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We have already obtained the following values: x0=1,
$0 0 j s& 1 p] g j x2 8y p2 g We will now show that

limx„= iimy„= i/(2) 't2,

which indicates a poor convergence.
To prove this, we note that the products

(o I (bpa ) (b a ) (a 'b.') (a 'bp')
I o) = ~

(o I (b a-) (b-a-) (~'b-') (a.'bl ')
I o)= —&

may be calculated with the help of the commutation
relations for the particle-hole operators, However,
those scalar products may also be calculated by making
use of the expansions for (a tb t) (a„tbpt) and
(a tbpt) (a„"b t) . One then finds

physically interesting quantity, we consider the second-
order energy. Disregarding consistency, we obtain

g i2) 1(x 2+ 2)
Vp, „V„,p

apma ea+ ep Sm ea

pam, a m tip a,

apma pa+ ep em ea

and it happens that even for v=2 both (x 2+y„2) and
2x„y„are already quite near 1, although the equality is
only attained for v= ~. We remark finally that the
relation

a„&b.&a„&bpt
I 0)

= Li/(2) "'3(&-'&-p' —&-p"&-')
I o)

2$~$~= 1q

so that

2+y 2 —$ arising in an infinite order Beliaev-Zelevinsky ex-
pansion, is contained in Marumori's prescription~ for
mapping a many-fermion Hilbert space into a many-

= -=&/(2)"'. boson Hilbert space.x~=p~= 1/ 2
7 T. Marumori, M. Yamamura, and A. Tokunaga, Progr.
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The T=1 single-particle-hole states of C" are considered on the basis of the harmonic-oscillator shell
model in the particle-hole formalism developed by Lewis and Walecka. Configuration mixing is included
via a Serber-Yukawa residual interaction. Resulting mixed states lying close in energy are grouped together
into complexes whose inelastic-electron-scattering form factors are then compared with recent experimental
data. This comparison is done mainly at large momentum transfers and large scattering angles, where
the transverse excitations (and consequently the T= 1 states) dominate, and where the excitation spectrum
contains only a few strongly excited features (to be related here to collective single-particle-hole states).
By working at high momentum transfer, the contributions from transitions of high multipolarity can be
strongly enhanced. Here all possible T= 1 single-particle-hole states of all allowed angular momenta are
considered in a basis including single-particle states up to the 2s-id shell. A simple square-well shell model
is used to account for the quasielastic cross section in the giant-resonance region. All of the gross features
of the experimental excitation spectrum for excitation energies between 14 and 30 MeV can be accounted
for on the basis of this simple model.

I. INTRODUCTION

"NEIASTIC electron scattering provides a powerful.. means for obtaining information about the charge
and current distributions of nuclei. For an excitation
at a given energy loss, data taken as a function of
three-momentum transfer, in principle, provide the
Fourier transforms of the charge and current distribu-
tions, i.e., provide the inelastic form factors. In practice,
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some model for the nucleus is generally used to provide
the nuclear four-current and the resulting model form
factors are compared with experiment. ' ' By working at
large electron scattering angles, where the strongly
angle-dependent tarP( —', 8) factor in the cross section
becomes large, states excited by transverse multipoles
can be enhanced over longitudinal excitations. The
transition operators for electron scattering contain
isoscalar and isovector terms and consequently allow
only states of T=O and T=1, respectively, to be

' R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
~T. deForest, Jr. , and J. D. Walecka, Advan. Phys. IS, 1

(1966).
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reached from a T=O initial state such as the ground
state of C". Since the isovector magnetic moment
py =p„—p„=4.71'~ which occurs in the transverse
form factor is large compared to the isoscalar magnetic
moment tts ——tto+tt„=0.88tt~, the T= 1 excited states
in C" are expected to dominate over the T=O states
when the transverse form factors are the most im-
portant, viz. , at large angles. In the present work, '
where comparison is made primarily with data taken at
large angles, only the T=1 excitations are considered.

At large values of three-momentum transfer q, where
the long-wavelength approximation is not valid,
states of high angular momentum become as important
as those excited by the lowest multipole possible. It
should be emphasized that inelastic electron scattering
provides one of the few tottys of extensively studying
these states: Sy working at high momentum transfer
where the excitation spectrum is relatively simple,
containing only a few strongly excited features, one
can obtain information about the collective single-
particle-hole nature of the states. In particular, states
of high angular momentum can be strongly excited
at large q. Here comparison is made with data taken
over a large range of momentum transfer and the
inclusion of all multipole transitions allowed proves
to be vital.

Since in electron scattering the transition operators
are one-body operators, i.e., simply sums of single-
particle operators, the states expected to be most
strongly excited from closed-shell nuclei are linear
combinations of pure single-particle-hole states. To
the extent that C" can be considered to have closed
1srts and 1psts shells, the simplest structure observed in
electron scattering should be composed of groupings of
these collective single-particle-hole excitations. Indeed,
if the inelastic excitation function is averaged over
energy intervals of the order of 1 MeV, one expects to
find features remaining which can be ascribed to the
single-particle-hole structure of the excitation. This
averaging procedure corresponds to looking at excita-
tions in the nucleus that take place over a relatively
short time, before decaying into the more complicated
states which correspond to the fine structure observed.
These averaged complexes of single-particle-hole states
are then the "doorway" states4 5 for inelastic electron
scattering. In fact, large well-defined peaks are ob-
served3 when inelastic-electron-scattering data are
averaged over energy intervals of the order of 1 MeV.
In studies with higher resolution, one would expect to
see (and does see) additional structure corresponding

3 A preliminary account of this work (referred to as I), with
the experimental results of I. Sick and E. B. Hughes, has
previously been reported PT. W. Donnelly, J. D. Walecka, I. Sick,
and E. B. Hughes, Phys. Rev. Letters 21, 1196 (1968)g.

4 H. Feshbach, in Proceediags of the Irttereatiorta/ Nuclear
Physics Conference, Gatlinburg, Tennessee, 1966, edited by R. L.
Becker and A. Zucker (Academic Press Inc. , New York, 1967),
p. )81.' H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann. Phys.(¹Y.) 41, 230 (1967).

to collision admixtures of more complicated many-
particle —many-hole states.

In the present work, the dominant T=1 single-
particle-hole states of C" are considered in detail
within the framework of the harmonic-oscillator shell
model. The single-particle-hole formalism of Lewis
and Walecka' is used in describing the excited states
of C", where the ground state is taken to have closed
1srts and 1psts shells. The Hamiltonian is diagonalized
in the space of such states in the presence of a Serber-
Yukawa residual interaction (obtained from a fit to
low-energy tt-P scattering data). r The resulting energy
spectrum is used, together with experimental informa-
tion on the location of known levels, in grouping the
single-particle-hole states into complexes whose form
factors are subsequently compared with experimental
form factors. s " This provides an interpretation of
the gross-structure form factors in terms of form factors
for groupings of single-particle-hole states. In Sec.
II, the formalism presented in Lewis and Walecka'
and in deForest and Walecka' is reviewed. Section III
contains the resulting energy spectrum and form factors,
and Sec. IV is a discussion of these results. Finally, an
Appendix is included which contains expressions for the
pertinent form factors as functions of momentum trans-
fel.

II. FORMALISM

The formalism for the single-particle-hole states
considered in detail by Lewis and Walecka (LW)' is

briefly reviewed here. LW considered linear combi-
nations of particle-hole states of given angular mo-
mentum J and isospin T

+zv, r~r(1 ~) = Z ~sr ~'est, r~r (1" &)i (1)

where E stands for the particle-hole quantum numbers
(rt&l& jr) (rt&ls js) ', with labels 1 for Particles and 2 for
holes. The C's are the pure particle-hole states given by

' F. H. Lewis, Jr., and J. D. Walecka, Phys. Rev. 133, B849
(1964).' J.F. Dawson, I.Talmi, and J. D. Walecka, Ann. Phys. (N.Y.)
18, 339 (1962).' G. A. Proca and D. B.Isabelle, Nucl. Phys. A109, 177 {1968).

G. R. Bishop and A. Bottino, Phys. Letters 10, 308 (1964)."B.Dudelzak and R. E. Taylor, J. Phys. Radium 22, 544
(1961).

"W. C. Barber, F. Berthold, G. Fricke, and F. E. Gudden,
Phys. Rev. 120, 2081 {1960)."F.Gudden, Phys. Letters 10, 313 (1964) .' H. Schmid and W. Scholz, Z. Physik 175, 430 (1963).

"G.R. Bishop, Phys. Rev. Letters 19, 659 (1967)."T. deForest, Jr., J. D. Walecka, G. Vanpraet, and W. C.
Barber, Phys. Letters 16, 311 (1965).

"G. A. Beer, T. E. Drake, R. M. Hutcheon, V. W. Stobie,
and H. S. Caplan, Nuovo Cimento 53B, 319 (1968)."J. Goldemberg and %. C. Barber, Phys. Rev. 134, B963
(1964).

"H. Crannell, H. A. Dahl, and F. H. Lewis, Jr., Phys. Rev.
155, 1062 (1967)."G. Ricco, H. S. Caplan, R. M. Hutcheon, and R. Malvano,
Nucl. Phys. A114, 685 (1968).

2' J. Goldemberg, W. C. Barber, F. H. Lewis, Jr., and J. D.
Walecka, Phys. Rev. 134, B1022 (1964).
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LW. Inserting these linear combinations into the
Schrodinger equation and using the orthonormality
properties of the 4 's gives the secular equation

Z C(@em r)(r I
II

I
~'ver rm ) E&—xvcf&zr =O, (2)

which can be diagonalized to yield the en.ergy eigen-
values E and coefficients O.JT~. LK show that

(@'z~,r)(I,
I
II

I C'ver, r~, ) =&z)rEp(&)

+ (Z', JMoTMr I e(1, 2) I E, JMgTMr), (3)

where Ep(E) is the unperturbed energy of the particle-
hole pair E, obtained from energies in nuclei with
2~1 particles. The potential p(1, 2) is a nonsingular
potential which is obtained by fitting low-energy
nucleon-nucleon scattering data.

Assuming the spin dependence can be factored out,

i)(1, 2) =V(rip) o.(1, 2), (4)
the matrix elements of the potential for T=| states,
using harmonic-oscillator radial wave functions, are
given by

(X', JMgTMr I p(1, 2) I Z, JMgTMr)
li' lp L li lp' L

jz j2 J &~~e
= —Cji'jCj'jCjilCjp7 Z -' -', s ~

p p s (CJ1CL3Cs3)'
ZLS,jl

, ji' jp J, , ji jV

X Q C(ski'li'ssplp; Nilinp'lp', I., p) I„(V), (5)
((-,'-,')sll (1, 2) II (-,'—')s)

S y

where Cl7= (2l+1)"' and the C coeKcients are given by

C(N)'l, 'nplp, nilirsp'lp', I., p) = g B(rllrs'1; p) (nlEZ, I. I
mi'li'sspl. „,L)(sp'llama, L

I )pilin 'lp', L). (6)
xg~~~i

The transformation brackets (mlEZ, L
I

ss&l&)a&l&, L) and 8 coeKcients are defined and tabulated by Brody and
Moshinsky. "Talmi integrals are given by

ce

I„(V)=, oe'"+'e * V(b'oe) doe, (7)1"(p+p)
where O'=%2b= (2/M(op)'", &op is the oscillator energy, and M is the nucleon mass. Following LW, the potential
s)(1, 2) was taken to be a Serber-Yukawa force with parameters adjusted to fit low-energy ss pscat-tering data~

u(1, 2) = Cip(rip) 'I'+Pi) (ri,) 'I'$Cip (1+2~(1,2) )],
'E=-,'(1—oi «), PI'=-', (5+~, «),

e(rip) = VpCexp( —lsri&) /pris ) Vp= —46.&7 MeV, 'is=0.&547 F '

3VO= —52.13 MeV, 3p, =0.7261 F ~

where I'~(1, 2) is the Majorana exchange operator.
In the case of a Serber force, the sum over / in the
definition of the C coeKcients reduces to a sum over
even values of / only.

Once the secular matrix has been diagonalized and
the coeKcients o.qr" have been obtained, the matrix
elements of the required multipole operators BRzz
are given by

I
(+sr::&zr::qp) I

~~r('+1(1jl) ('+2) 2s2)—i
n1t1 j1,n2lqjq

X (e&l&j&'. .OR&r.::rs21j2p) I', . (9)

where the symbols:. are used for matrix elements
reduced in both angular momentum and isospin. The

problem is then one of finding single-particle matrix
elements of the multipole operators.

The inelastic-electron-scattering cross section in first
Born approximation may be written'

do/do=4sro~(Ep, 8)/C1+ (2Ep sin'(p8) )/Mr j
X I (q 2/q2) 2PL2 (q) +C (q 2/2q2) +tan2 (18)jIIT2 (q) I

(1o)

where Eo is the incident electron energy, 0 is the angle
the electron is scattered through, Mg is the target
mass, q„= (q, fo)) is the four-momentum transfer,

q =
I q I

is the magnitude of the three-momentum
transfer, and (r~(Ep, 8) is the Mott cross section

oj)e(Ep, 8) = Ce(. cos(-', 8) /2Ep si.n'P8) j'. (11)
"T. A. Brody aji(i M. Mophinpky, Tables of Tramsforroalsoe p ( ~ d p

J3ruckels {Universidad Nacional Autonoma de Mexico, Mexico,
1960}. inelastic form factors, respectively, and for a spin-0
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target nucleus are given by
0(}

~i'(q) = 3 f8~'(q, ') g. '(q') g I (+»:.:~»'"'(q)::.+0) Is=i', (12)

~r'(q) =f'.i'(q)+~ -'(q) = 3 f8~'(q') g.
OO

x Z Il (+»::&»"(q).::+) I'+
I (+»:.:7'» "(q):.:+ ) I'Ir=~ (»)

J=1

where F,P(q) and F „'(q) are the electric and magnetic form factors, respectively. ln erst Born approximation,
the Anite size of the nucleon is incorporated by multiplying by the single-nucleon form factor, taken here to be

f8+(q„') = (1+q„'/qrP) ', qx= 855 MeV/c. (14)

Finally, the c.m. correction g, (q') is included. This takes the form' ""
g..-.(q') = ~"'", y= (&q/2)' (15)

for harmonic-oscillator wave functions.
In considering single-particle-hole states, we require reduced matrix elements of the multipole operators

AIBA~ '"'(q) =Ce~+(q'/8M') (e,—2y;)7M' (r) (16)

where the term involving (q/M) ' is the Darwin-Foldy correction. ' '4

q /' (J)'" (J+1)'"
&z~"(q) = —~,

I

— Mvmps~(r, ) +9 '& CJ7
" '

CJ7
Mgg y (r ) I'q V+2p Mgg (r ) '0'(i)

q (J) 1/2 (J+1)1/2

iTg~ 'g(q) = ——',p, M~~+~~(r, )—
CJ7 CJ7

Mgg y (1~) I 0 (i)+e,Mgg (r;) q
—'V

where
3fg~(x) =jg(qx) I"g~(Q.),

Mgr~(x) =j 1.(qx) Ygr,,~(Q.),

~, =-', (1+r,(i) ),
//, =

~ (//s+//vrs (i) ).
The necessary reduced matrix elements are given by

(~&(1&2)j& II Mz(r) II m2(l2-', )j&)= (—) ~+/2+'/'(4~) '/'[l&7[l27[ j&7[j27[J7
li ji —', (l& J l2)

x l(~ 41 j~(/) I
~~l2)

j& l2 J (0 0 0)
(e~(4~)j~ II M~r, (r) cr

I I ~2(l&2)j~)= (—) "(6/4m)'"[i~7[i~7[ j&7[jg7[L7[J7
lg l~ I

(»)

(18)

(19)

(2o)

(21)

x l(nglg Ij r (p) I
//2i2), (22)0o0)

X

d l2'tx (~i~
I gr, (p) ——

I I
"2l2)+ (l2) "'Ll2—17/Ll27

, jl j2

(~~(l~~)j~ II M jr (1) .q 'v
II ~, (t;', )j)=-(—) +'+'/'(4~)-'/'[l 7@7[j~7[j27[L7[J7

jz 1 J
I

lg L l+1
—(l +1)"'D +17/Cl 7

j2 l2 J. l, 1 l+1 (0 0 0

X l(~Pi I ji(/) —+ I I
~~i ), (»)

l2 1 ig —1 (0 0 0

22 J. P. Elliott and T. H. R. Skyrme, Proc. Roy. Soc. (London) A232, 561 (1955)."S.Gartenhaus and C. Schwartz, Phys. Rev. 108, 482 (1957).
24 K. W. McVoy and L. VanHove, Phys. Rev. 125, 1034 (1962).
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where p=qr and where the radial matrix elements involving derivatives can be reduced to matrix elements of
spherical Bessel functions only, the latter being given by

2L(r/'l'iver,

(qr) i
nl)= y~/se &P(N' 1)—!(e—1)!

(21.+1)!!
n' —1

&&r(~'+P+-', ) r(N+ l+-', ) )'/' g
m, /'M

mI+m

~m'!m! (rs' —m' —1) !(ri —r/s —1) !
F —' /' 1 2rN' 2m I. 3

1'(l'+m'+-,s) 1'(l+r/s+-,s)

For all cases here, the confluent hypergeometric
function P(n; P; y) reduces to a simple polynomial in
y. Explicit expressions for reduced matrix elements of
the multipole operators required here are tabulated
in the Appendix.

IIL RESULTS

The single-particle energies and consequently the
unperturbed energies of the particle-hole states con-
sidered here are

eisg12= 35 MeV, eg„„,——18.72 MeV,

eg„„,=4.95 MeV,

e2„1,——1.86 MeV, &gg, l,= 1.10 MeV,

~gg,],———3.39 MeV,

Ep(1pi/s) (1Pp/s) 'r+,s+=13;7'7 MeV,

Ep(2si/p) (1pp/s) i s 16.86 MeV,

Ep(idp/s) (1Pp/s) ~1-,R-,$-,4 17.62 MeV,

Ep(ldp/p) (1pp/s) p, i p, p =22.11 MeVi

Ep(1Pi/p) (1st/s) p i-——30.05 MeV.

The pure particle-hole states are shifted from their un-
perturbed energies when a residual interaction is intro-
duced. The level scheme for the pure states (no con-
figuration mixing) is shown in Fig. 1 as a function of
the oscillator parameter b, where the Serber-Yukawa
force of Eq. (8) has been used. 'P When configuration
mixing is allowed and the Hamiltonian is diagonalized
to yield energy eigenvalues and eigenvectors, we obtain
the level scheme shown in Fig. 2. The calculation here
is the same as that of LK and deForest, "extended to
1+, 2+, 3, and 4 states and to a range of values of the
oscillator parameter. In subsequently discussing the
electron scattering results, the oscillator parameter will
be fixed at b=1.64 F to yield agreement for the C"
elastic form factor'7 and to compare favorably with the
value obtained from Coulomb energy differences,
b= 1.66 F."In I, the value 1.60 F was used; however,

"Note that in I the energies were given for b in the range 1.9-
2.2 F rather than 1.6—1.9 F as stated.

2' T. deForest, Jr., Phys. Rev. 139, 31217 (1965).
'7T. W. Donnelly and G. E. Walker, Phys. Rev. Letters 22,

1121 (1969).
PP G. E. Walker (private communication).

the results obtained with either value are very similar.
The states obtained are listed in Table I.

Experimentally a 1+ level is found at 15.1 MeV and
2+ level at 16.1 MeV, whereas with the residual inter-
action considered here this doublet is inverted and lies
too high. Vinh-Mau and Brown" obtain a 1+ at 16.1
MeV and a 2+ at 16.5 MeV, both corresponding to
almost pure configurations. In their calculation, a
different spin dependence was used in the residual
interaction resulting in closer agreement with the
experimental energy values. In more detailed inter-
mediate-coupling calculations" one Q.nds more mixing
of configurations, however, the dominant effect is simply
to lower the over-all transition strength to these levels
and leave the momentum dependence relatively un-
changed.

The next observed level is a 2 at 16.6 MeV. %e
identify this with the lowest 2 we have, that is the one
dominated by the (1Ps/s) '(2si/s) pure particle-hole
state. In considering electron scattering data averaged
over energy intervals on the order of 1 MeV as we are
doing here, the 2+ at 16.1 MeV and the 2 at 16.6
MeV are taken together to form the 16-MeV complex.
The form factors for this complex will be considered
later.

Next we identify our lowest 1 level (dominated by
the (1pp/s) '(2si/s) pure particle-hole state/ with the
feature found at 18.1 MeV in electron scattering at
low momentum transfer. Both our 1 and 2 states
dominated by (1Pp/p) '(2si/s) are found to lie too high.
If they are identified with the lower-lying experimental
states as we have done, there remain 2, 3, and 4
levels in the 19—20-MeV region, all dominated by the
(1pp/Q) '(1dp/p) pure state (in fact, this is the only way
to get a single-particle-hole 4 state with the shells
considered here). This collection of states we will call
the 19-MeV complex and will consider as a unit when
electron scattering form factors are examined. The
2 is believed to be the giant magnetic quadrupole
resonance jn C"."Vinh-Mau and Brown's calculation
places this level at 19.2 MeV. The 3 level has been
seen" at 18.6 MeV and has previously been discussed
both on the basis of a harmonic-oscillator shell model

"N. Vinh-Mau and G. E. Brown, Nucl. Phys. 29, 89 (1962).
30 D. Kurath, Phys. Rev. 134, 81025 (1964)."%.Feldman, M. Suffert, and S. S. Hanna, Bull Am. Phys.

Soc. 13, 822 (1968).
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FIG. 5. The 16-MeU complex form factor at 0 = 135 . The
dotted curve is the 2+, C2+E2 form factor (with amplitude
reduced by a factor of 2) . The dashed curve is the 3f2 form factor
for the 2 state at 18.80 MeU in the present calculation. The
solid curve is the sum. The data shown are Ref. 3, O Ref. 8,
x Ref. 9, + Ref. 10, 'P Ref. 14, and & Ref. 15. Note that the
data of Ref. 8 are for the 2+ level only.

8= 135'), whereas the transverse form factors have no
angle dependence. For the 2+ state the C2 contribution
(i.e., divided by 6.33) is larger than the E2 contribu-
tion at small momentum transfer, the two are equal at
about 130 MeV/c, and at higher q the E2 dominates,
Figure 5 shows the sum of the C2 and E2 contributions.
The predicted general behavior of the 16-MeV complex
as a function of momentum transfer is in agreement
with experiment, although it could be improved in the
region q 200-500 MeV/c by reducing the 2, M2
amplitude somewhat. At high q the 2 form factor is
dominant and, in particular, the (1ps~s) '(2sr~s) part
of the 2 state is what determines the ampli-
tude there, being much larger than the (1p3/s)

—'(1d;(.,)
or (1ps~s) '(1dgs) contributions. By examining the

q dependence of the form factors in this way informa-
tion can be obtained about the configurations which
constitute the wave function. The calculated form
factors for the 16-MeV complex (and indeed for all
the form factors considered here) decrease too rapidly
with increasing momentum transfer beyond about
500 MeV/c. Similar results are obtained for the elastic
fo] m fa,ctor" and to some extent may be changed by
using finite-well wave functions rather than the
Gaussian-like harmonic-oscillator wave functions that
are used here.

The form factor for the 1,C1+El excitation identi-
fied with the state at 18.1 MeV is shown in Fig. 6. The
data extend only to q~300 MeV/c, beyond which the
tail of the larger 19-MeV complex dominates. The E1
is larger than the C1 contribution for all g except near
300 MeV/c, where the E1 has a diGraction zero; indeed
the E1 is 6nite at q=0 whereas the C1 form factor is
proportional to q at small q.

The 19-MeV complex form factor is shown in Fig. 7.
From the q dependence at small momentum transfer
the existence of the 2, M2 excitation can be inferred. '
However, the 2 form factor has a diffraction minimum
at about 330 MeV/c, where the data have none. If,
instead of the particle-hole model, the Goldhaber-
Teller model is used for the giant magnetic quadrupole
resonance, " the 2 form factor still has a diffraction
minimum, in this case at the elastic form-factor value
of about 360 MeV/c. Indeed the form factors obtained
on the basis of these two models are very similar. The
3, C3+E3 excitation shown in Fig. 8 is predominantly
longitudinal and small and so cannot fill in the 2
diRraction minimum. Alternatively, including the 1
which was identified with the feature at 18.1 MeV
gives the wrong q dependence at low momentum
transfer. There remains the 4, 3f4 excitation to con-
sider among the levels found in this energy region

IO

IO

IO

O.I

I I I

02 03 04 05
q (GeV/c)

I

0.6 0.7

3 H. Uberall, Nuovo Cimento 4IB, 25 (1966).

FlG. 6. The C1+E1 form factor for the 1 state at 19.52 MeU.
The dashed curve is the E1 only; the solid curve is the sum of
the E1 and C1 for 8=135'. The data are for the feature observed
at 18.1 MeU: Ref. 3, & Ref. 17 (0=128 ), and Q Ref. 17
(e=152').
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(Fig. 2) . As seen in Fig. 7, when the 2, 3, and 4 a.re
taken together. the calculat, ed and experimental form
factors are in reasonable agreement, This agreement
could again be improved by reducing the calculated
amplitude by a factor of about V2."' In I'ig. 8, experi-
mental upper limits on the longitudinal contribution
to the 19-MeV complex are shown and compared with
the 3 form factor. The large-momentum-transfer de-
pendence of the 2 form factor is again due mainly to
the (1pgs) '(2stis) configuration even though there is
more of the (1psis) '(1ds~s) present in the configuration-
mixed wave function (cf. Table I) . On the other hand,
the 4 form factor results from a pure (1P3/s) '(1dgs)
particle-hole state and obtains its large amplitude at
high momentum transfer from the high power of q in the
expression for the form factor (q' in the matrix element
or q' in the cross section, cf. the Appendix) . Of course,
because of this high power of q, the M4 is very small at
small momentum transfer and consequently very dif-
ficult to observe except in a process such as electron
scattering (far off the photon mass shell). Except for

IO

IO

IO -6
10

0 O.l 0,2 0.3 0,4
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Fio. 8. The 19.24-MeV C3 form factor at 0=135' (i.e.,
Fz,'(q)/[ —',+tan'(-,'e))l. The experimental upper limits on this
longitudinal contribution are ~ Ref. 3, + Ref. 14, and ~ Ref. 16.
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FIG. 7. The 19-MeV complex form factor at 0=135'. The
dashed curve is the 352 form factor of the 20.60-MeV 2 level
and the dotted curve is the M4 form factor of the 20.17-MeV
4 level. The sum of the 2, 3 at 19.24-MeV (C3+E3) and 4
form factors is given as the solid curve. The data presented are
~ Ref. 3, Q Ref. 8, X Ref. 14, & and & Ref. 15, ~ Ref. 16,
+ and + Ref. 17. Note that the 4 form factor given in I was
plotted too low.

'4 Previous work (Ref. 26) has shown that the calculated 2
giant quadrupole form factor is too large in amplitude by a
actor of about v2.

the "fall off" at high q, the agreement for both longi-
tudinal and transverse form factors with experiment is
good. In Fig. 9, the 19-MeV complex is shown with the
40' data of Crannell et a/. ' At this smaller angle the
longitudinal form factor plays a much more important
role.

The treatment of the giant resonance region is
complicated by the continuum quasielastic background
which, particularly at high momentum transfer
where the giant resonance is small, makes a separation
of resonant and nonresonant contributions difficult.
In I, we took two limiting approximations: first, that
the quasielastic contribution was linear with energy
beginning at the neutron threshold of 18.7 MeV and
matching the data at 27—32 MeV, i.e., at energies above
the giant resonance (see Figs. 10 and 11), and second,
that there was no quasielastic contribution at all.
The proton threshold is, in fact, at 16.0 MeV, however,
with a Coulomb barrier for protons it is probably
reasonable to take the neutron threshold for both kinds
of nucleons. The results obtained in I consequently
showed a large spread between the two ways of con-
sidering the quasielastic background. In the present
work, a somewhat better approach is taken. The non-
resonant background contribution is obtained by
summing all non-negligible multipole transitions to
pure particle-hole states (no residual interaction)
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FIG. 9. The 19-MeV complex form factor at 0=40'. The solid
curve is the 2 +3 +4 total form factor and the dashed curve
the longitudinal (C3) contribution only. The data are from Rei.
18.

FIG. 11. As for Fig. 10, except at 8=135' and Eo ——275 MeV.
Note that the form factor for the 19-MeV complex given in Ref.
3 may be slightly too large due to the smaller quasielastic back-
ground assumed there than calculated in the present work.

Using these 1s and 1P wave functions the elastic form
factor for C" was calculated and compared with
experiment'~; in fact, the radius parameter E was chosen
from among several that were tried by requiring that
the calculated elastic form factor have its first dif-
fraction minimum at the experimental value. In this
square-well potential with no spin-orbit splitting,
the 1d state is bound by 1.38 MeV compared to the
single-particle energies of the 1d~~r state (1.10 MeV,
bound) and the 1d3~2 state (—3.39 MeV, unbound)

10-2

using square-well wave functions. From an examination
of the elastic form factor with finite-well wave func-
tions, reasonable parameters can be chosen for the
square well: a radius of 8=3.0 F and a well depth of
V=48.7 MeV to give the 1p single-particle state the
neutron separation energy E»=18.7 MeV. The 1s
single-particle energy in this well is E&,=33.7 MeV. IO 3—
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FIG. 10. The inelastic cross section for 0=135' and an incident
electron energy Eo ——131 MeV. The data are from Ref. 3 with
radiative effects removed. The solid curve is the calculated quasi-
elastic contribution to the cross section.
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FrG. 12. The E1 form factors for the 1 states at 23.09 MeV
(solid curve) and 24.89 MeV (dashed curve).
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which are used in the rest of this work. With the
1d state below threshold and no mixing of bound and
continuum states the main strength is to the same
particle-hole states considered above using a harmonic-
oscillator basis. There will also be a contribution for
excitation energies above threshold from particle-hole
states having bound (hole) and continuum (particle)
wave functions which is generally called the quasi-
elastic contribution. To obtain this quasielastic cross
section all significant multipole transitions to single-
particle (continuum) —single-hole states are summed.
Both bound and continuum wave functions are com-
puted in the same square-well potential. The results are
shown in Figs. 10 and 11 and comparedwith the data of
Sick and Hughes. ' An important observation here is
that at low q (Fig. 10) the quasielastic contribution is
relatively small and the giant resonance dominates the
excitation function in the region co=21-27 MeV; on
the other hand, at high q (Fig. 11) the quasielastic
contribution is relatively large and the giant resonance
has nearly disappeared. The rapid rise from threshold
of the cross section is principally due to multipole
transitions which involve s waves in the continuum.
However, higher partial waves are, in general, im-
portant and indeed for values of momentum transfer
around 200 MeV/c the p and d waves contribute more
than the s waves do at excitation energies as low as
several hundred keV above threshold. In this calcu-
lation, the protons have been treated like neutrons in
that the neutron separation energy is used and the
Coulomb barrier is ignored. If the correct separation
energy of 16.0 MeV is used for protons, then the cross
section will begin at that value as well. However, the
presence of the Coulomb barrier will decrease the cross
section near threshold and will likely yield results
similar to those obtained here by treating protons and
neutrons alike. This may not be true in some particular
range of momentum transfer where an enhancement
similar to that obtained here for higher partial waves
may occur, but it is likely true for most values of q.

Using this estimate of the quasielastic contribution,
we proceed to a consideration of the giant resonance
region. The quasielastic form factor which results when
the calculated double-differential cross section is inte-
grated between &v=21 MeV and co=27 MeV (the same
range as used for the data of Sick and Hughes' and the
data of Ricco et al.") is shown in Fig. 13 (dotted
curve) . The main contribution in the neighborhood of
q=200 MeV/c is E1, followed in importance by M2
and 3f1 multipoles. On the other hand at q~400
MeV/c the most important term is M2, followed by
E1, E3, M3, and E2, respectively. The cross sections
presented here, in fact, have all multipoles up to at
least C6, E6, and M7 included, although the higher
multipoles are extremely small. At low q, the Coulomb
cross section is larger than the transverse cross section,
but the two become comparable when the ~~+tan'(~~0)

!0

~OI0%
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'oetsoo

i0-5
0

l

O. l

t T

0.2 0.5 0.4 0.5 0.6 0.7
q (F~eYlc)

Fxo. 13. The giant-resonance-region form factor at 0=135'.
The dashed curve is the sum of the form factors for the 1 levels
at 23.09 and 24.89 MeV and the 2 level at 23.83 MeV. Following
the argument in Ref. 6 the C1 form factors have been divided by 2.
The dotted curve is the calculated quasielastic form factor for
cross sections integrated between co=21 MeV and co=27 MeV.
The solid curve is the sum. The data from Ref. 3 are also for
cross sections integrated in energy between 21 and 27 MeV.

factor is included as this enhances the transverse
contribution by 6.33 for 8=135'. At high q the longi-
tudinal and transverse form factors are comparable in
magnitude and with the factor 6.33 the transverse
cross section is consequently dominant.

To determine the importance of using continuum
wave functions which are solutions to the Schrodinger
equation in the presence of a nuclear square-well
potential, the same calculation was repeated using
plane waves (V=O) for the particle wave functions.
The bound-state solutions in the square well were re-
tained for the hole wave functions. The Coulomb form
factor, for example, then involves essentially the Fourier
transform of the ground-state charge distribution.
The results di8er appreciably: At low momentum
transfer the plane wave case yields form factors which
are larger than in the case of distorted waves (for
example, 3 times larger at q=200 MeV/c). For high q
the reverse is true —the form factor for V=48.7 MeV
is larger than the form factor for V=O (for example,
by a factor of 9 at q= 400 MeV/c) . The result is that
including the nuclear potential for the continuum
wave functions is indeed important.
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FIG. 14. The giant-resonance-region form factor at 8 =155' and
8=180'. The solid curves show the sum of the discrete (1 +
1 +2 ) and the quasielastic contributions and the dashed curve
the discrete contribution only. The data shown are O Ref. 8,
X Refs. 17 and 26, and ~ Rei. 19 (integrated between F0 =21 MeV
and so=27 MeV). From Ref. 8 there is one extra datum at 350
MeV/c which is too low to be plotted in this figure.

This relatively simple calculation of the nonresonant
quasielastic contribution to the cross section could be
improved in a straightforward way by using a more
realistic nuclear potential, say a Woods-Saxon potential
with spin-orbit splitting. The inclusion of a Coulomb
potential and a separate treatment of proton and
neutron energies would be more realistic as well. A
more difficult step would be to include configuration
mixing in the continuum" over a large range of mo-
mentum transfers; another would be a proper treatment
of the c.m. correction. "In this calculation, the dificult
problem of treating the c.m. correction has been all but
ignored and we have simply used the harmonic-oscil-
lator correction g, .(q') given in Eq. (15).The results
are not significantly changed if this correction is
omitted (e.g. , at q=500 MeV/c the c.m. correction
increases the calculated cross section by only a factor
of 2). However simplified the model is, we conjecture
that it at least incorporates the main features of
particle-hole states in a finite potential well. A more
detailed account of this quasielastic calculation par-
ticularly at high excitation energies will be reported in
the near future.

To the quasielastic form factor are added the form
factors of the two 1 states and the 2 state in the giant
resonance region (all calculated using harmonic-

oscillator wave functions) . The two 1,E1 form factors
are shown in Fig. 12. At small values of q (and con-
sequently in photoexcitation which is on mass shell)
the (1pgs) '(1dsii) -dominated form factor is the impor-
tant one. At higher q, however, the (1pgs) '(1ds/2)-
dominated spin-Aip form factor becomes generally more
important, particularly around 200 and beyond about
400 MeV/c. The two are of equal magnitude at about
80 MeV/c. Lewis and Walecka' have also considered
the Goldhaber-Teller model of pure charge oscillations
and the Steinwedel —Jensen hydrodynamical model of
the giant resonance and have shown that for these
models the form factor continues to fall with increasing
momentum transfer beyond 80 MeV/c, whereas the
data and the particle-hole form factors both rise.

The longitudinal C1 contributions are found to be
significant only at small values of g where they fill

in the diffraction minimum at F80 MeV/c obtained
with just the E1 form factors. Following the argument
put forward in LW the longitudinal C1 form factors
(the amplitudes squared) have been reduced by a
factor of 2. In fact, data" obtained at g=93 MeV/c
and different angles yield a longitudinal form factor
which is consistent with the calculated value where the
calculated C1 form factors are reduced by the factor of
2. Including the 2 in the giant resonance region makes
only a little difference, its main effect being to 611 in the
diffraction minimum in the dipole form factor which
occurs between 300 and 400 MeV/c.

The total discrete form factor (the sum of the two 1

and the 2 form factors) is shown in Fig. 13 (dashed
curve) along with the sum of this discrete form factor
and the quasielastic form factor. The latter is compared
with the data of Sick and Hughes' in Pig. 13. The
general agreement between calculated and experi-
mental form factors is seen to be reasonably good. As
with all the other complexes considered here, the high

q fall off is where the agreement is poorest. The relative
importance of discrete and quasielastic contributions
to the cross section is particularly striking: At low q
the discrete form factor is much larger than the quasi-
elastic form factor, while at high q their roles are re-
versed.

The 3 discrete form factor was not included in this
calculation as it was felt that, on the basis of Friar' s
continuum-model calculation3' where the 3 was found
to be broad and to peak at about co=27 MeV, it would
contribute mainly at higher excitation energies than
those considered here (21—27 MeV) . At low momentum
transfer, this 3 form factor is relatively small, having
only comparable amounts of longitudinal and trans-
versestrength. However, at momentum transfers beyond
about 300 MeV/c the 3 form factor is relatively large
and ills in the diffraction dip in the total form factor
which occurs between 300 and 400 MeV/c. Indeed if
only part of the 3 contribution is included (with the re-
majndt;r gf its strength lying at higher excitation
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energies), then excellent agreement with the data of
Sick and Hughes can be obtained up to q~500 MeV/c.

Finally, in Fig. 14 the giant resonance region form
factor is compared with data ' ' '0 taken at 0=155'
and 180'. The solid curves include both the quasi-
elastic and discrete (dipole and quadrupole) form
factors and the dashed curve the discrete form factor
only.

IV. DISCUSSION

In summary, we have considered the T=1, single-
particle-hole states in C" on the basis of the particle-
hole formalism of Lewis and Kalecka, ' using harmonic-
oscillator wave functions for basis states. As in the
calculation of Lewis and Walecka the pure j-j coupled
particle-hole states here were mixed by a residual in-
teraction, taken to be a Serber-Yukawa force with
parameters obtained by fitting low-energy I-p scatter-
ing data. ~ The resulting energy spectrum contains
groups of states which can be identic. ed with the gross
features excited in electron scattering: a 1+ at 15.1
MeV, a 16-MeV complex (2+, 2 ), a 1 at 18.1 MeV, a
19-MeV complex (2+, 2 ), a 1 at 18.1 MeV, a 19-MeV
complex (2, 3, 4 ), and a giant resonance (1,1,2 ) .
These complexes of neighboring single-particle-hole
states are taken to be the doorway states for electro-
excitation and yield inelastic-electron-scattering form
factors to be compared with experimental data averaged
over energy intervals on the order of 1 MeV.

The positions of the levels obtained are within a few
MeV of their experimental energies (where known),
being the worst for the 1+—2+ doublet where inter-
mediate coupling can be important. "A different spin-
dependent force can improve the agreement here and,
in particular, place the doublet in the experimental
order (ra,ther than inverted as with the Serber-Yukawa
force) . The odd-parity states are found to be generally
about an MeV too high in energy when the Serber-
Yukawa force is used. Notably, the lowest-lying 1
and 2 states Lthose dominated by the (1P3/2) '(2sr/s)
pure particle-hole state) are the furthest from their
experimental energies. However the states in the giant
resonance region are clearly grouped as are the states
in the 19-MeV complex, where, in particular, the 2 and
the unobserved 4 states are found to be within a few
hundred keV.

Good agreement is obtained for the momentum-
transfer dependence of the form factors for these com-
plexes when compared with energy-averaged experi-
mental data. The amplitudes of the transitions to the
1+ and 2+ states had to be reduced by a factor of 2,
indicating that the simple particle-hole model is
inadequate; however, the q dependence is reproduced
qualitatively, particularly in predicting a diffraction
minimum in the M1 form factor. The form factors for
the odd-parity particle-hole states are in reasonable

agreement in amplitude with experiment and need at
most a reduction factor of K2 to yield excellent agree-
ment. Factors of this order result from treating the
whole problem to a higher order, for instance by con-
sidering 2p-2h states as well as 1p-1h states" or by
using the random-phase approximation to obtain
higher conhgurations. " In any case, the momentum-
transfer dependence is in good agreement with experi-
rnent up to 400-500 MeV/c. For higher momentum
transfers, the calculated form factors decrease too
rapidly with increasing q, a characteristic of the
Gaussian-like harmonic-oscillator wave functions. This
high-q dependence may be improved, as it is in the case
of the elastic form factor, '~ by using finite-well wave
functions. The fact that the behavior of both elastic
and inelastic form factors can be at least qualitatively
explained at high momentum transfer, where hard-
core-induced correlations are expected to have an
eGect, '~ implies that at present the existence of such
correlations cannot unambiguously be inferred from
the experimental data.

In conclusion, good agreement is obtained in corn-
paring the form factors for groups or complexes of
single-particle-hole states with the gross structure
seen experimentally in electr oexcitation. This is a
powerful means for locating and studying the collective
particle-hole structure, particularly at high momentum
transfer where the structure is relatively simple with
only a few strongly excited features and where states
of high angular momentum can easily be reached.
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APPENDIX

For completeness, the matrix elements of the multi-
pole operators LEq. (16)—(18)j reduced in angular mo-
mentum and isospin are tabulated here. Radial matrix
elements of the spherical Bessel functions for harmonic-
oscillator wave functions are obtained using expressions
given by deForest and Walecka. ' Here we have T=1
and so have only the isovector magnetic moment py.
With y = (b/t/2) ', the polynomials pzz (y), pzz (y),
and psrz(y) for multipolarity Z are defined by setting

"G. E. Vilalker, Phys. Rev. 174, 1290 (1968) .
"V. Gillet and M. A. Melkanoff, Phys. Rev. 133, 31190

(19u4) .
sr ~. Czyz and K, Gottfried, Ann. Phys. (N.Y.) 21, 47 (1963).
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the reduced matrix elements' equal to

(sr (l&s)jr::.31&c'"':. :.es(ls s)js)= (3/4s. ) ' '[1-+ (g„'/83P) (1—2@v) ]y "e 'P&z(y)

(Nr(lrrs)jr: Tg"::~(ls—,')js) = (3/4s)'I'(1/bM)y'~ '&I'e "p@g(y) for electric rnultipoles,

for Coulomb multipoles, (26)

(27)

(n, (l,—', )j,::i'~'s '~(lss) j,)= (3/47r) '~'(1/bM) y~~ e &Psrz(y) for magnetic multipoles. (28)

(1P»s) (1pws) ':
P~r(y) = s 51+~v(—2+y) j
pcs(y) = (2v2/3), p~s(y) = —(2%3/3) ivy.

(»»s) (1pws) ':

P»(y) = —sL(1+y)+~v(y —y') jPer(y) = (2~2/3) (1—y)

psrs(y) = —(2~3/3) Pv(1 —y).

(1dsn) (1pws) ':

Note the extra factor 1/(bM) = (cv,/M) 'I' in the transverse form factors, producing a different dependence on the
oscillator parameter for longitudinal and transverse form factors.

The polynomials pc&(y), p&z(y), and psrz(y) contain only non-negative powers of y and consequently at
small momentum transfer the leading terms vary as y~", y( ')~', and y~", respectively. For example, only
CO and E1 form factors can be 6.nite at q=O. In fact, for some particle-hole combinations the constant term
in the polynomial may vanish and the leading term may vary as some higher power of y (see for example the E2
term below). For the particle-hole states involved in the present work, these polynomials are explicitly
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p„(y) =2(1—sy), p»(y) = —%2L(1——,'y)+pv( —y+sy') j,
psr, (y) = —(2/15)(70) »'L1+pv(& —ry)$,

P (y) = —( /15)(6)'", P (y) = (4/15)~2(1 —l y),

P~4(y) = (2/7) (14)"I v

Por(y) = —s(1—5y» P»(y) = (v2/3) ((1—By)+i v(4y —(8/5) y')3

P~s(y) = (2/15) (3o) '"(1—pv),

pcs(y) = s PER(y) = —(4/15)v3(1+2Pvy).

1-, p„(y) = —(6»'/3), p»(y) = (v3/3) (1+2pvy).

The form factors for the states involved here are then obtained by taking linear combinations of these polynomials
for a given multipole with the mixing coeKcients given in Table I.

"The reduction in isospin sirnp1y contributes a factor 1/v2.


