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A formalism, proposed previously, which represents a generalization of the separable-potential model is
applied to the four-nucleon system. It consists essentially in approximating the off-shell nucleon-deuteron
scattering amplitude —as obtained in the separable-potential model —again by separable expressions. We
arrive thereby at eGective two-particle equations which are solvable by standard methods. The determina-
tion of the required separable terms is studied in detail. A 6rst attempt to solve approximately our anal inte-
gral equations is made. The results demonstrate the applicability of the method.

1. INTRODUCTIOÃ

T is well known that, in the separable-potential
. model, ' the two-particle problem is immediately

reducible to an algebraic equation, while the three-
yarticle problem can be reduced to an effective two-
body theory. ' ' Moreover, as we have pointed out
previously, ~ the separable-potential approximation
leads in the general I-particle case to effective (e—1)-
body equations. ' This observation suggested the pos-
sibility of approximating by separable terms not only
the original two-particle interactions, but also the
"potentials" obtained in these effective equations. '"
Repeated application of such a procedure allows us to
reduce the dimension of the original problem, step by

' Y. Yamaguchi, Phys. Rev. 95, 1628 (1954); Y. Yamaguchi
and Y. Yamaguchi, ibid. 95, 1635 (1954).

'A. N. Mitra, Nucl. Phys. 32, 529 (1962); A. N. Mitra and
V. S. Bhasin, Phys. Rev. 131, 1265 (1963).' R. D. Amado, Phys. Rev. 132, 485 (1963); R. Aaron, R. D.
Amado, and Y. Y. Yam, ibid. 136, B650 (1964).

4R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 140,
B1291 (1965); Phys. Rev. Letters 13, 574 (1964); R. Aaron and
R. D. Amado, Phys. Rev. 150, 857 (1966).

5A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49, 15
(1963); V. F. Kharchenko, Ukr. Fiz. Zh. 7, 573 (1962); 7, 582
(1962).' C. Lovelace, Phys. Rev. 135, B1225 (1964).

r P. Grassberger and W. Sandhas, Nucl. Phys. B2, 181 (1967)
Lcompare also: Z. Physik 217, 9 (1968)7.

A suitable (but not necessary) starting point for this reduction
is the utilization of equations similar to those proposed by L. D.
Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960) (English
transl. : Soviet Phys. —JETP 12, 1014 (1961)7; Dokl. Akad.
Nauk SSSR 138, 565 (1961); 145, 301 (1962) LEnglish transls. :
Soviet Phys. —Doklady 6, 384 (1961); 7, 600 (1963)7; Mathe
matical Aspects of the Three-Body Problemin the Quantum Scatter-
ing Theory (Israel Program for Scientific Translations, Jerusalem,
1965) .

'A generalization of the separable-potential model (quasi-
particle method) allows us to take into account also the non-
separable parts of the interaction by means of perturbation
theory. For the two-particle case, this method has been introduced
by S. Weinberg, Phys. Rev. 130, 776 (1963); 131, 440 (1963).
See also M. Scadron, S. Weinberg, and J. Wright, ibid. 135, B202
(1964); J. V. Noble, ibid. 148, 1527 (1966). A suitable ex-
tension to the three-body problem has been proposed by E. O.
Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B2, 167 (1967),
and to the n-body problem in Ref. 7.' For the three-body problem compare also L. Rosenberg,
Phys. Rev. 138, B1343 (1965); 168, 1756 (1968); R. Yaes, ibid.
170, 1236 (1968);M. G. Fuda, ibid 166, 1064 (1968).; F. Riordan,
Nuovo Cimento 54, 552 (1968).

step, providing us finally with manageable equations. ~

In particular, after two steps we obtain algebraic equa-
tions for the three-particle problem, while use of the
same separable terms leads in the four-particle case to
effective two-particle equations. After angular momen-
turn decomposition, these are one-dimensional equa-
tions.

%'e recall that the justification of the separable-
potential approximation is given by the fact that the
kernels of (genuine and effective) two-particle equa-
tions are of the Hilbert-Schmidt type, at least under
suitable conditions on the two-particle interactions. '
By calculating the Schmidt norms of the neglected
nonseparable rest kernels, we are in a position to answer
the question, decisive for practical applications of the
method, as to whether only few separable terms are
sufficient for a reasonable approximation to the poten-
tials. '

It is the purpose of this paper to apply the twofold
separable approximation scheme described above to
the three-nucleon~ and, in particular, to the four-
nucleon problem. In contrast to the latter one, the
three-nucleon problem is manageable after the first
step and has been studied in this form by several
authors. ' ' " The results obtained even with few
separable terms for the nucleon-nucleon interaction
are very satisfactory. Therefore, in this case our re-
peated separable approximation only serves to check
the method by comparison with these results. Further-
more, it provides us with the separable potentials
needed in the four-nucleon problem in order to ap-
proximate it by "two-body" equations. Some of the
transition amplitudes that occur in these equations are
just the (off-shell) amplitudes for deuteron-deuteron
and nucleon-triton (He') elastic and rearrangement
scattering. The others correspond to the scattering of
unphysical "quasiparticles, "~' introduced in order to
improve the approximation.

In Sec. 2, the kinematics is Axed, and the separable

"K. Meetz, J, Math. Phys. 3, 690 (1962),and Refs. 6, 9, and 7.
'2 Compare in this context also the method of E. A. Harms and

L. Laroze, Bull. Am. Phys. Soc. 14, 21 (1969).
3 A. C. Phillips. Phys. Rev. 142, 984 (1966); 145, 733 (1966).
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FIG. 1. Relative momenta used for the description of the
four-nucleon system.

two-nucleon potentials used in the following are given.
The latter are the ones conventionally employed in the
separable-potential model of the two- and three-nucleon
problems. Section 3 is devoted to the general problem
of finding separable approximations with as few terms
as possible. For this purpose the variational method of
Wright and Scadron'4 is employed. (Several detailed
questions, concerning the choice of the trial functions,
are treated in the Appendixes A and B.)

In Sec. 4, the application to the effective two-particle
formulation of the three-nucleon problem is given.
Since the effective potentials are energy-dependent,
the separable terms are chosen to be energy-dependent
also, which allows us to adjust them at all energies.
The obtained results provide us with the nucleon-
triton "potentials" in the four-nucleon problem as
presented in Sec. 5. Besides these nucleon-triton
potentials, we also need there "potentials" describing
the transition: nucleon+triton —vdeuteron+deuteron.
These are constructed in Sec. 6. In Sec. 7, we present
the results for the four-nucleon bound-state problem
obtained by the Rayleigh-Ritz variational principle.
For scattering energies, our effective two-body equa-
tions, although tractable by present-day computers,
are still very cumbersome. Thus, we solved them only
in a E-matrix Born approximation. The results are
given in Sec. 8, both for the three- and for the four-
nucleon problems. Some concluding remarks are con-
tained in Sec. 9.

Ke should note that equations similar to ours have
been proposed by Komarov and Popova" on the basis
of more intuitive arguments. However, our final
equations differ in several respects from theirs. Further-
more, numerical results for the four-nucleon problem
have not yet been obtained in their framework.

Finally, we stress that our present results should be
understood mainly as a first, crude, but, we believe,
encouraging check of the applicability of our general
method.

2. KINEMATICS AND THE TWO-NUCLEON
INTERACTIONS

Instead of the particle momenta k; themselves, we

use relative momenta in the normalization of Lovelace'
and %eyers. '6 In the four-nucleon system we have,

besides the total momentum (rrt is the nucleon mass),

qts
——L1/2 (res) '"j(kt —ks),

4qs
——$1/2 (3rrt) "'j(kt+ks —2ks),

q&»&
——L1/2 (2rts) 'ts) (kt+ks —ks —ke), (2.1)

q4 ——f1/2 (6trt) 't'$ (kt+ks+ks —3k4),

Here, q~2 evidently represents the relative momentum
in the (1, 2) subsystem. The two momenta q» and 4qs

are the ones relevant for the kinematical description of
the (1, 2, 3) subsystem, being identical with the mo-
menta Ipa and q3 introduced by I.ovelace in the three-
particle problem. That is, the momenta used in the
three-nucleon problem occur also in the basic set
(2.1). Furthermore, if particles 3 and 4 are bound,
the four-nucleon system is reduced to a formal three-
particle system which is kinematically described by
q~2 and q~~2), corresponding again to I.ovelace's three-
particle momenta written down for this case. Thus, we
see that the set (2.1) includes exactly the momenta
necessary for treating the four-nucleon problem as a
three-particle problem, as will be done in Sec. 5. All
equations occurring in that section can, therefore, be
taken over from Ref. 6, as far as kinematics is con-
cerned.

For the nucleon-nucleon interaction, we take the
usual version of the separable-potential model which
includes neither hard-core nor tensor forces. '" More
explicitly, we have

~(p', p) = g.(p') ~"ga(p)—I'. ge(p') ve'g. (p—)I'e,

(2.3)

where I'q and I'~ are the isospin-spin projection opera-
tors onto the states with quantum numbers of the
deuteron d(I=O, S=1), and of the virtual singlet
bound state g(I=1, S=O).

The form factors ga(p) and g@(p) are chosen (as
usual):

g-(p) = 1/(p'+t -'), rt=d, Q. (2.4)

The ansatz (2.3) leads to the following form of the two-

or the corresponding expressions for all other index
combinations (see Fig. 1). Of course, only three of
these momenta are linearly independent. Some of the
relationships between them are given in Ref. 16.
The normalization is chosen such that the c.m. kinetic
energy is simply

IIQ qls +4qs +q4 qls +q34 +q(12) ' (2 2)

1' J. Aright and M. Scadron, Nuovo Cimento 34, 1571 (1964).
"V. V. Komarov and A. M. Popova, Nucl. Phys. 69, 253

(1965); AQO, 635 (1967).
'6 J. Weyers, Phys. Rev. 145, 1236 (1966}.

"See also J. H. Naqui PNucl. Phys. 58, 289 (1964)] and the
discussion of the various models, used up to now, in K. M. Watson
and $. Nuttall )Topics in Several Particle Dynamics (Holden-Day,
San Francisco, 1967)j.
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t='(E) =v=' —fAI:g-(q) j'/(q' —E). (2 6)

The parameters y~, y~, pq, and p~ are determined by the
binding energy of the deuteron, the singlet and triplet
scattering lengths, and the singlet effective range. The
following values are taken as input (for the singlet
data we average over the en and mp data"):

nucleon T matrix:

T(p', p, E) = —P g„(p') t„(E)g„(p)P„(2.5)
n=d, Q

vrith

1

we will, therefore, consider a general two-particle prob-
lem with a nonlocal energy-dependent potential.

The best approximation in the sense of the con-
vergence of the quasi-Born series' is obtained by

I'-'(E) = Z l'(E) I4.(E)& .(E) Q.(E*)
I
J'(E)

V

= Z I x.(E) &n. (E) (x, (E*) I, (3 1)

where the
I f„(E)) are Sturmian functions (repre-

senting the "ideal choice" of Weinberg), defined as
solutions of

Ed =2.226 MeV,

ay=5.396 fm,

ap = —20.339 fm,

rp= 2.844 fm.

We then obtain for y„and p,„

(2 7)

Go(E)l'(E) 14.(E)&=n.(E) Ilb (E)&

with the normalization~'

(3 2)

&x„(E*)
I
G, (E) I

x„.(E) )=5„„.. (3.3)

Here, Gs(E) = (Hs —E) ' is the free Green's function.
The above potential V"I' leads to the "two-particle"

transition operator
qq

——10.26 (MeV)st', p~ ——9.162 MeV, 2'-'(E) = —Z I x (E) )t (E) &x.(E*)
I (3 4)

ye = 5.888 (MeV) st', tiq, 7.191 —M—eV. (2.8)

Xt is well known that neglect of tensor forces and short-
range repulsion in the two-nucleon interaction leads
to too strong a binding for the three-nucleon system.
The same will be true for the four-nucleon problem.

Therefore, to get a reliable measure of the approxima-
tions to be made, we have to compare our' three-nucleon
results with those obtained in exact calculations using
the same simple ansatz for the two-nucleon forces. "

Finally, we note that more sophisticated separable
potentials have been given" and used in the three-
nucleon problem. "They can all be used in our treat-
m.ent,. but with increased numerical complexity.

3. DETERMINATION OF SEPARABLE
"POTENTIALS"

According to the discussion in the Introduction, the
use of the separable interaction (2.3) reduces the
three-nucleon problem to effective two-particle equa-
tions, while the four-nucleon problem is reduced to a
formal three-particle theory. Thus, our next step is to
approximate by separable expressions the various "two-
particle potentials" obtained thereby. In this section,

8F. Tabakin, Ann. Phys. (N.V.) 30, 51 (1964); R. D. Puff,
ibid 13, 317 (1961);.J.H. Naqui, Nucl. Phys. A103, 565 (1967);
G. L. Strobel, ibid. A116, 465 (1968).

"V. S. Bhasin, G. L. Schrenk, and A. N. Mitra, Phys. Rev.
137', B398 (1965); B. S. Bhakar and A. N. Mitra, Phys. Rev.
I etters 14, 143 (1965); G. L. Schrenk and A. N. Mitra, ibid. 19,
530 (1967); A, G. Sitenko and V. F. Kharchenko, Yadern. Fiz.
1, 994 (1965) LEnglish transl. : Soviet J. Nucl. Phys. 1, 708
(1965l g; A. G. Sitenko, V. F. Kharchenko, and N. M. Petrov,
Phys. Letters 21, 54 (1966); J. Borysowicz and J. Dabrowski,
ibid. 24B, 125 (1967); N. M. Petrov, S. A. Storozhenko, and
V. F. Kharchenko, Yadern Fiz. 6, 466 (1967l LEnglish transl. :
Soviet J. Nucl. Phys. 6, 340 (196gl $; F. Tabakin, Phys. Rev.
137, B75 (1965).

with
t.(E) = —n. (E)/L1+~ (E)3

To solve Eq. (3.2), at least approximately, we resort to
variational principles, as described by Wright and
Scadron, " for genuine two-particle problems. In fact,
the solutions of (3.2) are obtained by extremizing the
expressions

&x (E*)
I Go(E) J'(E)Go(E) I x (E) )

&x (E*)
I Go(E) I x.(E) )

(3.6)
or

&x.(E*)
I
Go(E) I x.(E))

&x (E*)
I
I' '(E)

I
x (E) &

whenever the I.ippmann-Schwinger equation, and
therefore also Eq. (3.2), were uncoupled equations, we
always took only one separable term, v= 1. In general,
however, Eq. (3.2) is an e&&e matrix equation de-
scribing coupled channels. Then, some technical
modifications of the above method turned out to be
useful. They are described in Appendix A, and lead to
an approximation of V;z by just e separable terms.

The important point, now, is the question of how to
choose the trial form factors

I x„(E)). It is well known
that the eigenfunctions of Eq. (3.2) become complex
above threshold even for local and real potentials. Thus
it is not very easy to make a reasonable guess. For real
energies below threshold, and for the first (largest)
eigenvalue, however, we were led by the following argu-
ments: V(p', p, E)—as well as Gs(p; E) and xi(p, E)—

' S. Weinberg, Ref. 9."For simplicity, we have assumed g„&q,' for v& v',
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is a (positive- or negative-) definite function. Therefore,
it seems reasonable to approximate it in the integral
equation (3.2), defining the form factors, by its value
at some mean momentum p. Then, we have from Eq.
(3.2), after angular momentum decomposition, 22

x~.t(P' E) = L«,i(E)3 ' dP'P"«(P P" E)

XGo(P', E)xi, i(P'; E) Vi(P, p; E) Lr)i,t(E)j '

X dP'P"Gs(P'; E)xi,i(P'; E). (3.&)

According to (3.1), this leads to the separable potential

U- (P', P;E)-V (P',r;E)V (7, ~;E). (3.9)

Here, the proportionality factor depends only on the
energy. This form suggests the more general ansatz

E V, (P', ; E) V,(, P; E)
V((a, a; E)

(3.10)

with an open parameter rr(E) which has to be deter-
mined by the above variational principle, and with
the normalization "constant" $(E) which follows
from the normalization condition (3.3), after having
determined n(E). We would expect, however, that the
value of $(E) is not too far from unity, since then"
U~"n(p', a; E) V~(p', o.; E) and Vi"v(n p E)
V&(a, p; E).Actually, we made a further approximation
in our calculation. Namely, we replaced Vi(P, rr; E)—
which will, in general, be a rather unwieldy function-
by a simpler function which coincides with it for p n.
In all cases our final form factor has the correct thresh-
old behavior o:p' and the same asymptotic behavior
for p~ eo as the exact solution of Eq. (3.2).

The relevance of the arguments of this section can be
illustrated by inspection of the Yukawa potential.
This is done in Appendix B.

22 Ke choose

V(p'~ pi &) =(1/4~)&l(2&+1) &l(«») &l(p', p; &).

"It is interesting to notice at this point that the method of
H. P. Noyes LPhys. Rev. Letters 15, 538 (1965)j and K. L.
Kowalski (2Nd. 15, 798 (1965)j for solving the Lipprnann-
Schwinger equation for positive energies, is intimately connected
with Eq. (3.10) . For, if we take P(E) =1 and a =E'/2, we arrive
at

v&(p', p; z)
=/pl(p&, @12 g) Vl(@12 p' g)lp'l(gl/2 gl/2 g)

+ &i'(p', p; &)

By use of this special decomposition of the potential into a separ-
able and. a nonseparable part, @re are able, with the help of the
quasiparticle method of steinberg (Ref. 9), to reproduce all the
results of Noyes and Kowalski.

r=d, Q

dq"q'"V. ..' s(q', q"; E)

Xt, (E—q'")2' "(q" q E) (4 1)

Here, I(5) denotes the total isospin (spin) of the
three-nucleon system, both of which are conserved in
our model. The indices 22, 222, and r stand for d (deu-
teron) and P (virtual singlet state).

The "propagators" t„reagiven by Eq. (2.6) .'4
The "potentials" V have the form'

V„,„rs(q', q; E) = —A, ' sU, (q', q; E)

with

(4.2)

16
U-,-(q', q; E) =-

3&3
d coso

X
"

, „ . . . (4.3)
g-L3-"'(q'+2q) ja-L3-"'(q+2q') 3

-'(4q"+4q'+4q q') E—
0 being the angle between q and q'.

The two-nucleon form factors g„are defined in

Eq. (2.4). The A „r s are the spin-isospin recoupling
coefFicients":

d
3

i/2, i/2
A 2'

'4 Of course, tq is not renormalized, i.e., its residue at the deu-
teron pole is not equal to 1; see Ref. 3. Correspondingly, also the
Tq+8 are not renormalized. In contrast, the normalization of
t~ is arbitrary.

'~ Note that the corresponding matrix of Ref. 6 is here multiplied
by a factor (—2).

4. THREE-NUCLEON PROBLEM

As a first application of the ideas developed in
Sec. 3, we consider the three-nucleon problem. The
results obtained will then serve as input for the calcula-
tions to be performed in the four-nucleon problem.

As already remarked in Sec. 2, we will restrict our-
selves to the simplest model of only one separable
term in each spin-isospin channel for the two-nucleon
T matrix. Therefore, our calculations will suffer from
the same defects as those of Refs. 4 and 13. Thus,
it is clear that our results have to be measured against
those of these authors, if one wants to judge the quality
of our approximation.

We start by writing down the partial-wave projected
scattering equations for orbital angular momentum
equal to zero (we will, however, drop the index X=0;
later on we shall also make some remarks on the
I' wave). The equations for the T matrix are, with
correct symmetrization because of the identity of the
nucleons,

T„,„'s (q', q; E) = V, r s (q', q; E)
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(00) (4 4)

S=—', ), where only the element Vzz contributes. From
(3.8) we would obtain

x~"(q, E) ~ V~(g, n; E).

According to the discussion of Sec. 3, we must now
approximate the "potentials" V„, by separable
ones. First, let us consider the quartet case (I=12,

With the correct normalization (3.3), and dropping
terms proportional to cos8 )compare Eq. (3.10) and
the discussion following it/, we get

;and, correspondingly,

4- &
"2 (64~&"' E(5/3) ~'+~d'T(8/3) ~' E3-"'

Ls(V2+4~2)+~"jt:2 (4C'+~2)+~"jl3(/+~') —E3
= ((~/2n;) "2Xd(g; E),

V. ,
""""-'(V'

V E) =24.(E)X.(q; E)X.(V; E).

(4 6)

(4.7)

The isoquartet state (I= 22, 5=-'2) can be treated in
the same way, with the deuteron always replaced by P.
However, the results for it are not needed in the
following, and so we left it out from our considerations.
For the doublet potentials V„, 'I' "', we proceed as
described in Appendix A. As explained there, we ap-
proximate the. potential in this case by two separable
terms, with form factors ! x,")=C„"!x„). Here, ! y~)
is given by Eq. (4.6), while ! yq) is taken to be the
same expression, with p& replaced by p~. The roefficients
C„"(E),as well as the parameter n, are determined by
the variational principle. "The results are the following:

(a) For quartet scattering, Eq. (3.6) leads to an

eigenvalue g~(E), which is shown in Fig. 2. The cor-

responding values of 0, (E) are depicted in Fig. 3.
(b) For the doublet channel, Eq. (A8) gives rise to

two eigenvalues 2n(E) and q2(E). They are also shown

in Fig. 2 Lthe values for n(E) are the same as in the
quartet case]. As can be seen from Fig. 2, only in(E)

goes through —1. The energy 8& corresponding to
qi( —&,) = —1 is the triton binding energy. Our result,
B~= 10.3 MeV, is indeed very close to the values ob-
tained by Aaron et al.4 and Phillips'3 by solving Eq.
(4.1) exactly.

As we have discussed in Sec. 3, the factor P,„(E) in

Eq. (4.7) is expected to be close to unity. Our results,
shown. in Fig. 4, verify this. An analogous consideration
suggests in the doublet case (compare the definitions

in Appendix A)

4.-(E) = Z n. (E)C."(E)C."(E)- I -;"'"' —(4 8)

At threshold (E=—Bq), we obtained. indeed

(—0.29 0.84)
4.-(—&.) =

I

0.84 —0.30)

while at our value for the triton energy we got

0.98~
~-,-(—1o.3) =

0.98 —0.34)

-2.

-10 -5

Besides the triton binding energy, further important
quantities, which can easily be compared with the
"exact" results given in Refs. 4 and 13, are the scat-
tering lengths for elastic nucleon-deuteron scattering.
Their connection with the T matrices are Lcompare

Eq. (8.3)$
1/2 2 3Ii 1/2

Tgg' (0, 0; —Bg), (4.9)4' 1n

FIG. 2. The largest eigenvalue ~/q (E) of the Lippmann-
Schwinger kernel in the three-nucleon quartet state, and the two
largest eigenvalues g1 (E) and q2(E) in the three-nucleon. doublet
state.

"In principle, the parameter 0. should be different in the doub-
let and quartet cases, but it appeared from the calculation that
the difference was completely negligible.

where the somewhat unconventional coeKcient arises
from our normalization of the momenta and from the
fact that we work with a not renormalized deuteron

propagator.
Our results are given in Table I. They show large

disagreement with the "exact" ones. This shortcoming,
together with the very good result for the binding



ALT) GRAS SB ER GER, AND SAND HAS

TABLE I. Theoretical and experimental quantities
for the low-energy three-nucleon system.

&t (MeV) aig2 (F) ag2 (F)

20.

Aaron et u$.' (Z=O)
Phillipsb (V4 ——0)
This work, separable

approximation
First quasi-Born

approximation
Experiment'

11.01
11.1
10.3

—1.04
—0.79

5.19

6.32
6.28
3.73

10.3 1.44 8.15

8.49 0.11&0.07 6.14&0.06

~ Reference 4."Reference 13.
W. T. H. Van Oers and Y. D. Seagrave, Phys. Letters 243, 562 (1967).

E jHeYJ

-5 w2

Fxo. 3. The parameter n'(8) in the triton form factors defined
in Eq. (4.6), and the corresponding parameter P'(E) of the two-
deuteron form factor PEq. (6.6) ).

energy, can be easily understood. First, it is well known
that variational calculations yield errors in the binding
energy which are of second order compared with the
errors of the wave functions. Second, to represent
the exact transition amplitude, we need (in principle)
an infinite number of separable terms, while only one
is required at the bound-state pole. To take into
account the effect of the terms which were neglected
by our separable approximation, we corrected Eq. (3.4)
by adding the first quasi-Born approximation. '

Since we use the "ideal choice, " this correction
reduces to adding V'= V—Vse~ in Eq. (3.4) .The result,
also given in Table I, shows considerable improvement.
In order to study the importance of U' from another
point of view, we compare the Schmidt norms r(E)
of fq'~'Vddfd'" and 7'(E) of fd'"Vds'fd"' (Hereby we also

get upper bounds on the eigenvalues of these kernels. )
For simplicity, we consider only the quartet case, since
we do not expect that the coupling of the channels —as
it occurs in the doublet case—alters the results essen-
tially. The ratio r'(E)/r(E) is shown in Fig. 5(b).
From this it follows, e.g., that the magnitude of the
second eigenvalue of V~fs is less than 20—30% of the

erst one, for all energies below threshold. This shows
that the second term in the eigenvalue expansion of
td, '~'U~gt~'" can be neglected as long as the first eigen-
value is not much larger than unity. The latter condition
is violated only near threshold. This fact agrees with
our bad result for the scattering lengths. But for all
other energies, our separable approximation should be
sufhcient.

Up to now we have considered only S waves. We
estimated the contribution of higher partial waves to
show that we are allowed to neglect them in the
following. For this purpose, we calculated the largest
eigenvalue of the P-wave analog of Eq. (4.1), by
the same variational method as applied to the S wave.
The form factor was chosen, according to our above
philosophy, as

x.(q; E)
cc q/(~2+4 2+cs3~ 2) (4~2+F2+3~ 2) (4q2+4~s 3E)s

The resulting eigenvalue was indeed about 1/2. 5—1/5
of the eigenvalue in the S wave Lsee Fig. 5(a) j.
5.FORMULATION OF FOUR-NUCLEON PROBLEM

Our treatment of the four-nucleon problem follows
exactly the one described in Ref. 7 for the general

0.4

0.2

. 0.1

150 '-Io
E [HeV]

1.25

10' -50 -20 -10 -5 -3 -2
EN@1

FIG. 4. The factor $q (8) de6ned in Eq. (4.7), and the
corresponding factor g(E) of Eq. (6.6).

FIG. 5. (a) Ratio between the largest eigenvalue of the Lipp--
mann-Schwinger kernel in the P wave and the one in the S wave
(both in the three-nucleon quartet state). (b) Ratio between.
the Schmidt norms r' of g&i'2(V Vsep)$ and 7' of P U& jn. the'
three-nucleon quartet state with orbital angular momentum L=0.
(c) The latter ratio for the kernel of Eq. (6.1) which describes
the deuteron+deuteron subsystem.
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r ; s v r s v r

(e) — P (~) (r) -P (d) (=)
Fro. 6. The coupled Lippmann-

Schwinger equations in the eGective two-
body formulation of the four-nucleon
system. The nonexistence of the poten-
tials 'Uqq, qq, 'U~~,~, and Uqq, ~ stems from
neglecting all nonseparable terms in the
subsystems. The contributing channels
dd and @@correspond to either total spin
or isospin being different from one.

v=t, t',qu

S f' S V

v=t, t', qu

v= dd,)f

v=t, t',qu

dir+3c( exch
2 1

(similarly, for',3&,&, Gt, ,„and 3t,, ) and

&dd, dd =&dd, dd"'+2&dd, dd'"'h

(5.1)

(5.2)

(similarly, for 3ttt, ,@q, Gdd tt, and Gdt, ,dq). For the nucleon
transfer reactions (for instance, Pt—edd), the sym-
metrized amplitude is given in terms of the unsym-
metrized transfer amplitudes 3" as follows:

Odd t(q', q; E) =v3 (3dd, tt'(q', q; E) &Gdd, tt'( —q', q; E) ),
(5 3)

and analogously for the other transfer reactions.

"M. Golderger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc., New York, 1964).

four-body case, but with all nonseparable terms being
discarded. After having taken properly into account
the Pauli principle (see below), we are thus led, in the
case I=S=0, to a four-channel "two-particle" problem
with the following four channels:

(I) One free nucleon plus a three-nucleon bound
state (assuming isospin invariance, we do not dis-
tinguish between the triton and the He'), which we
label by the index t.

(II) One nucleon plus the quasiparticle in the three-
nucleon doublet subsystem described in Sec. 4. This
channel we denote by t'.

(III) Two deuterons, a channel denoted by dd.
(IV) Two virtual two-nucleon S states, denoted

by 44

In the case I=0, 5= 1 four channels again contribute.
But now channel (IV) consists of one free nucleon and
the three-nucleon. quartet state (labeled by It(22),

instead of two singlet states.
To take into account the Pauli principle, we use the

method of Lovelace. We start by assuming all particles
to be formally distinguishable. For elastic and "in-
elastic" scattering (i.e., t~t, t~)!', t~tJN, dg—&d@,

tld~dd, ~~, and ddt —tPtt(t), we then have to dis-
tinguish between direct amplitudes 3 " and exchange
amplitudes O'"'". The physical amplitudes are given by
the following combinations, generalizing Ref. 6 (see
also Ref. 27):

The sign in Eq. (5.3) corresponds to whether the
final state (with the two bosons tf+d or P+P) has
even or odd internal wave functions. With analogous
definitions for the "potentials, "we are 6nally led to the
equation (see Fig. 6) (we indicate again the total
spin and isospin by upper indices)

I,S co I,S Q CU I,S] t1 I,S

The various potentials and propagators are the fol-
lowing ones (with the momenta defined in Sec. 2):

(a) For 3+p +t+p (a—nd, of course, for He'+I —+

He2+22 and. t+pt-+He'+22) we have according to
Fig. 7(a)

«, tr'(q2, qi; E)
27

Q &t, t;.I sXt"(2qi', E—q2')
16 2 =d,P

X t (E—Iq.'—qi') Xt"(Iq2, E—qi') . (5.5)

Here, A&, „~ ~ is the product of spin- and isospin-
recoupling coeKcients I,compare the analogous coeffi-
cients in Eq. (4.2)$:

~t. t;rt ((2t Stt)St) 2t S
~

(SS& 2)Stt 2t S)
X((-'„2„)i„-',, I ~

(i„, -', )i„-',, I). (5.6)

The momenta ~q2 and 2q~ are linear combinations of
qi and q» which can easily be obtained from Eq. (2.1):

,q, = (1/242) (3q,+q,),
2qi= (1/2~2) (3qi+q2) . (5.7)

The factor22 27/16v2 arises from our normahzation
of the momenta )compare Eq. (3.19) of Ref. 6$.

Last, x&" is just the form factor xp, determined in
Sec. 4:

pter(q; E) =CI"(E) (642r/3%3)')2(~5n2(E)+)(t„2)

X (a~2(E) —E)"2L (4q2+ 2~2(E) +p-2)

X (2-q2+ 4~2(E)+~ 2) (4q2+ 4I22(E) E)g—I (5 g)

"There appears, in fact, an additional factor 3 from symmetri-
zation. This cancels, however, against a factor —', since, when the
nucleons are considered as distinguishable, the triton form factor
is (1jV3)xp, instead of x&".
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Fro. 7. The potentials 'Ui, & LFig. 7 (a) g
and '084, 1 (Fig. 7(b) j as defined in Eels.
(5.5) and (6.8), respectively.

(12)
= - q &12) ~

The potentials for t replaced by t' or the quartet quasi-
particle (gN) are completely analogous.

(b) The propagators for the states f,, t', and q84 are
again. obtained from the results of Sec. 3

I
see Eq.

(3 5)1:
ti (8) = —rii (E)/L1+in(E) g,

t, (E) = —ils(E)/I 1+iis(E)$, (5.9)

and analogously for t,„.
Indeed, we did not use Eq. (5.9) as it stands, but

multiplied by a constant factor of 0.9. This has the
eQect of shifting the three-nucleon binding energy from
10.3 to about 8 MeV, and should compensate for part
of the short-range repulsion not included in our nucleon-
nucleon interaction.

(c) The propagators for d+d and for P+P, as well as
the potentials describing transitions from t+N, t'+N,
or q84+N to these states, are not obtainable from the
results of Sec. 4. Their determination is, therefore, left
to Sec. 6.

tudes" Tg~)ns(34) and T(~2)„,(~) describing the processes
shown in Fig. 8. As discussed in Ref. 7 (Sec. 4), separa-
ble approximations of these amplitudes provide us
with the two-deuteron (two-Q) propagators and. the
form factors necessary for the calculation of the
corresponding transition potentials. The amplitudes
Tp„.. . with n= (12) or (34) and. P= (12) or (34),
fulfill the integral equations analogous to (4.1),""

&pn, am= Vpn, am Z g Vpn, yifyiTpi, am& (6 ~ 1)
q=(u), (34) l=d, y

where (compare Fig. 9)

(q84 q&84&'
I V(»& .(84) (&) I q» q(84))

=~8(q(84l' —q(84)) g-(q»)

&& Lq»'+q84"'+q(84l' —&1-'g (q84)

=~'(q(84) q(84)) V(18)., (84) (q84 qis &—
q(84) )

(6 2)

6. TWO-DEUTERON (TWO-$)
INTERMEDIATE STATES

ln Ref. 7, we have pointed out that in addition to the
three-nucleon subsystems, we must also consider the
subsystems with two pairs of mutually interacting
nucleons. " This situation formally results from
switching off all nucleon-nucleon potentials except,
e.g., V~q and V34. Similarly to the treatment of Sec. 4,
we must now study the (off-shell) "transition ampli-

m 7n(18ln, (84lm+2 (»)n, (»lmq

Vn8m V(12)n, (34)m.

(6 3)

(6.4)

V „, =0.

The Pauli principle is included as in Sec. 5, but now the
symmetrized T„, and V, are given by

T(12)n, (34)m

T)

m
(~T-

T(12)n, f12) rn

rr8AT.

(T)

FzG. 8. The "transition amplitudes" T(12)n, p4)m and ~(12)n, (12)m

"For the moment we again consider the nucleons as distinguish-
able.

q34 (~~~-
3
tq34

4

Fxo. 9. The "potential" given by Eq. (6.2).

"In Ref. 7, we gave an explicit (formal) solution for Tp„
For our purpose, however, it is more practical to proceed in
analogy to Sec. 4.
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on deuteron-propagator has pon - s a oleWith this, Eq. (6.1) reduces to

( 8 =4.446 MeV). Moreover, it appears see
T„r,&(E)=y„, (E)I,Sf

energy
Fi . c that the approximation is excellent in the

idt norm.l

y ' are in a osition to write down t e po ene indices I and 5 on the potentials y„, are in d p
serve here only to fix the possible

E . (6.7)

M
l

cB
coef6clel1 t q

a ators have the same form,d Th ~+tgIt d ~+d p ope state l for each spin an e
and riztt, respective y. e'ff t b t ith„ 1 d

binations only the potentials for (+X~
t

'
po po' ' -(y, i i p d t of the angle between q24

ave a artial-wave & Ad lp (12) &

2 tt ~ E 2

'ng y p
cessary. Furthermore, the on y Xfxt" rq2,

' —q1 d
— ' " ' E 12—

( ) ( q 'E qr')t&(E q1' tqs )Xt 1 2

nonseparab
le a roximation can

6.8)Xy~s"(q12 E q(12) ) .l A--d-g "-g--
actor de6ned by Eq. (6.6):H e, „„"i th fo f to

(q' q E)=4-(E)Lg-(q) /(q'+O' E -' "

l(E) „(p, (
(E) (q'+02(E) —E)(q2+~&)

1 determination of Lm(E) and P(E),
g

s a ain
'

—
'

lin coeKcient,E) .
~~ (E) f'(E) A. ,gs s a aina sin le function t t, . „m

5.6 . The factor o
of accuracy, to a sig, s a ain

and the 1/v2 stems fromhz t'o ofthof the three-nucleon norma iz
- h

(

= ( / )(q1+ qadi),&q2
——

v3 1, (6.10)= —(1/v2) (qp2)+ q1in A endix 8, is a first indication for the qua ity o our

-10 -2 E [MeVJ

re the same combinations, w'withwhile iq2 and qi2 are e
q(i2) replaced by —q(i2).

-1.0-

-1.5-

-2.0

es and g~~ of the kernel of Eq. (6.1).—1 o od tot '
thThe energy E at which qadi(E) = — correspon

deuteron binding energy.

I Indeed, this goes over to (A9„'if we write

x""'(a; ~) =g-(a) i(q.'+0' —~)
'

es ns and n). Due to the above dis-(Note here the different indices ns an

d t on an shing pote tial
nes 'I ~ unique y, since, or xe

. This
corres ondence between n and m.fact establishes a one-to-one correspon enc

7. FOUR-NUCLEONN BOUND-STATE PROBLEM

k '
to solve the I.ippmann-Schwinger-Our last tas is o

' - hwin er-
'

n 5.4, decomposed into partia wtype equation
011 a compuuter. Since the boun -sta e pr

interest to it ande we have devote our main in
fi I t d f solving theto describe it first. ns ea

-~ ~
w' '

b matrix inversion,win er e uation y mLippmann- c w'
g

al rinci e as pl resented inwe use again the variation p
. 3 &A endix A), and already applied 1n ecs.

re all zero. For simplicity,'tal an ular momentum are a z

orres onding to the vertices

'
tent with the correct'

entical. This is consis en
—+0 where t ey en

At infinity, arguments similar to os
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8 =50 MeV. (7.2)

This result is obviously much too large (even worse, it
represents only a lower limit to the exact solution).
Such a failure can be understood by the fact that we
have not taken into account the hard core and tensor
forces in our nucleon-nucleon potentials (2.3). More-
over, this potential was constructed to 6t the low-

energy data while it is needed here at large negative
energies. A better calculation should use more sophisti-
cated potentials as proposed, e.g., in Refs. 18 and 19.

Nevertheless, we can d.raw some qualitative conclu-
sions from our solution by looking at the matrix
1V(E). According to its definition in Appendix A,
this matrix is essentially the expectation value of the
potential. Neglecting the t' would change our result
for 8 by only a few percent. The major contribution is
given by the /+re channel, via deuteron and g exchange.
The channels d+d and p+p coupled to t+e by one-
nucleon exchange are of minor importance for the result.

A better test of the model is presumably to look at
the erst excited states of the four-nucleon system.
Experimentally, " one Ands several states with excita-
tion energies between 20—30 MeV. The lowest one is a
J~=O+ isosinglet state which should correspond to a
radial excitation of the ground state. We have not
looked for it because our program was not well-suited
for that purpose. The next states, with "binding"
energies 6.9 and 5.9 MeV, are again isosinglets with
J~=O and: 2, respectively. Together with a J~=1
state found recently" at 4.4 MeV (i.e., only 0.05 MeV
above the two-deuteron threshold), they should in our
znodel correspond to states with I.=1, 5=1, I=O.
Furthermore since we do not have any 1.$ coupling,
these states must be degenerate.

Ke took again the same form factor for all channels
(where, now, the fourth channel contains a nucleon
plus a quartet state, instead of two @'s):

X-(q' E) "I'i"(q~q) V/I I:u(E)+V'3'L~(E)+3&'3'),

(7.3)

which is easily seen to have the correct threshold and
asymptotic behavior.

Ke found indeed a state at 12 MeV. This is already
closer to the experimental values, although one still

32 W. E. Meyerhof and T. A. Tombrello, Nucl. Phys. A109, 1
{1968).

~ D. Fick and H. %. Franz, Phys. Letters 27B, 541 (1968).

(3.8) show that the form factors for (n, et), (n. zt'),
and (a, cpu) behave like g ", while the ones for
(~, dd) and. (n, gP) go like q '. This fact, and the ex-

.plicit form of the potentials, suggested the ansatz

x(e'E) "IL (E)+3a'3'L (E)+q'3'I ' (7 &)

for the form factors. From the variational method, we
found the binding energy of the e particle to be

should be careful. In channels with total orbital
angular momentum I=1, we expect that the neglect
of three-nucleon I' waves is much worse than in
channels with 1.=0.

8. SCATTERING PROBLEM

The virtue of the above formulation is, of course, that
it can be applied to scattering processes as well. How-
ever, the difhculties encountered in the actual calcula-
tion increase considerably there. Even the determina-
tion of the various subsystem form factors requires
more eGort.

Therefore, in this paper we resorted to a E-matrix
Born approximation to get a 6rst crude insight into the
results to be expected. This approximation is obtained
by replacing the triton-nucleon and the deuteron-
deuteron propagators in Eq. (5.4) by their discon-
tinuities along the two-particle cuts:

t, (E—g') ~i~R,S(B,+E q')—
and

tgg(E (f) +ixE—yah (-2Bg+E rf) . — (8.2)

(8 &)

'dl mb
50 d0. sr,

al)

]0

8 OO

]g ~50 ]@ 130 I10' ~
0 I' 20' Xl' 40' 50' 60' 70' 80'

FIG. 11. Di6erential cross section for d+d —+t+p, at El b=
13.8 MeV. Experimental points are from Ref. 35, the curve is the
E'-matrix approximation to Eq. (5.4) .

Here, R, and ~ are the residues of t, (E) and t~(E),
and are given by R,=22.8, ~=9.2. We note that
these residues also enter the connection between our T
matrices and the cross section Ljust as in the three-
nucleon case, where the residue of t& occurred in Eq.
(4.9)g. If we take into account also the particular
normalization of our momenta, we And the following
(neglecting trivial complications due to isospin) for
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unpolarized particles:

(&do„„'I
&dQ j,

—(2~)4
~
(R„E )'"3. (g', q) ~', (8.3)

1 g

4(4~-~-)"'
V

where p„and p are the reduced masses.
By such a replacement, all other channels which do

not correspond to physical particles are eliminated.
Furthermore, from the 5 functions we see that we

zo' I ('—,„')

ELtib ' 51,5 MeV

e d+d~T+ p
(Hruckmann et aL)—K-matrix

35.

+d~ll+ Hp

+d p+t

0ers LBrockmann)

-matrix

OO

y4 0

0 g I,0' 60' 4 8,
Fro. 13. The same as Fig. 11 but at El,b=51.5 MeV.

Experimental points from Ref. 37.

15.

be expected to be a good starting point is d+d—+

t+P(~He'+n). Therefore, we can hope that there our
E-matrix approach is reasonable. Indeed, this is
verified by our results, as shown in Figs. 11-14.'~'8

„ dv mb

50.
"

ra. tsr '

10

10-

~ ~
~ ~

~ e ~
1I' 1' ec,rn.

0 10' Z 30 i 50' 60' W '
FIG. 12. The same as Fig. 11 but at E~,b=25.3 MeV.

Experimental points from Ref. 36.

30-

need the form factors only at the energy of their
corresponding bound-states. That is, we need only
x,"(q; 8—q'= —8,) and x«"(q; 8—q'= 2Bq), which-
we have already determined.

The replacements (8.1) and (8.2) lead to the same
results as approximating the "two-body" K matrix by
the potentials (5.5) and (6.8). By such an approxima-
tion we can, of course, not expect to get reasonable
results for processes where the Born term vanishes.
This is the case for elastic deuteron-deuteron scattering.
A similarly bad situation holds for elastic triton-nucleon
scattering where the Born term contributes only to
backward scattering. In both of these cases, the
inclusion of the second Born approximation to the E
matrix'4 should yield considerable improvement. The
only process where our transition potential may

'4 J. H. Sloan, Phys. Rev. 105, 1587 (1968) .

10

4
~ ~~ O

Bc.rn.

0 30' 60' %' 120' 150' 8l'
FzG. 14. DiGerential cross section for He'+p —+He'+ p at

E~,b=9.75 MeV. Experimental points from Ref. 38.
3' J. E. Brolley, Jr., T. M. Putnam, and L. Rosen, Phys. Rev.

107, 820 (1957).
"W. T. H. Van Oers and K. W. Brockmann, Nucl. Phys. 48,

625 (1963).
3'H. Briickmann, E. L. Haase, W. Kluge, and L. Schanzler,

Z. Physik 230, 383 (1970).
38 R. H. Lovberg, Phys. Rev. 103, 1393 (1957).
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our results are encouraging and deserve further in-
vestigations along these lines.
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APPENDIX A

In the case where the Lippmann-Schwinger equation
is a matrix equation, we modified the variational
method described in Sec. 3 as follows: The separable
ansatz (3.1) reads, with matrix indices,

l" -'(&) = Z I x.'(&) )~.(&) (x.'(&*)
I (A1)

For the form factors, we make the ansatz

( y„'(E) )=C„'(E)
~
x„'(E)) (no summation) (A2)

with the C„'(E) considered as variation parameters.
The

~
y.'(E) ) are also varied, independently but with

only one parameter n(E) for each v and all l. The
ansatz (A2) provides us with enough flexibility without
making the calculations too complicated. Inserting it
into Eq. (3.6), we obtain
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F10. 17. The largest Yukawa eigenvalue g(E+io), as given
by Eq. (3.6). Here, y=m=X=1.

APPENDIX B

with a 2&&2 matrix) the second eigenvector of (A7)
leads also to an approximate solution of (3.2), with
similar accuracy.

Therefore, we get in this case

v„- (z) = Z I
&'(z))c,"(z)c,'*(I:*)~„(z)«'(~*)

I

v=1,2

=I ~'(~))h (&)(x'(&*)
I (A9)

with

4~(&) = Z C."(&)C'*{&*)~(&) (A10)
v=1,2

with

Q (1V;p—t q.)M,g") C '*C '=0 (A3)

(A4)

(AS)

The quality of the separable ansatz, suggested by
Eq. (3.10), can be illustrated rather directly for th
s-wave part of the Yukawa potential V(r) =X(e &"/r):

+' d cosa
l'o(O' P) = —,„, , (B1)

p +p —2p p cos8+ p

The condition
&L&„)=o

yields, under variation of C„'*,

(A6)

Iol p and p

(B2)l
v'+(P+P')'

2~PP' v'+ (P P')"—
Q (1V;)"—I g„$M,(")C,'=0,

which has a solution if

det(X"—Lg„jM") =0.

(A7)

(A8)

2X/m-

represents a good approximation. With this, Eq. (3.10)
simplifies to

If E and M are rs)&e matrices, we have in general e
different roots for Pq„g. Each one corresponds to a
different (exact) solution of Eq. (A7), and to a different
approximate solution of the Lippmann-Schwinger
equation (3.2) . By variation of

~
y„') Li.e., of the

parameter n(E)], one can only arrange ore of them to
become a (nearly) exact solution of Eq. (3.2). We
took the largest of these Lg„g and made it a maximum
by variation. This yields a lower bound on the largest
eigenvalue of VGO and on the binding energy of the
ground state.

When constructing a separable approximation to the
potentials, we found, fortunately, that in our applica-
tion (Nd scattering in the singlet state; here we deal

i'0-'(P' P &)

2A, 2cx jP=t(&)—
~ LP"+~'+~'(&) jLP'+~'+~'(I:) j ' (B4)

corresponding to the form factor

+(p ~ g) ~ PP2+F2+~2(g) j—1—LP2+p2(g) j 1 (BS)

This is, of course, the well-known Hulthen form factor
(with energy-dependent range 1/P) which is the form
factor most widely used in separable-potential calcula-
tions. When we insert the ansatz (B4) in Eq. (3.7),
we can do all integrations analytically. "The denomi-

3' Wright and Scadron (Ref. 14) did the same using Eq. (3.6),
which leads, however, to more complicated integrals.
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$(0) =8/7, which is indeed rather close to unity,
as was suggested by the arguments leading to our
ansatz (3.10). At this energy (E=O), we obtained the
Schmidt norms (see also Ref. 9)

r (0) =
I
Gp't'(0) V (0)Gp'~'(0)

I

= X(2 ln2 —1)!~'=0.6215K

and

r (0) =
I
G i' (0) V,' (0)G,'~' (0)

= fez(0) —2(x I
G, (O) VG, (O) I x)yI:&(0)j I &.

The term (x I
GpVpGp I x) calculated in configuration

space, ~ is

Pro. 18. The parameter P(Z+i0), as given by Eq. (B.7);
again, p=m=X=1. (x I

G, (o) vG, (o) I x)= Ln(0) j»2' (p+P)'
P 0 p+2P p

nator is calculated in x space, making use of the
locality of V(r) to form V '(r). We thus obtain

which gives
~'(0) =0.1795) .

Ln(E) 3=) (2P—~)'/2P(P —zE"')'. (36)

This becomes a maximum if

P (E) = s
p

', (iE"')+—',—-(9p'/4 5-zpE'" —E)"'. (—87)

z1(E) and P(E) are shown in Figs. 17 and 18. There we
see that the imaginary parts both of p and of g soon
become very important if one goes to positive energies.
Looking at E=O, and using (B4) and (3.3), we find

The work of Weinberg and collaborators'" shows that
this is sufhcient to make V"& a very good approximation
to V, if the coupling constant A. is not too large. Since
in the three-nucleon problem a similar weakening of the
potentials is achieved by subtraction of separable
terms (see the results given in Sec. 4), we may expect
that these separable terms represent a good approxima-
tion for our problem.

"M. Scadron and S. Weinberg, Phys. Rev. 133, 81589 (1964) .
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The Thomas-Fermi integral theory of the nuclear surface is shown to have singular solutions for the
nuclear density. This failure is traced to its inadequate representation of the behavior of wave functions
in a potential. A new theory based on approximate wave functions is developed and shown to be asymptotic
to the Thomas-Fermi theory in the interior of the nucleus. An improved treatment of exchange forces is
shown to be essential to obtaining realistic solutions.

I. INTRODUCTION

REVIOUS statistical theories' ' of the nuclear
surface have been formulated as variational

problems in which the total energy Wp of a nucleus is
minimized as a functional of its neutron and proton
density distributions p„(r) and p„(r) . The most
thorough formulation of the problem is that of Bethe, '

*Work supported in part by the National Science Foundation.
f National Science Foundation Graduate Fellow.' H. A. Bethe, Phys. Rev. 167, 879 (1968).
2 J. R. Buchler, R. J. Lombard, S. Jorna, and K. A. Brueckner,

Phys. Rev. 171, 1188 (1968).
3L. Wilets, Phys. Rev. 101, 1805 (1956); R. A. Berg and L.

Wilets, ibid. 101, 201 (1956);L. Wilets, Rev. Mod. Phys. 30, 542
(1958).

who writes 8"p as an integral of the long-range direct
force between nucleons, plus local-density approxima-
tions to the short-range force, the space-exchange
integral, and the kinetic energy. Buchler et al.' ap-
proximate the long-range direct-force integral by a
differential term, a fair approximation if the surface
thickness is not too small; such a term includes the
erst-order correction of Weiszacker for the additional
kinetic energy necessary to cause a varying density.
In Sec. II, it is shown that the integral theory of Bethe
can have discontinuous solutions. Such a solution is ob-
tained numerically for the one-dimensional case. This
singularity demonstrates that the surface thickness is
due not only to the properties of the long-range direct
nucleon-nucleon force, as argued by Wilets' and


