hilbert-Schmidt type, at least under
suitable conditions on the two-particle interactions.!*
By calculating the Schmidt norms of the neglected
nonseparable rest kernels, we are in a position to answer
the question, decisive for practical applications of the
method, as to whether only few separable terms are
sufficient for a reasonable approximation to the poten-
tials.?

It is the purpose of this paper to apply the twofold
separable approximation scheme described above to
the three-nucleon? and, in particular, to the four-
nucleon problem. In contrast to the latter one, the
three-nucleon problem is manageable after the first
step and has been studied in this form by several
authors.>=¥ The results obtained even with few
separable terms for the nucleon-nucleon interaction
are very satisfactory. Therefore, in this case our re-
peated separable approximation only serves to check
the method by comparison with these results. Further-
more, it provides us with the separable potentials
needed in the four-nucleon problem in order to ap-
proximate it by ‘“two-body” equations. Some of the
transition amplitudes that occur in these equations are
just the (off-shell) amplitudes for deuteron-deuteron
and nucleon-triton (He?) elastic and rearrangement
scattering. The others correspond to the scattering of
unphysical “quasiparticles,” 7 introduced in order to
improve the approximation.

In Sec. 2, the kinematics is fixed, and the separable

11 K. Meetz, J. Math. Phys. 3, 690 (1962),and Refs. 6, 9, and 7.

12 Compare in this context also the method of E. A. Harms and
L. Laroze, Bull. Am. Phys. Soc. 14, 21 (1969).

13 A. C. Phillips. Phys. Rev. 142, 984 (1966); 145, 733 (1966).
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Fi1c. 1. Relative momenta used for the description of the
four-nucleon system.

two-nucleon potentials used in the following are given.
The latter are the ones conventionally employed in the
separable-potential model of the two- and three-nucleon
problems. Section 3 is devoted to the general problem
of finding separable approximations with as few terms
as possible. For this purpose the variational method of
Wright and Scadron** is employed. (Several detailed
questions, concerning the choice of the trial functions,
are treated in the Appendixes A and B.)

In Sec. 4, the application to the effective two-particle
formulation of the three-nucleon problem is given.
Since the effective potentials are energy-dependent,
the separable terms are chosen to be energy-dependent
also, which allows us to adjust them at all energies.
The obtained results provide us with the nucleon-
triton “potentials” in the four-nucleon problem as
presented in Sec. 5. Besides these nucleon-triton
potentials, we also need there “potentials” describing
the transition: nucleon--triton—deuteron--deuteron.
These are constructed in Sec. 6. In Sec. 7, we present
the results for the four-nucleon bound-state problem
obtained by the Rayleigh-Ritz variational principle.
For scattering energies, our effective two-body equa-
tions, although tractable by present-day computers,
are still very cumbersome. Thus, we solved them only
in a K-matrix Born approximation. The results are
given in Sec. 8, both for the three- and for the four-
nucleon problems. Some concluding remarks are con-
tained in Sec. 9.

We should note that equations similar to ours have
been proposed by Komarov and Popova'® on the basis
of more intuitive arguments. However, our final
equations differ in several respects from theirs. Further-
more, numerical results for the four-nucleon problem
have not yet been obtained in their framework.

Finally, we stress that our present results should be
understood mainly as a first, crude, but, we believe,
encouraging check of the applicability of our general
method.

2. KINEMATICS AND THE TWO-NUCLEON
INTERACTIONS

Instead of the particle momenta k; themselves, we
use relative momenta in the normalization of Lovelace®
and Weyers.®® In the four-nucleon system we have,

14 J, Wright and M. Scadron, Nuovo Cimento 34, 1571 (1964).

1YV, V. Komarov and A. M. Popova, Nucl. Phys. 69, 253
(1965) ; A90, 635 (1967).

16 T, Weyers, Phys. Rev. 145, 1236 (1966).

besides the total momentum ( is the nucleon mass),
Que=[1/2(m)""*](k1—k),
Qs=[1/2(3m) "] (ks +ko— 2ks),
Qan =[1/2(2m)"*](ki+ke—ks—ks),
Qe=[1/2(6m) "] (k+ks+ks—3k),

(2.1)

or the corresponding expressions for all other index
combinations (see Fig. 1). Of course, only three of
these momenta are linearly independent. Some of the
relationships between them are given in Ref. 16.
The normalization is chosen such that the c.m. kinetic
energy is simply

Ho= Qi+ 95+ 9¢= Q>+ A’ +qan®. (2.2)
Here, g2 evidently represents the relative momentum
in the (1, 2) subsystem. The two momenta q;» and Qs
are the ones relevant for the kinematical description of
the (1, 2, 3) subsystem, being identical with the mo-
menta p; and g3 introduced by Lovelace in the three-
particle problem. That is, the momenta used in the
three-nucleon problem occur also in the basic set
(2.1). Furthermore, if particles 3 and 4 are bound,
the four-nucleon system is reduced to a formal three-
particle system which is kinematically described by
Q2 and Qqs), corresponding again to Lovelace’s three-
particle momenta written down for this case. Thus, we
see that the set (2.1) includes exactly the momenta
necessary for treating the four-nucleon problem as a
three-particle problem, as will be done in Sec. 5. All
equations occurring in that section can, therefore, be
taken over from Ref. 6, as far as kinematics is con-
cerned.

For the nucleon-nucleon interaction, we take the
usual version of the separable-potential model which
includes neither hard-core nor tensor forces.!*” More
explicitly, we have

V(p', p) = —2a(0')v8a(P) Pa—gs(p') 748+ (P) Ps,
(2.3)

where Pg and P, are the isospin-spin projection opera-
tors onto the states with quantum numbers of the
deuteron d(I=0, S=1), and of the virtual singlet
bound state ¢(I=1, S=0).

The form factors gg(p) and ge(p) are chosen (as
usual) :
n=d, ¢.

&(p) =1/ (p*+ua), (2.4)

The ansatz (2.3) leads to the following form of the two-

17 See also J. H. Naqui [Nucl. Phys. 58, 289 (1964) ] and the
discussion of the various models, used up to now, in K. M. Watson
and J. Nuttall [ Topics in Several Particle Dynamics (Holden-Day,
San Francisco, 1967) ].
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nucleon T matrix:

T(p,p E)=— =Xdld)gn(P')tn(E)gn(p)Pn (2.5)
with
tHE) =va?— [d*q[g.(Q) P/ (®—E).

The parameters vq, vs, #d, and ug are determined by the
binding energy of the deuteron, the singlet and triplet
scattering lengths, and the singlet effective range. The
following values are taken as input (for the singlet
data we average over the #zn and #p datal®):

E;4=2.226 MeV,
a3=5.396 fm,
ay=—20.339 fm,
7o=12.844 fm.

(2.6)

2.7)

We then obtain for v, and u,
va=10.26 (MeV)?*,

vs=>5.888 (MeV)3s,

pa=9.162 MeV,

1p=7.191 MeV. (2.8)

It is well known that neglect of tensor forces and short-
range repulsion in the two-nucleon interaction leads
to too strong a binding for the three-nucleon system.
The same will be true for the four-nucleon problem.

Therefore, to get a reliable measure of the approxima-
tions to be made, we have to compare our three-nucleon
results with those obtained in exact calculations using
the same simple ansatz for the two-nucleon forces.:3

Finally, we note that more sophisticated separable
potentials have been given® and used in the three-
nucleon problem.® They can all be used in our treat-
ment, but with increased numerical complexity.

3. DETERMINATION OF SEPARABLE
“POTENTIALS”

According to the discussion in the Introduction, the
use of the separable interaction (2.3) reduces the
three-nucleon problem to effective two-particle equa-
tions, while the four-nucleon problem is reduced to a
formal three-particle theory. Thus, our next step is to
approximate by separable expressions the various ‘“two-
particle potentials” obtained thereby. In this section,

18 F, Tabakin, Ann. Phys. (N.Y.) 30, 51 (1964); R. D. Puff,
bid. 13, 317 (1961); J. H. Naqui, Nucl. Phys. A103, 565 (1967);
G. L. Strobel, 7bid. A116, 465 (1968).

1Y, S. Bhasin, G. L. Schrenk, and A. N. Mitra, Phys. Rev.
137, B398 (1965); B. S. Bhakar and A. N. Mitra, Phys. Rev.
Letters 14, 143 (1965) ; G. L. Schrenk and A. N. Mitra, ¢bid. 19,
530 (1967); A. G. Sitenko and V. F. Kharchenko, Yadern. Fiz.
1, 994 (1965) [English transl.: Soviet J. Nucl. Phys. 1, 708
(1965) J; A. G. Sitenko, V. F. Kharchenko, and N. M. Petrov,
Phys. Letters 21, 54 (1966); J. Borysowicz and J. Dabrowski,
sbid. 24B, 125 (1967); N. M. Petrov, S. A. Storozhenko, and
V. F. Kharchenko, Yadern Fiz. 6, 466 (1967) [English transl.:
Soviet J. Nucl. Phys. 6, 340 (1968)]; ¥. Tabakin, Phys. Rev.
137, B75 (1965).
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we will, therefore, consider a general two-particle prob-
lem with a nonlocal energy-dependent potential.

The best approximation in the sense of the con-
vergence of the quasi-Born series® is obtained by

Ver(E) = 2 V(E) | (E) my(E) @ (E) | V(E)

=2 l x(E) >7lv(E) <X,,(E*) i; 3. 1)
where the |¢,(E)) are Sturmian functions (repre-
senting the ‘““ideal choice” of Weinberg), defined as
solutions of

G(E)V(E) | W(E) )=n(E) | $(E)) (3.2)
with the normalization®
(XV(E*) I GO(E) | XV’(E) >=5W’- (33)

Here, Go(E) = (Ho— E)~" is the free Green’s function.
The above potential Vsr leads to the “two-particle”
transition operator

Toer(E) =— 2 | % (E) 0 (E) (6 (£%) | (3.4)

with
t(E)=—n(E)/[1+m(E)] (3.5)

To solve Eq. (3.2), at least approximately, we resort to
variational principles, as described by Wright and
Scadron,* for genuine two-particle problems. In fact,
the solutions of (3.2) are obtained by extremizing the
expressions

06 (%) | Go(£)V (E)Go(E) | x(E))

E"]w(x; E)]= (Xv(E*) l Go(E) ] Xv(b)>

(3.6)

or
06 (E*) | Go(E) | x(E))
o (B | VUE) | x(£))

Whenever the Lippmann-Schwinger equation, and
therefore also Eq. (3.2), were uncoupled equations, we
always took only one separable term, »=1. In general,
however, Eq. (3.2) is an #X# matrix equation de-
scribing coupled channels. Then, some technical
modifications of the above method turned out to be
useful. They are described in Appendix A, and lead to
an approximation of V4 by just # separable terms.
The important point, now, is the question of how to
choose the trial form factors | x,(E) ). It is well known
that the eigenfunctions of Eq. (3.2) become complex
above threshold even for local and real potentials. Thus
it is not very easy to make a reasonable guess. For real
energies below threshold, and for the first (largest)
eigenvalue, however, we were led by the following argu-
ments: V(p/, p, E)—as well as Go(p; E) and x1(p, E)—

[0/ (x; E)]= (3.7)

20 S, Weinberg, Ref. 9.
21 For simplicity, we have assumed 5,57,” for »£v',
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is a (positive- or negative-) definite function. Therefore,
it seems reasonable to approximate it in the integral
equation (3.2), defining the form factors, by its value
at some mean momentum p. Then, we have from Eq.
(3.2), after angular momentum decomposition,?

xea(p; B) =[nua(B) T fo " ap Vi, s E)
XGo(p'; E)xia(p'; EY~Vi(p, 73 E)Cma(E) T
X f " ap G B)xaa(p' ). (3.8)
According to (3.1), this leads to the separable potential

Vieer(p', p; E) < Va(p!, p; E)Va(D, p5 E). (3.9)

Here, the proportionality factor depends only on the
energy. This form suggests the more general ansatz

Vl(Pla a; E) VL(OZ, ?; E)
Vl(ay a; E)

Vieer(p', p; B) =£(E)

(3.10)

with an open parameter «(E) which has to be deter-
mined by the above variational principle, and with
the normalization ‘“constant” £(E) which follows
from the normalization condition (3.3), after having
determined a(E). We would expect, however, that the
value of £(E) is not too far from unity, since then?
Vlsep(P’) o E)NVZ(Ply a; E) and Vlsep(a, ?; E)N
Vi(a, p; E). Actually, we made a further approximation
in our calculation. Namely, we replaced V(p, a; E)—
which will, in general, be a rather unwieldy function—
by a simpler function which coincides with it for p~a.
In all cases our final form factor has the correct thresh-
old behavior o« ! and the same asymptotic behavior
for p— o as the exact solution of Eq. (3.2).

The relevance of the arguments of this section can be
illustrated by inspection of the Yukawa potential.
This is done in Appendix B.

22 We choose
V(p, p; E) = (1/4m) 2, (214-1) P1(cos) Vi(p', p; E).

2Tt is interesting to notice at this point that the method of
H. P. Noyes [Phys. Rev. Letters 15, 538 (1965)] and K. L.
Kowalski [4bid. 15, 798 (1965)] for solving the Lippmann-
Schwinger equation for positive energies, is intimately connected
with Eq. (3.10). For, if we take £(E) =1 and a=EM2, we arrive
at

Vi, p; E)
=[Vi(p!, EV2; E)V(E", p; E)/V,(E'2, EV2; E)]
+Vi (@, p; B).
By use of this special decomposition of the potential into a separ-
able and a nonseparable part, we are able, with the help of the

quasiparticle method of Weinberg (Ref. 9), to reproduce all the
results of Noyes and Kowalski.

4. THREE-NUCLEON PROBLEM

As a first application of the ideas developed in
Sec. 3, we consider the three-nucleon problem. The
results obtained will then serve as input for the calcula-
tions to be performed in the four-nucleon problem.

As already remarked in Sec. 2, we will restrict our-
selves to the simplest model of only one separable
term in each spin-isospin channel for the two-nucleon
T matrix. Therefore, our calculations will suffer from
the same defects as those of Refs. 4 and 13. Thus,
it is clear that our results have to be measured against
those of these authors, if one wants to judge the quality
of our approximation.

We start by writing down the partial-wave projected
scattering equations for orbital angular momentum
equal to zero (we will, however, drop the index L=0;
later on we shall also make some remarks on the
P wave). The equations for the 7" matrix are, with
correct symmetrization because of the identity of the
nucleons,

Tow? (¢, ¢; E)=Vam!S(q', q; E)
B % / ) dg"q"*Vu,'5(q', 5 E)
r=d,¢ Yo

Xt(E—¢") T 5(q", ¢; E).

Here, I(.S) denotes the total isospin (spin) of the
three-nucleon system, both of which are conserved in
our model. The indices #, m, and 7 stand for d (deu-
teron) and ¢ (virtual singlet state).

The “propagators” ¢, are given by Eq. (2.6).%
The “potentials” V, .S have the form®

(4.1)

Vaul$(¢', ¢; E) = — K SV (¢, ¢; E) (4.2)
with
) 16 +1
Vam(q', q; E) = V3 27 /;1 d cosf
g[372(q'+2q) Jgm[37(a+2q") ] (4.3)

3(4q"+Hag+4g-q)—E

6 being the angle between q and q'.
The two-nucleon form factors g, are defined in
Eq. (2.4). The A0S are the spin-isospin recoupling
d ¢

coefficients®:
d
Ay b2 l2=
- ¢

24 Of course, #; is not renormalized, i.e., its residue at the deu-
teron pole is not equal to 1; see Ref. 3. Correspondingly, also the
TS are not renormalized. In contrast, the normalization of
t is arbitrary.

25 Note that the corresponding matrix of Ref. 6 is here multiplied
by a factor (—2).

L
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and

—1 9
2
Ap 2232 = < . (4.4)
00
According to the discussion of Sec. 3, we must now

approximate the “potentials” Va..!'S by separable
ones. First, let us consider the quartet case (I=3%,

S=2), where only the element Va; contributes. From
(3.8) we would obtain

X2 (g, E) < Vaa(g, a; E).

With the correct normalization (3.3), and dropping
terms proportional to cosf [compare Eq. (3.10) and
the discussion following it], we get

(4.5)

[(5/3) a2 +us2][ (8/3) a2 — EJ2

£ \V2 (647\/2
Xat(g; E) = (2: ) (g?)
qu

= (£qu/ 2n0) "*Ra(q; E),
and, correspondingly,

Vad23%ee (g, g; E) =5t (E)%a(q’; E)Xa(g; E).

The isoquartet state (=%, S=}%) can be treated in
the same way, with the deuteron always replaced by ¢.
However, the results for it are not needed in the
following, and so we left it out from our considerations.
For the doublet potentials V,,!/*'? we proceed as
described in Appendix A. As explained there, we ap-
proximate the potential in this case by two separable
terms, with form factors | x,*)=C,"| %.). Here, | Xa)
is given by Eq. (4.6), while | %4) is taken to be the
same expression, with ug replaced by ug. The coefficients
C,*(E), as well as the parameter «, are determined by
the variational principle.26 The results are the following:

(a) For quartet scattering, Eq. (3.6) leads to an
eigenvalue 74, (E), which is shown in Fig. 2. The cor-
responding values of a(E) are depicted in Fig. 3.

(b) For the doublet channel, Eq. (A8) gives rise to
two eigenvalues 7:(E) and 72(£). They are also shown
in Fig. 2 [the values for a(E) are the same as in the
quartet case]. As can be seen from Fig. 2, only n:(E)

2
: Ny,
) Y g v
I 5 R | 3 3
-

it
2

Fic. 2. The largest eigenvalue n,,(E) of the Lippmann-
Schwinger kernel in the three-nucleon quartet state, and the two
largest eigenvalues 7, (E) and #2(E) in the three-nucleon doublet
state.

% In principle, the parameter « should be different in the doub-
let and quartet cases, but it appeared from the calculation that
the difference was completely negligible.

(3 (¢+40?) +pat 05 (4g*+0) +ud 1[5 (¢t a?) — E]

(4.6)

4.7

goes through —1. The energy B, corresponding to
m(—B) =—1 is the triton binding energy. Our result,
B,=10.3 MeV, is indeed very close to the values ob-
tained by Aaron ef al* and Phillips® by solving Eq.
(4.1) exactly.

As we have discussed in Sec. 3, the factor £u.(E) in
Eq. (4.7) is expected o be close to unity. Our results,
shown in Fig. 4, verify this. An analogous consideration
suggests in the doublet case (compare the definitions
in Appendix A)

fum(E) = émuz) o (B)Cor(E)~— Ap 2. (4.8)

At threshold (E=—B;), we obtained indeed

—0.29 0.84
En.m(_ Bd) = )
—0.30

0.84
while at our value for the triton energy we got

—0.32 0.98
£am(—10.3) = .
—0.34

0.98
Besides the triton binding energy, further important
quantities, which can easily be compared with the
“exact’” results given in Refs. 4 and 13, are the scat-
tering lengths for elastic nucleon-deuteron scattering.
Their connection with the 7' matrices are [compare

Eq. (8.3)]

_ ua(patBa?)?
A

3B 1/2
abs (—d> Tad'5(0, 0; —Ba), (4.9)
m

where the somewhat unconventional coefficient arises
from our normalization of the momenta and from the
fact that we work with a not renormalized deuteron
propagator.

Our results are given in Table I. They show large
disagreement with the “exact” ones. This shortcoming,
together with the very good result for the binding
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20

. E W]
-100 -50 -0 -0 -5 -2
Fic. 3. The parameter «2(E) in the triton form factors defined

in Eq. (4.6), and the corresponding parameter 32(E) of the two-
deuteron form factor [Eq. (6.6) ].

energy, can be easily understood. First, it is well known
that variational calculations yield errors in the binding
energy which are of second order compared with the
errors of the wave functions. Second, to represent
the exact transition amplitude, we need (in principle)
an infinite number of separable terms, while only one
is required at the bound-state pole. To take into
account the effect of the terms which were neglected
by our separable approximation, we corrected Eq. (3.4)
by adding the first quasi-Born approximation.?

Since we use the “ideal choice,” this correction
reduces to adding V'=V—V*r in Eq. (3.4). The result,
also given in Table I, shows considerable improvement.
In order to study the importance of ¥’ from another
point of view, we compare the Schmidt norms 7(E)
of 12V g4t and 7' (E) of 112V 4142, (Hereby we also
get upper bounds on the eigenvalues of these kernels.)
For simplicity, we consider only the quartet case, since
we do not expect that the coupling of the channels—as
it occurs in the doublet case—alters the results essen-
tially. The ratio 7/(X)/r(E) is shown in Fig. 5(b).
From this it follows, e.g., that the magnitude of the
second eigenvalue of Vaala is less than 20-309% of the

175
150
fou
125
€
o 50 -2 Ei]

53
E MeV]

Fi1G. 4. The factor &, (E) defined in Eq. (4.7), and the
corresponding factor § (E) of Eq. (6.6).

TaBLE I. Theoretical and experimental quantities
for the low-energy three-nucleon system.

B, (MeV) ayz (F) a2 (F)
Aaron et al.2 (Z=0) 11.01 —1.04 6.32
Phillips? (V4=0) 1.1 —0.79 6.28
This work, separable 10.3 5.19 3.73
approximation
First quasi-Born 10.3 1.44 8.15
approximation
Experiment® 8.49  0.11+0.07 6.143-0.06

2 Reference 4.
b Reference 13.
¢W. T. H. Van Oers and Y. D. Seagrave, Phys. Letters 24B, 562 (1967).

first one, for all energies below threshold. This shows
that the second term in the eigenvalue expansion of
131*Vaata® can be neglected as long as the first eigen-
value is not much larger than unity. The latter condition
is violated only near threshold. This fact agrees with
our bad result for the scattering lengths. But for all
other energies, our separable approximation should be
sufficient.

Up to now we have considered only .S waves. We
estimated the contribution of higher partial waves to
show that we are allowed to neglect them in the
following. For this purpose, we calculated the largest
eigenvalue of the P-wave analog of Eq. (4.1), by
the same variational method as applied to the .S wave.
The form factor was chosen, according to our above
philosophy, as

x»(q; E)
« g/ (@*+4c?+3u?) (42 + a2+ 3u?) (4g2+4a>—3E)2.

The resulting eigenvalue was indeed about 1/2.5-1/5
of the eigenvalue in the .S wave [see Fig. 5(a)].

5.FORMULATION OF FOUR-NUCLEON PROBLEM

Our treatment of the four-nucleon problem follows
exactly the one described in Ref. 7 for the general

04
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02

.0

0, —

-00 -50 -2 -0

e

Fic. 5. (a) Ratio between the largest eigenvalue of the Lipp-
mann-Schwinger kernel in the P wave and the one in the S wave
(both in the three-nucleon quartet state). (b) Ratio between
the Schmidt norms +/ of §/2(V —Vsep) /2 and 7 of #2V/2 in the
three-nucleon quartet state with orbital angular momentum L=0.
(c) The latter ratio for the kernel of Eq. (6.1) which describes
the deuteron+-deuteron subsystem.
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S r

-

Fic. 6. The coupled Lippmann-
Schwinger equations in the effective two-
body formulation of the four-nucleon
system. The nonexistence of the poten-
tials Vag,ad, Vps.66, and Vaa,ge stems from
neglecting all nonseparable terms in the
subsystems. The contributing channels
dd and ¢¢ correspond to either total spin
or isospin being different from one.

S r
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four-body case, but with all nonseparable terms being
discarded. After having taken properly into account
the Pauli principle (see below), we are thus led, in the
case I=.5=0, to a four-channel “two-particle’” problem
with the following four channels:

(I) One free nucleon plus a three-nucleon bound
state (assuming isospin invariance, we do not dis-
tinguish between the triton and the He?), which we
label by the index ¢.

(II) One nucleon plus the quasiparticle in the three-
nucleon doublet subsystem described in Sec. 4. This
channel we denote by ¢'.

(III) Two deuterons, a channel denoted by dd.

(IV) Two virtual two-nucleon S states, denoted

by ¢¢.

In the case 7=0, S=1 four channels again contribute.
But now channel (IV) consists of one free nucleon and
the three-nucleon quartet state (labeled by gqu),
instead of two singlet states.

To take into account the Pauli principle, we use the
method of Lovelace.® We start by assuming all particles
to be formally distinguishable. For elastic and “in-
elastic” scattering (L.e., (—ft, &1, koqu, do—de,
dd—dd, ¢¢—¢¢, and dd<¢p¢), we then have to dis-
tinguish between direct amplitudes 34 and exchange
amplitudes J3°xh, The physical amplitudes are given by
the following combinations, generalizing Ref. 6 (see
also Ref. 27):

3,0="0;,,4174 33, oxcb (5.1)
(similarly, for3;,, 3¢, and 3y 4) and
Sad,aa= 3dd,aa* "+ 2344 ,aa>" (5.2)

(similarly, for 34,60, Jad.es and Jas,as). For the nucleon
transfer reactions (for instance, pi—dd), the sym-
metrized amplitude is given in terms of the unsym-
metrized transfer amplitudes 3% as follows:

Saa,(q’, 4; E) =V3 (Baa, e (¢, q; E) £5aa,i"(—1q', q; E) ),

(5.3)
and analogously for the other transfer reactions.

27 M. Golderger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964).

The sign in Eq. (5.3) corresponds to whether the
final state (with the two bosons d+d or ¢-+¢) has
even or odd internal wave functions. With analogous
definitions for the “potentials,” we are finally led to the
equation (see Fig. 6) (we indicate again the total
spin and isospin by upper indices)

Tl 8=V, L5 — 3 Vsl 5103y .15, (5.4)

The various potentials and propagators are the fol-
lowing ones (with the momenta defined in Sec. 2):

(a) For i+p—t+p (and, of course, for Hed4n—
He’+#x and {+pe>He’+#n) we have according to
Fig. 7(a)

Ve, 5(qe, Q15 E)
=— —27_‘ 2 A Sx(Q1; E—99)

16\/2 n=d,p o ’

X (E—192—q2) x*(102; E—q2). (5.5)
Here, A;;.0"8 is the product of spin- and isospin-
recoupling coefficients [compare the analogous coeffi-
cients in Eq. (4.2)]:
At,t;nr's= <(%; Sn)st) %) S l (Sm %)S;, %7 S)

X ((%1 /I:ﬂ)ib %y I l (7'717 %)ib %1 I) (5'6)

The momenta 1qs and »q; are linear combinations of
q: and g, which can easily be obtained from Eq. (2.1):

192= (1/2V2) (3q2+q1),
ot1= (1/2V2) (3q1+qz). (5.7)

The factor?® 27/16V2 arises from our normalization
of the momenta [compare Eq. (3.19) of Ref. 6].

Last, x,* is just the form factor x;,", determined in
Sec. 4:

x™(Q; E) =Cr(E) (647/3V3)* (302 (E) +ua®)
X (§e?(E) — EY'"[ (5q*+30* (E) +pa*)

X (G@*+80(E) +pa?) 5@+350*(E)—E) T (5.8)

28 There appears, in fact, an additional factor 3 from symmetri-
zation. This cancels, however, against a factor } since, when the
nucleons are considered as distinguishable, the triton form factor
is (1/¥3) x¢*, instead of x¢.
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Y12) 9

(b)

The potentials for ¢ replaced by ¢ or the quartet quasi-
particle (gu) are completely analogous.

(b) The propagators for the states {, ¢, and qu are
again obtained from the results of Sec. 3 [see Eq.
(3.9)7:

t(E)=—m(E)/[14+mn(E)],

te (E) = —na(E)/[1+n(E) ],

and analogously for 7.

Indeed, we did not use Eq. (5.9) as it stands, but
multiplied by a constant factor of 0.9. This has the
effect of shifting the three-nucleon binding energy from
10.3 to about 8 MeV, and should compensate for part
of the short-range repulsion not included in our nucleon-
nucleon interaction.

(c) The propagators for d+d and for ¢+ ¢, as well as
the potentials describing transitions from ¢+N, t'+N,
or gu+N to these states, are not obtainable from the
results of Sec. 4. Their determination is, therefore, left
to Sec. 6.

(5.9)

6. TWO-DEUTERON (TWO-¢)
INTERMEDIATE STATES

In Ref. 7, we have pointed out that in addition to the
three-nucleon subsystems, we must also consider the
subsystems with two pairs of mutually interacting
nucleons.?® This situation formally results from
switching off all nucleon-nucleon potentials except,
e.g., V12 and Vs, Similarly to the treatment of Sec. 4,
we must now study the (off-shell) “‘transition ampli-

n m

Lzz—_®=
= 3

PO

Fic. 8. The “transition amplitudes” Tz, aym and Tazyn, asym.

T(12)n, (36)m Ta2)n, (12)m

i

2 For the moment we again consider the nucleons as distinguish-
able.

Fi1c. 7. The potentials Uy, [Fig. 7(a)]
and Vgqg,: [Fig. 7(b)] as defined in Egs.
(5.5) and (6.8), respectively.

t (agy—==-a(1))

tudes” T azn,3am and T aga, azm describing the processes
shown in Fig. 8. As discussed in Ref. 7 (Sec. 4), separa-
ble approximations of these amplitudes provide us
with the two-deuteron (two-¢) propagators and the
form factors necessary for the calculation of the
corresponding transition potentials. The amplitudes
Tn,am, With a=(12) or (34) and 8= (12) or (34),
fulfill the integral equations analogous to (4.1),2:%

Tpnam=Venam— 2 22 VewyilyTotam, (6.1)

y=(12),(30) I=d.¢
where (compare Fig. 9)
(@G, 90’ | Vanm,aom(E) | e, Qs
=8 (den’—qes) g (Q2)
X (1’ + s+ Q0> — £ gn (gze)
=8 (den'— o) Vann,com (Qss Qe; E—qey?)

(6.2)
and

Van,am= 0.

The Pauli principle is included as in Sec. 5, but now the
symmetrized 7'y and Vy,.» are given by

(6.3)
(6.4)

Tnm=T q2n,@om+ T a2)n,a2ym,

Vn.m = V(12)n, @Yme

n q1z n ( ::q’z

2
m 3 m
934 B )
4

F16. 9. The “potential” given by Eq. (6.2).

It

3 In Ref. 7, we gave an explicit (formal) solution for g, am.
For our purpose, however, it is more practical to proceed in
analogy to Sec. 4.
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With this, Eq. (6.1) reduces to
Tom! S(E) =Vau!S(E)
— S VaS(E)W(E)TimlS(E). (6.5)
7

The indices 7 and S on the potentials V,,!*S are
superfluous and serve here only to fix the possible
states 7, m. [There are, of course, no recoupling
coefficients as in the analogous three-nucleon equation
(4.1)]. It is important to note that there is always
only one possible intermediate state ! for each spin and
isospin: for I=S=1, only Vg and Vg4, are different
from zero, while for all other combinations only the
diagonal elements Vg4 and V44 do not vanish.

Another important point is that V,.(E), as given
by (6.2), is independent of the angle between gs
and q;2. Thus, having only an .S wave, a partial-wave
decomposition is not necessary. Furthermore, the only
nonseparable factor is [Qi2+Qs+q@y?—E . For
these reasons, a good separable approximation can
now be found very easily. According to our general
ansatz (A9) we write®

VamlSi#2(q', q; E) = £un (E) Egm(q,)/(q,2+ﬁ2—E)]
X (28— E)[gu(q)/(*+B—E)]. (6.6)

In the variational determination of &,,(E) and 8(E),
all elements of £,,(E) were equal, to a sufficient degree
of accuracy, to a single function {(E): &m(E)~{¢(E)
for all %, m. The values for {(E) are plotted together
with the analogous quantity &, (%) of the three-nucleon
problem in Fig. 4, while 82(E) is shown, together with
the function o?(E), in Fig. 3. The eigenvalues 74 (E)
and 744(E) are shown in Fig. 10. The function {(E)
is very close to unity, which, according to our discussion
in Appendix B, is a first indication for the quality of our
approximation. A stronger argument is that the

R 0 -0 5 -2 EMV]
-05 \fm
10 N
45
20

F16. 10. The eigenvalues 54 and 744 of the kernel of Eq. (6.1).
The energy E at which 744 (E) =—1 corresponds to twice the
deuteron binding energy.

31 Indeed, this goes over to (A9), if we write
x™I5(q; E) =g () / (@+8*— E).

(Note here the different indices 7 and #). Due to the above dis-
cussion this defines x™1:8 uniquely, since, for fixed I and .S, only
one index #» for each m leads to a nonvanishing potential. This
fact establishes a one-to-one correspondence between # and m.
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resulting deuteron4-deuteron-propagator has a pole
at —4.35 MeV, which is very close to twice the deuteron
energy (2B;=4.446 MeV). Moreover, it appears [see
Fig. 5(c)] that the approximation is excellent in the
sense of the Schmidt norm.

We are now in a position to write down the potentials
and propagators not yet obtained in Sec. 5 (see para-
graph c). The two-deuteron propagator is

taa(E) = —naa(E) /[14naa(E) ]. (6.7)

The ¢+¢ and ¢+4d propagators have the same form,
but with 74 replaced by nss and 744, respectively. The
potentials for {+N—d+d (and also for the processes
with ¢ instead of d, and ¢’ or gu instead of ¢) are con-
structed similarly to Eq. (5.5) [compare Fig. 7(b)]:

Viad 5 (Q, Qaz; E) =—V27A, 0" 5 (5512
X[x(192; E—i®) ta( E—q*—192*) xaa® (Q12; E—qan?)
+ (—)5%2(19y ; E—a1?) ta(E—qi®—142"%)

Xxad®(Qe'; E—qan?)]. (6.8)
Here, xaq? is the form factor defined by Eq. (6.6):
oy Csn )
as= .
W GR=(5) @rem—E @t
(6.9)

A¢qdS is again the spin-isospin recoupling coefficient,
similar to (5.6). The factor of (%%)'/2 arises from the
normalization of the momenta, and the 1/V2 stems from
symmetrization.?® The momenta 19, and gy are linear
combinations of q; and qs):

1%2= (1/V2) (@1+-V3qa),
Qo= — (1/VZ) (qup+V3a1),

while 1q’ and q;2’ are the same combinations, with
qao) replaced by —qag).

(6.10)

7. FOUR-NUCLEON BOUND-STATE PROBLEM

Our last task is to solve the Lippmann-Schwinger-
type equation (5.4), decomposed into partial waves,
on a computer. Since the bound-state problem is the
easier one, we have devoted our main interest to it and
are going to describe it first. Instead of solving the
Lippmann-Schwinger equation by matrix inversion,
we use again the variational principle as presented in
Sec. 3 (Appendix A), and already applied in Secs. 4
and 6. We start with the discussion of the ground state
of He?, i.e., with the channel where isospin, spin, and
orbital angular momentum are all zero. For simplicity,
all trial functions needed in the variational treatment,
ie., the form factors corresponding to the vertices
(0[, nt): (a1 ”qu), (Ot, "tl)’ (a; dd)a and (Ot, ¢¢)1 are
chosen identical. This is consistent with the correct
behavior as | ¢ |—0, where they tend towards constants.
At infinity, arguments similar to those leading to
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(3.8) show that the form factors for (e, ut), (a, nt'),
and (o, ngu) behave like ¢, while the ones for
(a, dd) and (e, ¢¢p) go like ¢~°. This fact, and the ex-
plicit form of the potentials, suggested the ansatz

x(a; E) < {[o(E)+3¢ o (E)+qF}

for the form factors. From the variational method, we
found the binding energy of the « particle to be

B,=50 MeV.

(7.1)

(7.2)

This result is obviously much too large (even worse, it
represents only a lower limit to the exact solution).
Such a failure can be understood by the fact that we
have not taken into account the hard core and tensor
forces in our nucleon-nucleon potentials (2.3). More-
over, this potential was constructed to fit the low-
energy data while it is needed here at large negative
energies. A better calculation should use more sophisti-
cated potentials as proposed, e.g., in Refs. 18 and 19.

Nevertheless, we can draw some qualitative conclu-
sions from our solution by looking at the matrix
N(E). According to its definition in Appendix A,
this matrix is essentially the expectation value of the
potential. Neglecting the ¢ would change our result
for B, by only a few percent. The major contribution is
given by the {+# channel, via deuteron and ¢ exchange.
The channels d+d and ¢+¢ coupled to {4 by one-
nucleon exchange are of minor importance for the result.

A better test of the model is presumably to look at
the first excited states of the four-nucleon system.
Experimentally,® one finds several states with excita-
tion energies between 20-30 MeV. The lowest one is a
JP=07% isosinglet state which should correspond to a
radial excitation of the ground state. We have not
looked for it because our program was not well-suited
for that purpose. The next states, with ‘‘binding”
energies 6.9 and 5.9 MeV, are again isosinglets with
JP=0" and 2-, respectively. Together with a JP=1~
state found recently® at 4.4 MeV (i.e., only 0.05 MeV
above the two-deuteron threshold), they should in our
model correspond to states with L=1, S=1, I=0.
Furthermore since we do not have any LS coupling,
these states must be degenerate.

We took again the same form factor for all channels
(where, now, the fourth channel contains a nucleon
plus a quartet state, instead of two ¢’s):

Xn(Q; E) < Y1™(a/9) g/ {[p(E)+¢*T[p(E) +3¢° T},
(7.3)

which is easily seen to have the correct threshold and
asymptotic behavior.

We found indeed a state at ~12 MeV. This is already
closer to the experimental values, although one still

(139262‘;. E. Meyerhof and T. A. Tombrello, Nucl. Phys. A109, 1
#D. Fick and H. W. Franz, Phys. Letters 27B, 541 (1968).

should be careful. In channels with total orbital
angular momentum L=1, we expect that the neglect
of three-nucleon P waves is much worse than in
channels with L=0.

8. SCATTERING PROBLEM

The virtue of the above formulation is, of course, that
it can be applied to scattering processes as well. How-
ever, the difficulties encountered in the actual calcula-
tion increase considerably there. Even the determina-
tion of the various subsystem form factors requires
more effort.

Therefore, in this paper we resorted to a K-matrix
Born approximation to get a first crude insight into the
results to be expected. This approximation is obtained
by replacing the triton-nucleon and the deuteron-
deuteron propagators in Eq. (5.4) by their discon-
tinuities along the two-particle cuts:

t.(E—q)—irRS(B+E—q*) (8.1)
and

taa(E—q2)—inRaad (2Ba+ E— ). (8.2)

Here, R, and Ry, are the residues of #,(E) and f4(E),
and are given by R;=22.8, Ru=9.2. We note that
these residues also enter the connection between our T
matrices and the cross section [just as in the three-
nucleon case, where the residue of #; occurred in Eq.
(4.9)]. If we take into account also the particular
normalization of our momenta, we find the following
(neglecting trivial complications due to isospin) for

d¢ [mb
501d0 L'sr
E ag=138 MeV
o ded—poT
( Brolley et al)
40] o — K-matrix

Fic. 11. Differential cross section for d4+d—i+p, at Ejap=
13.8 MeV. Experimental points are from Ref. 35, the curve is the
K-matrix approximation to Eq. (5.4).
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unpolarized particles:

(%)
dﬂ c.m.

1 q
= ———— = (2m)*| (RuRw)"?3un(d’,q) [?, (8.3
i 0 | (BB n(d @), (8.3)
where u, and u,, are the reduced masses.
By such a replacement, all other channels which do
not correspond to physical particles are eliminated.
Furthermore, from the § functions we see that we

35
[Isﬂp] E_pg= 53V
K}
o:d+d—=ne lh,
a:d+d—pot
% (van Oers &Brockmann)
— K- matrix
m a
15
104
5
70°  160° 150°  140°
o 20. w. w‘ ° ml ml m.

F16. 12. The same as Fig. 11 but at Ejap=25.3 MeV.
Experimental points from Ref. 36.

need the form factors only at the energy of their
corresponding bound-states. That is, we need only
x"(q; E—¢q*=—B,) and xa?(q; E—q*= —2Bg), which
we have already determined.

The replacements (8.1) and (8.2) lead to the same
results as approximating the “two-body” K matrix by
the potentials (5.5) and (6.8). By such an approxima-
tion we can, of course, not expect to get reasonable
results for processes where the Born term vanishes.
This is the case for elastic deuteron-deuteron scattering.
A similarly bad situation holds for elastic triton-nucleon
scattering where the Born term contributes only to
backward scattering. In both of these cases, the
inclusion of the second Born approximation to the K
matrix* should yield considerable improvement. The
only process where our transition potential may

3 J. H. Sloan, Phys. Rev. 165, 1587 (1968).

EL“[, =515 MeV
mb
o %E (2)
.dod—-Top
(Briickmann et al.}

5 — K-matrix

10

5

o ¢ 8 e .
0 [G§ 60° 80° e,

F16. 13. The same as Fig. 11 but at Eja,=51.5 MeV.
Experimental points from Ref. 37.

be expected to be a good starting point is d+d—
t+p(—He*+n). Therefore, we can hope that there our
K-matrix approach is reasonable. Indeed, this is
verified by our results, as shown in Figs. 11-14,33

o mb,
504 dL *sr E ap= 975 MeV
o Tx(Hedp—Hedop)
o (Lovberg)
401 —: K-matrix

i 60° 9° T0°
F1c. 14. Differential cross section for Hes+p—Hed+p at
Eap=9.75 MeV. Experimental points from Ref. 38.

% J. E. Brolley, Jr., T. M. Putnam, and L. Rosen, Phys. Rev.
107, 820 (1957).

¥ W. T. H. Van Oers and K. W. Brockmann, Nucl. Phys. 48,
625 (1963). .

¥ H. Briickmann, E. L. Haase, W. Kluge, and L. Schinzler,
Z. Physik 230, 383 (1970).

% R. H. Lovberg, Phys. Rev. 103, 1393 (1957).
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E L= 245 MeV
den—s=d+n

exact (AAY)

Qc.mA
0 30° 60° 90° 120° 1%0° 180°
Fic. 15. Differential cross section for d+n—d-+n, at Ejp=
2.45 MeV. Shown are the exact solution of Eq. (4.1) taken from
Ref. 4, the Born approximation to Eq. (4.1), and the K-matrix
approximation obtained by replacing #4(E) by iwR45(E-Ba).

Furthermore, we remark that the Born approximation
to d+d—i+n is, in general, much too big, that is, it
fails completely to describe the experiments.

To get some feeling for the validity of this K-matrix
approach, we have applied it also to the three-nucleon
problem as represented by Eq. (4.1). For z-d scattering,
we can compare it with the exact solution of Aaron,
Amado, and Yam.! This comparison is shown in Figs.
15 and 16. We find here again that the K matrix is a
considerable improvement over the Born approxima-
tion. Furthermore, it is not too far from the exact
values, especially near the backward direction where
the Born term is maximal, and for low energies. These
results support the arguments given above for the four-
nucleon problem.

9. CONCLUSIONS

It was the main purpose of this paper to demonstrate
in the four-nucleon system that the formalism proposed
in Ref. 7 for the treatment of the few-particle problem
is indeed a practical tool for calculations. Moreover,
we wanted to test the validity of the various approxima-
tions involved. In particular, we found that the use of
variational methods is essential to make the method
really effective in this special problem.

Most effort was devoted to the problem of obtaining
the integral equation (5.4) for triton-proton and
deuteron-deuteron direct and exchange scattering, in a
form amenable to modern computer facilities. The
approximations necessary to arrive at it were ex-
tensively investigated. The crucial problem was to

show that the effective potentials occurring in the
three-nucleon Lippmann-Schwinger equation, derived
with separable two-nucleon potentials, could again be
approximated by only a few separable terms (it was
just to keep the number of the latter as small as possible
that we made use of variational methods). Such a result
is not only decisive for our formulation of the four-
nucleon problem, but may also be useful to simplify
calculations in the three-nucleon system.

To solve the four-nucleon scattering equations, we
have made rather drastic approximations, including a
K-matrix approximation. Therefore, these results
should be regarded only as a first step towards an exact
solution. The bound-state problem has been studied
more extensively.

Now, to judge the somewhat poor quality of our
numerical results, two points should be kept in mind.
First, these calculations are intended to provide a first
glimpse at the four-nucleon problem. Therefore, rather
crude approximations have been made. In fact, we were
more concerned with the problem of establishing the
effective two-particle Lippmann-Schwinger equations
for this case than with their solution. The second and
more important point is that in our formulation no
open parameters exist except those of the nucleon-
nucleon potential, and no uncontrollable approxima-
tions have been made apart from the final K-matrix
approximation which, however, could be avoided by
more computational effort. In the light of these facts,

dﬁ_lnl]
di *tsr

250 Eppp= 141 MeV
den—=d+n

200

0 X° 60° 90° 120°
F16. 16. The same as Fig. 15, but at Ej.p=14.1 MeV.
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our results are encouraging and deserve further in-
vestigations along these lines.
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APPENDIX A

In the case where the Lippmann-Schwinger equation
is a matrix equation, we modified the variational
method described in Sec. 3 as follows: The separable
ansatz (3.1) reads, with matrix indices,

Vier(E) = 22 | %' (E) )n(E) (6! (E¥) | (A1)
For the form factors, we make the ansatz
[ %!(£))=CHE) | %'(E))

with the C,'(E) considered as variation parameters.
The | %'(E)) are also varied independently but with
only one parameter a(E) for each » and all /. The
ansatz (A2) provides us with enough flexibility without
making the calculations too complicated. Inserting it
into Eq. (3.6), we obtain

(no summation) (A2)

2 (N —[n M) C,*C, =0 (A3)
il
with
N =& GoVaGo | %) (A4)
and
M'ilv= <sz | GO [ Xvi>5il- (AS)
The condition
[, ]=0 (A6)
yields, under variation of C,™,
Z (Nw— [m]Mu") C,l'=0, (A7)
7
which has a solution if
det(N*— [, ]M*) =0. (A8)

If N and M are nXn matrices, we have in general »
different roots for [7,]. Each one corresponds to a
different (exact) solution of Eq. (A7), and to a different
approximate solution of the Lippmann-Schwinger
equation (3.2). By variation of |g!) [i.e., of the
parameter « ()], one can only arrange one of them to
become a (nearly) exact solution of Eq. (3.2). We
took the largest of these [7,] and made it a maximum
by variation. This yields a lower bound on the largest
eigenvalue of VG, and on the binding energy of the
ground state.

When constructing a separable approximation to the
potentials, we found, fortunately, that in our applica-
tion (nd scattering in the singlet state; here we deal
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Fic. 17. The largest Yukawa eigenvalue n(E+0), as given
by Eq. (3.6). Here, u=m=A=1.

with a 2)X2 matrix) the second eigenvector of (A7)
leads also to an approximate solution of (3.2), with
similar accuracy.

Therefore, we get in this case

Vier(E)= 3 | £ (E) )CH(E) G (E*) m(E) (RUE) |

r=1,2

=| (L) Yo (£) R (E) |

ga(E)= 2 CHE)CH(E*)n.(E).

r=L,2

(A9)
with
(A10)

APPENDIX B

The quality of the separable ansatz, suggested by
Eq. (3.10), can be illustrated rather directly for th®
s-wave part of the Yukawa potential V (r) =X(e=*/r)*

;oA d cosf
0= [ s e (B
A wt(p )
= . B2
2mpp it (=) (52
For p and p' Su,
2\
Vo(p', p)= 15_24-[//2—:—;12 (B3)

represents a good approximation. With this, Eq. (3.10)
simplifies to

Vo (p', p; )

2\ 2024-pu?
=£(F) — B4
e e rirem) B
corresponding to the form factor
x(p; B) < [p+w+o? (E) ' =[p+6*(E) I (BS)

This is, of course, the well-known Hulthén form factor
(with energy-dependent range 1/8) which is the form
factor most widely used in separable-potential calcula-
tions. When we insert the ansatz (B4) in Eq. (3.7),
we can do all integrations analytically.? The denomi-

% Wright and Scadron (Ref. 14) did the same using Eq. (3.6),
which leads, however, to more complicated integrals.
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Fic. 18. The parameter 8(E-+140), as given by Eq. (B.7);
again, u=m=A=1.

nator is calculated in x space, making use of the
locality of V(7) to form V~1(r). We thus obtain

(B6)

[7(E)J=N(28—n)?/28(B—1iEM?)2
This becomes a maximum if
B(E) ==} (iEM) + (/A= SiuBIR—E)2.  (BT)

n(E) and B(E) are shown in Figs. 17 and 18. There we
see that the imaginary parts both of 8 and of 5 soon
become very important if one goes to positive energies.
Looking at E=0, and using (B4) and (3.3), we find

GRASSBERGER, AND SANDHAS 1

£(0)=8/7, which is indeed rather close to unity,
as was suggested by the arguments leading to our
ansatz (3.10). At this energy (E=0), we obtained the
Schmidt norms (see also Ref. 9)
7(0) =| Go2(0) Vo (0) G2 (0) | = (2 In2—1)2=0.6215\
and

7/ (0) =| Go"*(0) Vo' (0) Go*(0) |

= {r2(0) —2{x | Go(0) VGo(0) | x)+[n(0) P}
The term (x| GoVoGo | x), calculated in configuration
space,® is
2\u

x| Go(0) VGo(0) | x)= 300) [7(0)]1n

(u+B)?
(ut+28)u’
which gives

7/(0) =0.1795x.

The work of Weinberg and collaborators®* shows that
this is sufficient to make Vs a very good approximation
to V, if the coupling constant X is not too large. Since
in the three-nucleon problem a similar weakening of the
potentials is achieved by subtraction of separable
terms (see the results given in Sec. 4), we may expect
that these separable terms represent a good approxima-
tion for our problem.

4 M. Scadron and S. Weinberg, Phys. Rev. 133, B1589 (1964) .
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The Thomas-Fermi integral theory of the nuclear surface is shown to have singular solutions for the
nuclear density. This failure is traced to its inadequate representation of the behavior of wave functions
in a potential. A new theory based on approximate wave functions is developed and shown to be asymptotic
to the Thomas-Fermi theory in the interior of the nucleus. An improved treatment of exchange forces is

shown to be essential to obtaining realistic solutions.

I. INTRODUCTION

REVIOUS statistical theories'™ of the nuclear
surface have been formulated as variational
problems in which the total energy Wr of a nucleus is
minimized as a functional of its neutron and proton
density distributions p,(r) and p,(r). The most
thorough formulation of the problem is that of Bethe,!

* Work supported in part by the National Science Foundation.

T National Science Foundation Graduate Fellow.

1H. A. Bethe, Phys. Rev. 167, 879 (1968).

2 J. R. Buchler, R. J. Lombard, S. Jorna, and K. A. Brueckner,
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who writes Wy as an integral of the long-range direct
force between nucleons, plus local-density approxima-
tions to the short-range force, the space-exchange
integral, and the kinetic energy. Buchler et al.? ap-
proximate the long-range direct-force integral by a
differential term, a fair approximation if the surface
thickness is not too small; such a term includes the
first-order correction of Weiszacker for the additional
kinetic energy necessary to cause a varying density.
In Sec. II, it is shown that the integral theory of Bethe
can have discontinuous solutions. Such a solution is ob-
tained numerically for the one-dimensional case. This
singularity demonstrates that the surface thickness is
due not only to the properties of the long-range direct
nucleon-nucleon force, as argued by Wilets® and



